D’ya Like DAGs? A Survey on Structure Learning and Causal
Discovery

MATTHEW J. VOWELS’, NECATI CIHAN CAMGOZ, and RICHARD BOWDEN, cvssp,
University of Surrey, UK.

Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships
from data, we need structure discovery methods. We provide a review of background theory and a survey
of methods for structure discovery. We primarily focus on modern, continuous optimization methods, and
provide reference to further resources such as benchmark datasets and software packages. Finally, we discuss
the assumptive leap required to take us from structure to causality.

CCS Concepts: « Mathematics of computing — Causal networks; « Computing methodologies —
Machine learning; Causal reasoning and diagnostics.

ACM Reference Format:

Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. 2022. D’ya Like DAGs? A Survey on Structure
Learning and Causal Discovery. ACM Comput. Surv. 1, 1, Article 1 (March 2022), 35 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION

Causal understanding has been described as ‘part of the bedrock of intelligence’ [145], and is
one of the fundamental goals of science [10, 69, 184, 248—250]. It is important for a broad range
of applications, including policy making [136], medical imaging [30], advertisement [22], the
development of medical treatments [191], the evaluation of evidence within legal frameworks
[184, 223], social science [81, 94, 254], biology [242], and many others. It is also a burgeoning
topic in machine learning and artificial intelligence [6, 16, 65, 75, 144, 214, 255, 265], where it has
been argued that a consideration for causality is crucial for reasoning about the world. In order to
discover causal relations, and thereby gain causal understanding, one may perform interventions
and manipulations as part of a randomized experiment. These experiments allow researchers or
agents to identify causal relationships, but also to estimate the magnitude of these relationships.
Unfortunately, in many cases, it may not be possible to undertake such experiments due to
prohibitive cost, ethical concerns, or impracticality. For example, to understand the impact of
smoking, it would be necessary to force different individuals to smoke or not-smoke. Researchers
are therefore often left with non-experimental, observational data. In the absence of intervention
and manipulation, observational data leave researchers facing a number of challenges: Firstly, obser-
vational datasets may not contain all relevant variables - there may exist unobserved/hidden/latent
factors (this is sometimes referred to as the third variable problem). Secondly, observational data
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may exhibit selection bias - for example, younger patients may in general prefer to opt for surgery,
whereas older patients may prefer medication. Thirdly, the causal relationships underlying these
data may not be known a priori - for example, are genetic factors independent causes of a particular
outcome, or do they mediate or moderate an outcome? These three challenges affect the discovery
and estimation of causal relationships.

To address these challenges, researchers in the fields of statistics and machine learning have
developed numerous methods for uncovering causal relations (causal discovery) and estimating
the magnitude of these effects (causal inference) from observational data, or from a mixture of
observational and experimental data. Under various (often strong) assumptions, these methods
are able to take advantage of the relative abundance of observational data in order to infer causal
structure and causal effects. Indeed, observational data may, in spite of the three challenges above,
provide improved statistical power and generalizability compared with experimental data [44].

In this paper we review relevant background theory and provide a survey of methods which
perform structure discovery (sometimes called causal induction [80]) with observational data or
with a mixture of observational and experimental data. We split structure discovery algorithms into
two principal groups. We only briefly discuss combinatoric/search based algorithms (Section 4),
and instead focus on continuous optimization based algorithms (Section 5). In both cases, we focus
on the static, non-dynamic causal discovery setting, although we will briefly discuss the dynamic,
time series setting where relevant. A number of reviews, surveys and guides are already available
(see e.g. [69, 92, 230]), however, these reviews cover combinatoric approaches to causal discovery,
hence why we primarily focus on the recent flurry of developments in continuous optimization
approaches. Furthermore, the existing reviews are relatively short, and we attempt to provide a
more scoping introduction to the necessary background material. Finally, we provide references to
further useful resources including datasets and openly available software packages.

The structure of this survey is as follows: Following an overview of relevant background infor-
mation in Section 2, we provide an overview of approaches to structure discovery in Section 3,
including a list of common evaluation metrics. In Section 4 we briefly outline a range of combina-
toric approaches before focusing on continuous optimization approaches in Section 5. We begin 6 by
referencing several additional resources including reviews, guides, datasets, and software packages.
We also provide a summary and discussion of the methods covered in Section 6, and note various
opportunities for future work and future direction. Many of the methods we review in this survey
seek to discover and interpret the learned structure causally. Whilst this is a laudable aim, we are
reminded of important commentaries (e.g.,[41, 57, 105]) which argue for appropriate skepticism
and care when making the leap from observation to causality via causal discovery methods. We
therefore conclude Section 6, and this survey as a whole, by providing a discussion on these issues.

2 BACKGROUND - DEFINITIONS AND ASSUMPTIONS

In this section we provide working definitions of key concepts in structure discovery. We include
a presentation of a common framework used in structure discovery (namely, that of structured
graphical representations) as well as a number of common assumptions.

2.1 Causality and SCMs

In spite of some notable reluctance to treat graphs learned from observational data as causal
[41, 57, 105], we acknowledge that it is a common and worthwhile aim, and begin by presenting
a working definition of causality and its popular systematization in Structural Causal Models
(SCMs). Causality eludes straightforward definition [228], and is often characterized intuitively
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Fig. 1. Transitioning from a typical DAG representation (left) to a structural equation model (right). Grey
vertices are unobserved/latent random variables.

with examples involving fires and houses [184], firing squads [98], and bottles and rocks [99]. One
definition of what is known as counterfactual causality is given by by Lewis (1973) [143] as follows:!

"We think of a cause as something that makes a difference, and the difference it makes
must be a difference from what would have happened without it. Had it been absent,
its effects — some of them, at least, and usually all - would have been absent as well".

Lewis’ definition is counterfactual in the sense that he effectively describes ‘what would have
happened if the cause had been A*, given that the effect was B when the cause was A’. Seemingly,
this definition is compatible with the ‘Pearlian’ school of causal reasoning. Specifically, in the
context of what are known as SCMs:

"Given two disjoint sets of variables X and Y, the causal effect of X on Y, denoted as...
P(y|do(x)), is a function from X to the space of probability distributions on Y. For each
realization of x of X, P(y|do(x)) gives the probability of Y = y induced by deleting
from the model [x; = f;(pa;, u;), i = 1...,n,] all equations corresponding to variables in
X and substituting X = x in the remaining equations."

This definition [184, p.70] requires further examination. Firstly, the model x; = f;(pa;, u;),i =
1...,n, is a Structural equation/Causal Model (SEM/SCM) which indicates assignment of the value
x; in the space of X to a function of its structural parents pa; and exogenous noise u;. We elaborate
on what parents are (as well as children, descendants etc.) below. Secondly, the do notation [184]
indicates intervention, where the value of x is set to a specific quantity. The structure (including
attributes such as parents) can be represented graphically using various types of graphical models
(e.g., Directed Acyclic Graphs). Figure 1 shows the relationship between a DAG and a general
Structural equation Model. Sometimes this SEM is also called a Functional Causal Model (FCM),
where the functions are assumed to represent the causal mechanisms [74]. The use of the assignment
operator :=" makes explicit the asymmetric nature of these equations. In other words, they are
not to be rearranged to solve for their inputs. To transform these relationships from mathematical
relationships to causal relations, the Causal Markov Condition is imposed, which assumes that the
exogenous variables U are mutually independent, and that the arrows represent causal dependencies
which therefore entail a (Markovian) conditional independency structure [190, p.105-6].

The ultimate benefit of the graphical and structural model frameworks is that they, at least
in principle and under some strong assumptions, enable us to use observational data to answer
scientific questions such as how?’, ‘why?’, and ‘what if?’ [186].

1See discussion in Menzies & Beebee (2020) [160]
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2.2 Graphical Models

For background on graphical models, see work by Koller and Friedman (2009) [133]. We follow a
similar formalism to Peters et al. (2017) [190] and Strobl (2018) [231]. A graph G(X, &) represents
a joint distribution Px as a factorization of d variables X = {X;, ..., Xy} using d corresponding
nodes/vertices v € V and connecting edges (i, j) € &, where (i, j) indicates an edge between v; and
v;. If two vertices i and j are connected by an edge we call them adjacent, and, can also denote this
in terms of the corresponding variables X as X; — X or X; < X (directed), X; — X (undirected),
X; < X; (bidirected), X; —o X or X; o— X; (partially undirected), X; o— X or X; <o X; (partially
directed), or X; o—o X; (nondirected). A graph comprising entirely undirected edges forms a skeleton.
It is also possible to have self-loops, although these occur relatively infrequently in the structure
discovery literature. These different edge types allow us to define a range of graph types and
relationships.

An undirected path exists if there are edges connecting two vertices regardless of the edge types
between them. In contrast, a directed path constitutes directed edges with consistent arrowhead
directions. We can define a parent pa; as a vertex v; with child v; connected by a directed edge
X; — X; such that (i, j) € & but (j, i) ¢ &. Further upstream parents are ancestors of downstream
descendants if there exists a directed path constituting ix — jk+; for all k in a sequence of vertices.
An immorality or v-structure describes when two non-adjacent vertices are parents of a common
child. A collider is a vertex where incoming directed arrows converge.

It is possible for directed cycles to occur when following a directed path results in the visitation
of a vertex more than once (e.g., X; = X; — X; — X;). Many phenomena in nature exhibit cyclic
properties and feedback, and ignoring this possibility has the potential to induce bias [68, 210, 231].
However, in such cases it is important to delineate between static and dynamic (time series) settings.
Assuming that the future cannot cause the past, a cyclic (dynamic) graph can encode that a previous
node influence itself at a future timepoint. We briefly discuss time in Section 3.4 below, but note
that causal discovery in time-based settings is not the principal focus of this survey. If all edges are
directed, and there are no cycles, we have the well-known class of Directed Acyclic Graphs (DAGs).
On the other hand, if all edges are directed but there is no restriction preventing cycles, we have a
Directed Graph (DG).

2.3 The Markov Assumption, d-Separation, and d-Faithfulness

The graphs are usually assumed to fulfil the Markov property, such that the implied joint distribution
factorizes according to the following recursive decomposition, characteristic of Bayesian networks
[184]:

d
P(X) = HP(XApai) (1)

This decomposition relates to the notion of d-separation. Two vertices X; and X are d-separated
by the set of vertices S if X; € S in any of the following structural scenarios [190]:
Xi — Xj i Xk
Xi — X] g Xk
They are also d-separated if neither X; nor any of the descendants of X; are in set S in the

following structural scenario (collider):

If the DAG’s d-separation properties hold (an assumpion of faithfulness - see below), they
imply Markovian conditional independencies in the joint distribution, which can be denoted as
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Fig. 2. Showing a skeleton, a CPDAG, and the Markov Equivalence set of graphs. Variable C is a collider, and
so the direction of incoming arrows can be identified from conditional independencies.

Xl p X |X;. In terms of the DAG, disjoint (i.e., non-overlapping) sets of variables A and B are
d-separated by disjoint set of variables S in graph G if A1l 4 ,B|S [190], and are, conversely
d-connected if this conditional independence in the graph does not hold.

The assumption of d-faithfulness is that any conditional independencies in the joint distribution
Px are implied by the graph, according to its d-separation properties. More formally [190, p.107],
for joint distribution Px and DAG G, the assumption of d-faithfulness holds if Al p, B|C =
ALy pB|C. One example of a violation of d-faithfulness occurs when the influence of two paths
cancel each other out, resulting in a DAG with different implied conditional independencies to
those present in the joint distribution.

2.4 Markov Equivalence Class (MEC) and Completed Partially Directed Acyclic
Graphs (CPDAGs)

The conditional independence constraints implied by a graph’s d-separation properties are not
always enough to uniquely identify it. Whether a graph can be uniquely identified is known as
the problem of identifiability, and a significant body of work has been devoted to identifying
scenarios for which the true graph is identifiable (e.g., linear functional form with non-Gaussian
errors [101], or nonlinear functional forms with additive noise [100]).2 As such, there are situations
in which multiple graphs satisfy the same conditional independencies. For example, conditional
independence implied by X; 1L X} |X; is present in the graph X; — X; — X} as well as the graphs
X; & Xj « X and X; < X; — X, in spite of the fact that these graphs have drastically different
causal implications. The class of graphs which represent the same set of conditional independencies
together constitute the Markov Equivalence Class (MEC). Graphs belong to the same equivalence
class when they have the same skeleton and the same immoralities [252].

Completed Partially Directed Acyclic Graphs (CPDAGs) can be used to represent an MEC. In
CPDAGsS, an edge is only directed if all graphs in the MEC contain the edge in that direction.
Otherwise, if there is uncertainty about the direction, it is left ‘non-directed” using o—o . One might
wonder whether there are any MECs without undirected edges, and indeed there are. A collider or
v-structure forms an MEC with only one valid DAG: X; — X « Xj. This is because conditioning
on X; makes X; and Xy d-connected. An example of a skeleton graph, a CPDAG, and corresponding
MEC graphs are shown in Figure 2.

2.5 Assumption: Sufficiency

One of the challenges with using observational data is the assumption that all relevant data have
been collected/observed. This is less problematic in the case of Randomized Controlled Trials
(RCTs) because the randomization itself helps mitigate the effect of confounding which would
otherwise imbalance the treatment and control groups.® In observational settings, unobserved

20One may define an SEM defined on a DAG as identifiable if there are no other SEMs that induce the same joint distribution
with a different DAG [176].

3In reality, limited sample sizes (which are often encountered with expensive RCTs) can still render this issue problematic
[44].
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Fig. 3. Showing the relationship between the true DAG and its representation using a MAG and a PAG.
Shaded vertex is a hidden/unobserved confounding variable. Adapted from [190, p.179].

confounding can significantly bias effect estimates (even reversing their direction). Whilst it is
possible to try to infer hidden confounders from observational data using latent variable models
(see e.g. [150, 255, 257, 264], a large number of causal discovery methods assume sufficiency, which
is the assumption that there are no unobserved confounders. The assumption of sufficiency is
strong and may often be inappropriate or overly restrictive. If the assumption does not hold, the
set of observed variables is (causally) insufficient [19] and a DAG comprising only the observed
variables can not be used (and the DAG is said to not be closed under marginalization) [102].

2.6 Acyclic Directed Mixed Graphs (AGMGs) and Maximal Ancestral Graphs (MAGs)
and m-separation

In the presence of unobserved confounding, an Acyclic Directed Mixed Graph (ADMG) may be
used. ADMGs represent hidden confounding as bidirected edges. For example, the confounding
relationship given by X; <~ H — X; — Xj can, in the absence of H, be represented in an ADMG
as Xi d Xj — Xk.

Maximal Ancestral Graphs (MAGs) can also be used to represent hidden confounding, and have
the further capacity of representing selection bias (i.e. as might occur when a certain sub-population
is sampled). MAGs satisfy the following three properties [2, 203, 204]: (1) there are no directed
cycles (acyclicity); (2) if an edge X; <> X exists (which implies X; is the spouse of X;) then there
are no directed paths between X; and Xj; (3) if an edge X; — X exists (which implies X; is the
neighbour X;) then X; and X; have no spouses or parents. This edge is used to represent selection
bias (i.e. where a subpopulation has been sampled according to some condition).

The definitions of ancestor and descendent translate naturally from DAGs (see above) to MAGs, as
does the definition for d-separation, which becomes m-separation. In the latter case, the conditions
for d-separation in equations 2 and 3 hold, substituting any confounding variable relationships
(e.g., Xi < H — X;) with a bidirected arrow (e.g., X; <> X;). The graph is then maximal if for any
pair of non-adjacent nodes X; and X, there exists a set of nodes S such that X;, X; ¢ S whereby X;
and X; are m-separated by S. In the presence of selection bias, a X; — X; edge can be used. Readers
are directed to [2, 203, 204] for a more detailed and formal exposition.

The assumption of m-faithfulness also translates naturally from d-faithfulness for DAGs (see
above) to MAGs, according to the conditional independencies implied by m-separation.

2.7 Partial Ancestral Graphs (PAGs)

Similarly to how the MEC of a set of DAGs was represented using a CPDAG, the MEC for a set
of MAGs can be representing using a Partial Ancestral Graph (PAG). PAGs make use of edges
X; -0 Xj, X; o> Xj,and X; —o X;. Edges with arrowheads indicate that arrowheads are present in
all MAGs in the associated MEC. A tail (i.e, an edge without either a circle mark or an arrowhead)
indicates that the tail is present in all MAGs in the associated MEC. Circle marks (as with CPDAGs)
indicate uncertainty in the edge mark, such that the MEC contains MAGs in which the edge mark
is either a tail or an arrowhead. [92, 190]. An example of a DAG and its equivalent MAG and PAG
are shown in Figure 3.
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2.8 Other Definitions and Assumptions

Other types of graph used to represent causal structure include Partially Oriented Induced Path
Graphs (POIPGs) [190, 228], Single World Intervention Graphs (SWIGs) [24, 201, 202], o-connection
graphs [56], undirected graphs [11], interaction and component graphs for dynamic systems [40],
Maximal Almost Ancestral Graphs (MAAGs) [231], psi-ECs [110], Patterns [274], and arid, bow-free,
and ancestral ADMGs [19]. There are also other types of assumptions relating to the functional
form of the structural relationships (e.g., linear or non-linear) as well as the parametric form of the
marginals and the errors (e.g., Gaussian or non-Gaussian). In the interests of brevity, we have not
discussed these additional graph-types and assumptions here, but encourage interested readers to
consult the listed references.

3 STRUCTURE DISCOVERY METHODS

We consider four approaches to structure discovery: constraint-based, score-based, those exploiting
structural asymmetries, and those exploiting various forms of intervention.* We begin by introduc-
ing these four approaches. Each structure discovery method may be sub-categorized into those
which seek to identify a graphical structure via combinatoric/search-based algorithms, or those
which seek to identify a graphical structure via continuous optimization. Previous reviews exist for
the former (e.g., [69, 92, 230]), so we primarily focus on the latter. Finally, methods may be catego-
rized as local, whereby edges are tested one at a time, or global, whereby an entire graph candidate
is tested. It can be assumed that all methods are concerned with learning from independent and
identically (i.i.d) distributed data, except in the time-series case where it is each time series which
is sampled i.i.d.

3.1 Constraint-Based and Score-Based Approaches

Most constraint-based approaches test for conditional independencies in the empirical joint dis-
tribution in order to construct a graph that reflects these conditional independencies.> According
to the discussion above, there are often multiple graphs that fulfil a given set of conditional inde-
pendencies, and so it is common for constraint-based approaches to output a graph representing
some MEC (e.g., a PAG). Conditional independence testing represents a significant subfield in its
own right, and presents many challenges. Indeed, conditional independence tests can require large
sample sizes to be reliable, and Shah and Peters (2020) [217] discuss further challenges relating to
the control of both Type I and Type Il error rates. Examples of flexible conditional independence
testing include GAN-based [15, 220], gradient boosting and neural network classifier based [216],
and Kernel based [62, 278] methods.

Even though the focus of this review is continuously optimized methods, for pedagogical purposes
it is worth briefly describing how one might use (e.g.) conditional independence constraints to learn
a graph. One of the most well-known algorithms is the PC algorithm [228]. The algorithm starts with
a complete and undirected graph, and begins by removing edges in order to identify the skeleton.
To do this, conditional independence tests are used to evaluate X; 11 X;|S, where the conditioning set
is potentially empty (thereby reducing to a test for bivariate statistical independence). From here,
the algorithm begins orienting/directing the edges by leveraging the fact that if a path X; — X — X
exists in the skeleton such that X; Il X;|X; but X; )L X;|Xj, then we know that this path must
actually be a v-structure, and the edges can be oriented as X; — X < X;. Additionally, now that
v-structures have been identified and their corresponding edges have been directed, the algorithm

“There are also hybrid approaches which incorporate some combination of these classes, but we do not treat these separately.
5Qther constraints exist, such as Verma constraints [252, 274].
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can orient additional edges in partially directed paths which would otherwise form additional
v-structures.

In contrast, score-based approaches test the validity of a candidate graph G according to some
scoring function S. The goal is therefore stated as [190]:

G = argmaxg gyer x5(D. G) (4)

where D represents the empirical data for variables X. Common scoring functions include the

Bayesian Information Criterion (BIC) [66], the Minimum Description Length (as an approximation

of Kolmogorov Complexity) [82, 114, 121], the Bayesian Gaussian equivalent (BGe) score [66], the

Bayesian Dirichlet equivalence (BDe) score [91], the Bayesian Dirichlet equivalence uniform (BDeu)
score [91], and others [103, 108, 109].

3.2 Exploiting Structural Asymmetries

There is no way to rule out scenarios whereby a joint distribution admits SCMs indicating either of
the structural directions X; — X or X; < X, thereby making the induction of causal directionality
from observation alone, impossible. However, if some additional assumptions are made about
the functional and/or parametric forms of the underlying true data-generating structure, then
one can exploit asymmetries in order to identify the direction of a structural relationship. These
asymmetries manifest in various ways, including non-independent errors, measures of complexity,
and dependencies between marginals and cumulative distribution functions. Methods which exploit
such asymmetries are typically local methods, as they are only able to test edges one at a time (pair-
wise/bivariate causal directionality), or to test triples (with the third variable being an unobserved
confounder) [101]. They may, of course, be extended to construct full-graphs by iteratively testing
pairwise relationships (see e.g. the Information-Geometric Causal Inference algorithm [112]). We
now briefly provide some examples of structural asymmetries, and direct interested readers to
Mooij et al. (2016) [166] for a detailed review.

3.2.1 Additive Noise. Given the linear structural equations X = Ux and Y = X + Uy such that
Uy L X, we expect the residuals from a regression on the data from this generative model to reflect
the Uy L X property. Interestingly, if at most X or Uy is non-Gaussian, then the causal direction
(i.e. X — Y) is identifiable [69, 107, 117, 190]. This is illustrated in Figure 4. The true structural
relationship X = Ux and Y = X + Uy is used to generate data, where Ux and Uy are non-Gaussian
(they are uniformly distributed). In plot A, Y is regressed onto X (aligning with the true structural
directionality), and it can be seen from plot B that the residuals following this regression are
uncorrelated with X. Conversely, and as shown in plot C, when X is regressed onto Y(conflicting
with the true structural directionality), it can be seen in plot D that this results in dependence
between the residuals and Y.

The example given in Figure 4 depicts the non-Gaussian, linear case. Unfortunately, the assump-
tion that (a) the data generating process is linear and (b) that the noise are sufficiently non-Gaussian
to facilitate reliable identifiability may be overly restrictive in practice. There exist the non-linear
additive noise [100] as well as the post-non-linear [277] models which seek increased generality.
The non-linear additive noise model assumes the data are generated according to the structural
equations X = Uy and Y = f(X) + Uy, where f is sufficiently non-linear, whilst the post-non-linear
model assumes X = Ux and Y = fa(fg(X) + Uy). There is no assumption that either Uy or X
are Gaussian. Similarly to the linear non-Gaussian case above, both models exploit structural
asymmetries that are reflected in the (in)dependence of regression residuals [69, 100, 190, 277].

3.2.2  Information Geometric Properties. From a causal perspective, the information geometric
approach to identifying structural directionality takes inspiration from the concept of independent
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Fig. 4. The true structural relationship is Y = X + Uy and X = Ux where Ux and Uy are uniform noise
sources. (A) shows the regression line when regressing Y onto X, and (B) shows the corresponding residuals
plotted against X. (C) shows the regression line when regressing X onto Y and (D) shows the corresponding
residuals plotted against Y. Together, these demonstrate that under the assumption of linear functional form
and non-Gaussian noise, the true structural direction is identifiable as the one for which X is independent of
the residuals, as indicated in (B). Example adapted from [190].

s TN

Ongmdl DAG Structural/Hard Intervention Soft/Parametric Intervention

Fig. 5. Showing the differences between a hard/structural intervention (middle) and a soft/parametric
intervention (right) on the original DAG (left). It can been that the parametric intervention preserves structural
relationships. Adapted from [49, p.986].

mechanisms. Assuming that the true structural direction is X — Y, the concept of independent
mechanisms holds that P(X) contains no information about P(Y|X), and vice versa. A common
illustrative example [190] involves measurements of temperature Y at weather stations of different
altitudes X. Regardless of the distribution of weather station altitudes P(X), the mechanisms linking
altitude to temperature (e.g. the law determining the relationship between the temperature and
pressure of a gas) exist independently, and changing the temperature around a weather station
does not increase its altitude.

Numerically, this scenario may be easily demonstrated by considering the inverse transform
sampling method for transforming a uniform distribution P(X) into a target distribution P(Y)
using the inverse cumulative distribution function. The uniform distribution is clearly independent
of the function being used to transform it, but this independence does not hold for the transformed
distribution. More generally, if Y = f(X), the independence of mechanisms implies with high
likelihood that Px will be independent of the mechanism f. The corollary is that there exists
dependence between Py and f~! [112]. Assuming a structural direction X — Y via function f, the
inverse function f~ satisfies cov[log f~1, py] > 0 [112, 115, 190].

It is worth noting various limitations to this approach, particularly with respect to its application
to causal discovery in real-world systems. Firstly, it assumes that the mechanism f is deterministic.
Secondly, it assumes that f is sufficiently non-linear that it may be used to identify dependence.
Thirdly, real-world systems may (in addition to having non-deterministic mechanisms) demonstrate
adaptation between cause and effect, such that Px is no longer independent of f.

3.3 Interventions and Adjustment Sets

If interventional data are available, we are able to reduce the number of graphs in our MEC.
An intervention can be denoted using Pearl’s do operator [184] such that, "for each realization
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e do(B=b) @ do(B=b) G
@ @&\@ 0“3

CPDAG Intervening on B Intervening on B
when A -> B when A <-B

Fig. 6. Starting with the CPDAG on the left, where the structural direction between vertices A and B is
unknown, intervening on B allows us to orient this edge. In the middle, the edge from A to B is removed
following intervention on B (this is illustrated with the slash). On the right, an intervention on B does not
remove the edge from B to A, and the effect of the intervention flows to A.

of x of X, P(y|do(x)) gives the probability of Y = y induced by deleting from the model [x; =
fi(pai, u;),i = 1...,n] all equations corresponding to variables in X and substituting X = x in the
remaining equations." Such interventions can be hard/perfect/structural/atomic/deterministic, or
soft/imperfect/parametric, depending on whether a variable is set to a specific value, or whether
the variable and its relationship to its neighbours is modified in some way (e.g., by changing
the noise distribution u). Graphically, a hard intervention can be represented by removing all
incoming arrows (from parents) to a vertex, and setting that vertex to the value x [190, p.88-91].
For a structural equation model X = Uy, Y = f(X) + Uy and Z = g(X) + h(Y) + Uz, an intervention
Y = 4 would entail X = Ux (unmodified), Y = 4 (modified), and Z = g(X) + h(4) + Uz (modified).
Thus it can be seen that only Y and its descendants have been affected by the intervention, leaving
X unchanged. In contrast to hard interventions, a parametric intervention preserves the structure
of the intervention itself, introducing an additional vertex and affecting the conditional distribution
of the intervened variable. Parametric interventions also preserve any correlations deriving from
unobserved/hidden confounders [49]. This difference is illustrated in Figure 5.

In order to demonstrate how interventions can be used to narrow the equivalence set (and in
some cases make the true graph identifiable), consider the graphs in Figure 6. Starting with the
CPDAG on the left, where the edge from A to C is undirected because the direction of the edge
cannot be ascertained from conditional independencies alone. Intervening (hard) on B allows us to
orient this edge by comparing the resulting distribution under intervention. If the edge is oriented
A — B then the intervention has the effect of ‘removing’ this edge. Conversely, if the edge is
oriented B — A then the intervention does nothing to remove this arrow, and the downstream
variable A should change accordingly.

For a detailed review of different types of interventions and their implications, readers are directed
to Eberhardt & Scheines (2006) [49]. Suffice to say there are many ways to leverage different types of
intervention, including multiple interventions on different vertices, or single interventions applied
to multiple nodes. Finally, there is work investigating the use of data representing unknown or
uncertain interventions, whereby it is not known which variables have been intervened on [47,
124, 165, 208]. The use of intervention also yields what is known as an Interventional Equivalence
Class (IEC), representing the set of graphs compatible with a given intervention(s).

3.4 Causality Over Time

Whilst this review is primarily concerned with the static, non-dynamic setting, here we briefly
describe some considerations for causal discovery with time series. Consider a graph X — Y for the
case where X and Y vary over time. In this scenario, a single right-arrow is not sufficient to detail
whether X causes Y on an intra-timepoint® basis (i.e, contemporaneously), or on an inter-timepoint
(i.e., lagged) basis. Indeed, at different points in time, and over different lags, the direction of

%It is generally accepted that an effect has to follow the cause in time, thereby precluding contemporaneous effects. However,
in cases where the sampling rate is too low to capture this delay, it is reasonable to model the effects as instantaneous.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: March 2022.



D’ya Like DAGs? A Survey on Structure Learning and Causal Discovery 1:11

causality may switch. In these cases it is common to unroll the graph over time, such that each
instance of variables X’ and Y’ and their structural relationships over time are modelled explicitly.

There are then two types of causality considered in the context of time series. The most common
(which is generally considered to be the industry standard, particularly in economics) is Granger
causality [77]. If a variable X ‘Granger-causes’ Y, then it means that Y/ . X<*|Y<! [190, pp.207],
where < t indicates timepoints previous to t. If this is the case, then the predictability of Y’
will decrease when X< is removed from the model (because X contains unique information for
predicting Y), when accounting for previous values of Y.

The first thing to note about Granger causality is that it tends to fail in the presence of contempo-
raneous effects [190, pp.207], owing to difficulties with identifiability. The second, and perhaps more
important aspect of Granger causality, is that it is only applicable if separability holds. Separability
refers to the independence of the variables in the absence of causal interactions. Unfortunately,
this is rarely the case in dynamic systems, where the current state of a variable may be heavily
determined by the past of another (e.g., consider a predator-prey model, where both population
levels are always functions of each other).

This failure of Granger causality was noted by Granger himself, and has motivated the develop-
ment and application of dynamic-causality; in particular, methods deriving from Sugihara et al's
Convergent Cross Mapping methods [232, 269]. The methods operate using time delayed embed-
dings or shadow manifolds. These shadow manifolds are constructed by concatenating time-lagged
versions of the original time series. This process has been shown according to Takens’ theorem
[236], to be sufficient in recovering the dynamics of the full system even if only one, or a limited
number, of observational variables are used. Dynamic or CCM-causality has shown great promise
in applications to ecosystems and genetics [232, 269] where the phenomena may exhibit chaotic
trajectories. The general idea behind these methods is to exploit asymmetries that exist between
the compactness of neighbourhoods of points in the shadow manifolds. If X — Y in a CCM-causal
sense, then points which are tightly clustered in the ‘effect shadow manifold’ of Y should also
be tightly clustered in the ‘cause shadow manifold’ of X. This characteristic does not hold in the
reverse direction (nor if there is no causal interaction in either direction), and this asymmetry
enables us to identify causal interactions and directionality.

3.5 Evaluation Metrics

There are a number of common metrics used for evaluating the performance of causal discovery
algorithms. The metrics given below are those used to evaluate the success of edge discovery.
Other score metrics can be used to measure model fit (such as the log likelihood or the Bayesian
Information Criterion). For a more detailed discussion on structural discovery metrics, readers are
directed to work by de Jongh (2009) [43].

True Positive Rate (TPR) [92, p.383]: Assuming an edge a;; can be thresholded by ¢ € (0,1),
TPR is defined as TPR; = |[{(i, j) : a;; > t} N S|/|S| where S is the set of ground truth edges (i.e.,
{G,)) sy = 1).

False Positive Rate (FPR) [92, p.383]: Assuming the probability of an edge a;; can be thresh-
olded by ¢ € (0, 1), FPR is defined as FPR; = [{(i, j) : a;j > t} N S|/|S| where S is the set of ground
truth missing edges (i.e., {(i, j) : a;; = 0}).

Area Over Curve (AOC) [92, p.383]: Simply (1 — Area Under Curve (AUC) for the AUC of
(FPR;, TPR;) where the threshold ¢ is varied between 0 and 1. Either the AUC or AOC can be used
as a structure discovery performance metric.

Structural Hamming Distance (SHD): Is the number of required changes to the graph for it
to match the ground truth. It is the sum of missing edges, extra edges, and incorrect edges [43].
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Structural Interventional Distance (SID) [189]: Is a count of the number of vertex pairs (i, j)
for which the intervention p(x;|do(X; = x)) would be incorrect if the estimated graph (as opposed
to the ground-truth graph) were used for what is known as the associated adjustment set (see Pearl
[185] or Peters et al. [190]). It is therefore well suited for causal inference tasks [139, p.7].

4 COMBINATORIC/SEARCH BASED ALGORITHMS

The number of possible DAGs increases super-exponentially with the number of variables [205].
As noted by Peters et al. (2017) [190], the number of possible DAGs for 10 variables is > 4 x 10'%.
As such, the search problem is NP-hard [33], and this will later motivate the use of continuous
optimization based algorithms for graph learning.

Table 1 presents a non-exhaustive list of methods which do not use continuous optimization. In
other words, they include primarily combinatoric/search-based algorithms for structure discovery.
The table presents the type of approach used: constraint-based, score-based, asymmetry-based,
hybrid, and sampling-based (which measure belief in a proposed graph structure by sampling from
a posterior). In addition, the table provides the associated assumptions: Sufficiency (i.e., whether it
assumes there are no hidden variables), Faithfulness (some methods achieve a less severe/relaxed
form of faithfulness); and Acyclicity (some methods can learn feedback loops and cycles). Finally,
the table indicates whether the method leverages interventions, and indicates the method’s output
(CPDAG, PAG, etc.).

5 CONTINUOUS OPTIMIZATION BASED ALGORITHMS

The primary focus of this survey is to review continuous optimization based methods for structure
discovery. Continuous optimization methods are pervasive in the field of deep learning, whereby
highly parameterized networks are optimized using variations on gradient descent [72]. The
motivation for the neural network is that they do not impose restrictions on the functional form a
priori and therefore "let the data speak” [248]. Increased computational power (particularly with
the advent of GPUs) make the task of learning from large, high-dimensional datasets feasible.
Recently, there have been an increasing number of methods which seek to learn structure from data,
whilst leveraging the advantages of continuous optimization. This has resulted in the confluence
of black-box deep learning approaches, and structure discovery. These continuous optimization
approaches recast the combinatoric graph-search problem into a continuous optimization problem
(specifically, an Equality Constrained Program) [279]. In equation 5, the left hand side represents
the traditional approach, which seeks the adjacency matrix A that minimizes some score function
S(A), subject to the implied d-vertex graph G(A) being in the set of valid DAGs. The right hand
side represents a characterization of the continuous optimization problem which, again, seeks the
adjacency matrix A that minimizes some score function S(A), but this time subject to the constraint
h(A) = 0. Here, h is the function used to enforce acyclicity in the inferred graph.
ming cpaxd S(A) ming cpaxd S(A) 5)
subject to G(A) € DAGs subject to h(A) =0
The increased popularity of structure discovery in deep learning is not without sound motivation,
with arguments that disentangled, structured, and symbolic representations are key to the next
generation of Al as well as robust cross-domain performance, transfer learning, and interpretability
[16, 17, 65, 78]. Researchers have noted three primary approaches to learning representations of the
world: (1) distributed, (2) structured and symbolic, and (3) a hybrid of (1) and (2). Most basic neural
networks perform distributed learning and there is no clear separation of high-level semantics.
Finally, we include Tables 3 and 4 which provide a comparison of a selection of methods’ relative
performance on the Sachs [210] and Tuebingen cause-effect pairs [164, 166] datasets, respectively.
In these tables we also include some combinatoric algorithms (such as PC) for completeness.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: March 2022.



D’ya Like DAGs? A Survey on Structure Learning and Causal Discovery

Method Year  Type Suff. Faith. Acycl. Interv. Output
PC [228] 1993 constraint yes yes yes no CPDAG
FCI [229, 275] 1995 constraint no yes yes no POIPG
CCD [200] 1996 constraint yes yes both no PAG
TPDA [31] 2002 constraint yes yes yes no CPDAG
CPC [193] 2006 constraint yes relaxed  yes no CPDAG
KCL [233] 2007 constraint yes yes yes no CPDAG
ION [241] 2008 constraint no yes yes no PAG
IDA [153] 2009 constraint yes yes yes yes DAG
CSAT+ [244] 2010 constraint no yes yes no PCG
KClI-test [278] 2012 constraint yes yes yes no CPDAG
RECI [37] 2012 constraint no yes yes no PAG
CHC [64] 2012 constraint yes yes yes no PDAG
SAT [106] 2013 constraint no yes no yes DG
Parallel-PC [141] 2014 constraint yes yes yes no CPDAG
RPC [87] 2013 constraint yes yes yes no CPDAG
PC-stable [36] 2014 constraint both yes both no CPDAG
COmbINE [243] 2015 constraint no yes yes yes summary SMCMs
backshift [208] 2015 - no no no yes DG
IGSP [266] 2018  constraint yes relaxed  yes yes I-MEC
o-CG [56] 2018 constraint no yes no yes o-connection graphs
CCI [231] 2018 constraint no yes no no MAAG
FCl-soft [132] 2019 constraint no relaxed  yes yes I-MEC
IBSSI [32] 2020 constraint no yes yes yes DAG
CD-NOD [104] 2020 constraint no yes both yes —
psi-FCI [110] 2020 constraint no relaxed  yes yes Psi-EC
LCDI [274] 2020 constraint no yes yes yes Pattern
EG [52] 2009 score yes yes yes no BT-DAG
TWILP [183] 2014 score yes yes yes no BT-DAG
CAM [26] 2014 score yes yes yes no CPDAG
K2 [38] 1992 score no yes yes no CPDAG
LB-MDL [140] 1994 score yes yes yes no DAG
HGC [91] 1995 score yes yes yes no CPDAG
GES [34] 2002 score yes yes yes no CPDAG
OS [238] 2005 score yes yes yes no DAG
HGL [90] 2005 score yes yes yes yes CPDAG
Meinshausen [159] 2006 score yes - no no UG
Graphical Lasso [59] 2008 score yes - no no UG

BC [8] 2008 score yes - no no UG

TC [187] 2008 score yes yes yes no CPDAG
HG [89] 2008 score yes yes yes yes DAG
Adaptive Lasso [222] 2010 score yes yes yes no DAG
GIES [88] 2012 score yes yes yes yes PDAG
CD [61] 2013 score yes yes yes yes DAG
GBN learner [246] 2013 score yes no yes no CPDAG
GES-mod [3] 2013 score yes yes yes no CPDAG
Pen-PC [85] 2015 score yes yes yes no CPDAG
Scalable GBN [4] 2015 score yes no yes no DAG
K-A* [212] 2016 score yes yes yes no DAG
NS-DIST [86] 2016 score yes no yes yes DAG
MIP-GD [182] 2017 score yes yes yes no CPDAG
CDz2 [83] 2018 score yes yes yes yes DAG
SP [195] 2018 score yes relaxed  yes no CPDAG
VAR [271] 2018 score yes yes both no DG
GSF [103] 2018 score yes yes yes no CPDAG
bQCD [235] 2020 score yes yes yes no Bi

GCL [251] 2020 score no - no no GCLM
GGIM [55] 2020 score yes no no no GGIM
GYKZ [68] 2020 score yes yes both no DG
SLARAC etc. [260] 2020 score Granger - - no Bi
Order-MCMC [60] 2003 sampling yes yes yes no DAG
0OG [53] 2008 sampling yes yes yes yes DAG
EE-DAG [281] 2011 sampling yes yes yes yes DAG
ZIPBN [35] 2020 sampling yes no yes no DAG
LiNGAM [221] 2006 asymmetries  yes no yes no DAG
LV LINGAM [101] 2008 asymmetries  no yes yes no DAG
non-linear ANM [100] 2008 asymmetries  yes yes yes no DAG
PNL [277] 2009 asymmetries  yes no yes no DAG
CAN [113] 2009 asymmetries  no yes yes no Bi/tri
CCM [232] 2012 asymmetries - - no no Bi

IGCI [112] 2012 asymmetries  yes yes yes no Bi
KCDC [161] 2018 asymmetries  yes yes yes no Bi
MMHC [245] 2006 hybrid yes yes yes no DAG
ARGES [172] 2018 hybrid yes yes yes no CPDAG

Table 1. ‘Combinatoric’ based algorithms for causal discovery (i.e., search-based, SAT-solver). Provides
indication of assumptions of sufficiency (‘Suff), faithfulness (‘Faith.), acyclicity (‘Acycl.), as well as whether
the method leverages forms of intervention (‘Interv’). ‘Bi’ indicates bivariate cause-effect pairs (possibly

multivariate).
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Conversely, DAGs are highly structured and facilitate causal reasoning. However, such reasoning
is only possible if one already has access to variables which represent high-level semantic concepts,
which is not the case when learning from raw video data, for example. Hence the motivation for
hybrids which can be used to ‘learn’ or infer high-level representations as well as the structured
relations between them. Examples of hybrid approaches include methods such as Recurrent In-
dependent Mechanisms [76], graph networks [11, 12, 213], and a large body of work on scene
understanding [116, 155, 171, 173, 270]. The debate as to how much structural inductive bias /
constraint is required for an algorithm to reason effectively is ongoing [11, 45]. Indeed, finding a
DAG to represent complex phenomena (such as natural language) is non-trivial and potentially
impossible.

In this section we review (non-exhaustively) the recent evolution of continuous optimization
based algorithms to structure learning, and Table 2 presents a list of the methods which are discussed.
We provide summaries of performance in Tables 3 and 4 for Sachs proteins [210] and Tuebingen
cause-effect pairs [164, 166], which are two common benchmark datasets. For the exposition, we
categorize the methods into those which leverage acyclicity penalties, those which use neural
networks, those which leverage interventions and concepts from reinforcement learning, other
miscellaneous approaches, and those which are intended for time-series problems. Note that there
is overlap between these categories.

5.1 Methods with an Acyclicity Penalty

The recent (2018) method DAGs with NO TEARS (Non-combinatoric Optimization via Trace
Exponential Augmented lagRangian Structure learning) [279] is generally considered as the first to

Method Year  Data Form Acycl. Interv.  Output
CMS [152] 2014 low, dynamic/time series NN - no direction
NO TEARS [279] 2018 low linear yes no DAG
CGNN [74] 2018 low NN yes no DAG

SAM [121] 2019 low/medium NN yes no DAG
DAG-GNN [272] 2019 low NN yes no DAG

GAE [178] 2019 low NN yes no DAG

NO BEARS [142] 2019 low/medium/high 3-poly yes no DAG

DEAR [219] 2020 image NN yes no -

CAN [167] 2020 low/medium/image NN yes no DAG

NO FEARS [259] 2020 low linear yes no DAG
GOLEM [177] 2020 low linear yes no DAG

ABIC [19] 2020 low linear yes no ADMG/PAG
DYNOTEARS [179] 2020 low linear yes no SVAR

SDI [124] 2020 low NN yes yes DAG

AEQ [63] 2020 Bi NN - no direction
RL-BIC [284] 2020 low NN yes no DAG

CRN [125] 2020 low NN yes yes DAG

ACD [151] 2020 low, time series NN Granger no time-series DAG
CASTLE (reg.) [138] 2020 low/medium NN yes no DAG
GranDAG [139] 2020 low NN yes no DAG
MaskedNN [176] 2020 low NN yes no DAG
CausalVAE [267] 2020 image NN yes yes DAG
CAREFL [126] 2020 low NN yes no DAG / direction
Varando [251] 2020 low linear yes no DAG

NO TEARS+ [280] 2020 low non-linear  yes no DAG

ICL [258] 2020 low NN yes no DAG
LEAST [283] 2020 low/medium/high linear yes no DAG
CausalMosaic [263] 2020 Bi NN - no direction
NSM [253] 2021 video, dynamic/time series NN - no direction

Table 2. Continuous optimization based algorithms to causal discovery. ‘Data’ indicates the dimensionality
or type of the data the method has been demonstrated to handle. ‘Form’ indicates assumptions about the
functional form (e.g. ‘NN’ for neural network, ‘3-poly’ for 3rd order polynomial). ‘Bi’ indicates bivariate
cause-effect pairs (possibly multivariate), ‘low’ indicates <100 vertices, ‘medium’ indicates =100, and ‘high’
indicates either dimensionality >10,000 or data which are not already projected into a causal/semantic space
(e.g., image data). ‘Acycl’ indicates whether the method enforces acyclicity, and ‘Interv. indicates the use of
interventions during learning.
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recast the combinatoric graph search problem as a continuous optimization problem (see Eq. 5),
and numerous methods have adapted their principal contribution, which is the acyclicity penalty.
The function/penalty h for enforcing acyclicity is derived to be:

h(A) = tr(e*®*) —d =0 (6)

where d is the number of vertices in the graph, ‘¢’ is the trace operator, and ® is the Hadamard
product. In practice, h(A) may be small but non-zero, and edges may require some thresholding.
One of the disadvantages of this acyclicity constraint is that the matrix exponential requires O(d®)
computations, and subsequent methods seek to improve on this. The structural model learnt is
linear such that X; = aJTX + Uj, where a; is the weight in the adjacency matrix corresponding
with the edges into X, (the noise variables are not assumed to be Gaussian). NO TEARS uses a
least-squares loss with an [1 penalty to encourage sparsity, and their objective is optimized using
the Augmented Lagrangian method [174] with L-BFGS [28]. As well as synthetic data, NO TEARS
is also evaluated on the proteins and phospholipid dataset by Sachs et al. (2005) [210]. Despite the
fact that the formulated optimization problem does not guarantee an optimal solution, their results
demonstrate close-to-optimal results on the chosen datasets.

5.1.1  Neural Network Adaptations of the Acyclicity Penalty. Since the introduction of the penalty in
NO TEARS, numerous works have followed which adapt the penalty for use as a regularizer when
training neural networks. DAG-GNN [272] extends NO TEARS by incorporating neural network
functions f and black-box variational inference such that the score function is the Evidence Lower
BOund (ELBO) [20, 129, 194, 199]. The method assumes faithfulness, and infers a latent posterior
Z:

Z=fi(1-ADAX) (7)

where A is a weighted adjacency matrix, and X may comprise vector-valued variables. DAG-GNN
recovers the observations with a decoder:

X=f(1-ANHf(Z) (®)

Together, equations 7 and 8 constitute a variational autoencoder [129, 199]. Noting that if f; is
invertible, then:
X =ATL X+ £i(2) ©)
which is a generalization of the linear SEM model X = ATX + Z. Acyclicity is enforced using a
constraint derived from the one employed in NO TEARS [279] as:

tr[I+aA 0 A)?] -d=0 (10)
Method Year SHD
SDI [124] 2020 6
RL-BIC [284] 2020 11
MaskedNN [176] 2020 12
LEAST [283] 2020 12
CAM [26] 2014 12 [176]
GranDAG [139] 2020 13
GOLEM [177] 2020 14
DAG-GNN [272] 2019 16 [139]
NO TEARS + [280] 2020 16
SAM [121] 2019 17
PC [228] 1993 17 [139]
NO TEARS [279] 2018 19 [176]
GES [34] 2002 26 [139]

Table 3. Comparison of Structural Hamming Distance (SHD) performance on the Sachs proteins dataset
[210], sorted from best (top) to worst (bottom). The reference next to the SHD figure indicates from where
the experimental results are taken (if different from the reference for the original method).
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where @ acts as a hyperparameter on this constraint. This formulation of the acyclicity constraint
is justified on the basis that it is preferred over a calculation that involves the matrix exponential
(as appears in Eq. 6). Similarly to NO TEARS, they also use the augmented Lagriangian approach to
optimization and evaluate on low-dimensional data such as the proteins and phospholipid dataset
by Sachs et al. (2005) [210].

As it happens, autoencoder-type methods such as DAG-GNN are quite common in the continuous
optimization based causal discovery literature. For instance, the authors of CASTLE [138] propose
causal discovery as an auxiliary task which helps to regularize a supervised predictive model.
The motivation is that, by identifying key causal factors, the model avoids overfitting to potential
confounders which hurt model robustness and generalizability. Specifically, a neural network
model attempts to identify the DAG that explains the structural relationships between the observed
variables, and this task is built into an autoencoder [135] framework. Their structural model is
non-parametric, following the form X; = f;(pa;, U;) and using an adaptation of the NO TEARS
acyclicity constraint which, they explain, also forces the autoencoder to reconstruct only the input
variables which have neighbours.

Method  CausalMosaic [263] 2020  AEQ [63] 2020 ~ CAREFL [126] 2020  RECI [21] 2018  IGCI [112] 2014  ANM [100] 2020

SHD % 83 80 73 69 [126] 61[263] 52 [263]

Table 4. Comparison of accuracy on the Tuebingen cause-effect pairs dataset [164, 166], sorted from best to
worst. The reference next to the accuracy figure indicates from where the experimental results are taken (if
different from the reference for the original method).

Another autoencoder based method is GAE [178], which further extends the NO TEARS and
DAG-GNN formulations for structure learning to facilitate non-linear structural relationships
and vector-valued variables. They model structure in the same way as DAG-GNN, and draw a
connection to graph convolutional neural networks [130]:

fXG.A) = LATfi(X))) (11)

where fi and f; are multilayer perceptrons (MLPs). Similarly to NO TEARS, and DAG-GNN, they
also use the augmented Lagrangian method with Adam [128] for constrained optimization. Their
acyclicity constraint is identical to the one used in NO TEARS (Eq. 6). They demonstrate that GAE
performs significantly better than NO TEARS and DAG-GNN, particularly as the number of vertices
in the graph increases, and also highlight that training time is much shorter.

In a similar vain, the creators of CausalVAE [267] (yet another autoencoder-based method) argue
that whilst many disentangled representation learning methods assume independence between
latent factors [95, 137, 148], most latent factors behind real-world phenomena exhibit causal
dependencies. They propose the use of a Variational AutoEncoder [129, 199]. The latent space of
a VAE is usually parameterized by a set of exogeneous factors (often modelled as a multivariate,
isotropic Gaussian). CausalVAE integrates a Causal Layer which transforms these exogenous latent
factors into endogenous factors which reflect the causal semantics of the data. They assume a
linear SEM following the form Z = ATZ + U where Z are the inferred latent factors following the
application of the adjacency matrix A. They integrate supervision in the form of semantic labels Y
to condition the posterior p(Z|Y), which forces identifiability. These factors (which now reflect
semantic quantities according to the provided supervision) are then passed to a masking layer,
similar to the one used in MaskedNN (see below). They then apply Z; = g;(A; © Z) + U; where g
are nonlinear and invertible functions. A; © Z yields a vector only containing parental information,
because the adjacency matrix effectively masks non-parents. The authors explain how this masking

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: March 2022.



D’ya Like DAGs? A Survey on Structure Learning and Causal Discovery 1:17

layer facilitates interventional queries. In order to learn the causal structure, they incorporate the
structural inductive prior into the supervised loss function:

Ly = EqllY — o (ATY)I13 (12)
where q is the approx posterior distribution. They incorporate the NO TEARS acyclicity constraint:

h(A) =tr(I+A0A)Y) -d=0 (13)

The method is evaluated on the CelebA [147] dataset, as well as a synthetic data of a pendulum
casting a shadow from a light. The second dataset is used to demonstrate the interventions - they
intervene (for example) on the position of the light in order to demonstrate the independence of
the position of the pendulum as well as the dependence with the shadow.

Temporarily moving away from autoencoder-based methods, GranDAG [139] follow the non-
linear additive noise structural model of the form X; = fj(pa;) + U;, where each function f;
is parameterized as a fully-connected neural network. In order to maintain an independence of
mechanisms which corresponds with the independence implied by an adjacency matrix, they
formulate neural network paths and a connectivity matrix, resembling previous work by Germain et
al. (2015) [67]. The connectivity matrix C; is essentially the matrix product of all neural network
weights in a single neural network (i.e., parameterizing one f;). This product results in C; € R™>d
where m is the number of parameters needed to specify a chosen distribution for X; (e.g., a Gaussian
has two parameters), and d is the number of variables. If C; x; = 0 then the input i is independent of
output k for variable X;. Note that f; takes as input X_; (where the variable of interest j is masked to
zero). The connectivity matrix is then used to define their weighted adjacency matrix, such that the
adjacency matrix A € R™? depends on all neural network weights from all neural networks. They
define the weighted adjacency matrix and substitute it into the NO TEARS acyclicity constraint
(Eq. 6). For learning they employ the augmented Lagrangian formulation, using a log-likelihood
score function, and threshold the resulting edges for A;; close to zero. They demonstrate that their
algorithm exceeds the performance of combinatoric approaches such as PC [228], as well as other
continuous optimization based algorithms e.g. NO TEARS and DAG-GNN.

The researchers behind MaskedNN [176] also attempt to improve on NO TEARS [279] using
neural networks. They assume an additive noise SEM of the form X; = fj(pa;) + Uj, and explain
how their method can be directly extended from handling scalar variables to vector valued variables.
They provide a discussion on identifiability (something which a number of methods in both the
combinatoric and continuous optimization literature tend to omit). They provide an overview of
the gradual evolution from NO TEARS (which assumes linear SEMs), via DAG-GNN [272], GAE
[178] and GraNDAG [139] (which handle non-linear SEMs), but highlight that these methods do
not provide an in depth discussion about identifiability. They also highlight that the use of non-
linear transformations on the adjacency matrices in DAG-GNN and GAE may affect their causal
interpretability. MaskedNN uses a binary adjacency matrix A (rather than weighted), which is
integrated into their SEM as: X; = h;(A; © X) + U; and refer to this as an Augmented SEM (ASEM).
Their discussion on identifiability states that their method can learn a Super-graph of the true graph,
and further utilize thresholding and Causal Additive Model [26] based pruning to remove spurious
edges under mild conditions. They leverage the Gumbel-softmax trick [111, 154] to incorporate
discrete learning (in view of the binary adjacency matrix) into an augmented Lagrangian 1st order
continuous optimization based algorithm with an Adam optimizer [128]).

Finally, SAM [119, 121] is another neural network approach that is intended to address the
limitations of CGNN (see below). Specifically, the limitations are CGNN’s quadratic complexity
(due to the calculation of the MMD), and the scalability issues that arise due to CGNNs use of
a greedy-search. SAM addresses these two limitations with the use of adversarial training [73],
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and by making the mechanism which optimizes the DAG part of end-to-end training. Their score
function is a log-likelihood loss with two model complexity regularizers: One that penalizes the
model, on a per-vertex basis, by an amount proportional to the number of vertex parents; and one
which acts as neural network parameter/weight decay. It uses an acyclicity regularizer similar to
the NO TEARS penalty [279] to encourage DAG-ness:

d

Z rdy) (14)

k!
k=1

Here, A is what they call a structural gate, which performs the same function as an adjacency
matrix. The neural network parameterization of the structural equation model is X; = L; 41 ©

oo..Lji([a; ©X Uj]. In words, the stack of H neural network layers Ly and non-linearities ¢
for each variable j is used as the function over the Hadamard product between the data X and
a binary vector form of the adjacency matrix A, s.t. a;; = 1 iff there is an edge X; — Xj. They
provide a detailed theoretical analysis of their method, showing how the global training objective
constitues a combination of a structural component (which seeks the CPDAG) and a functional
component (which exploits asymmetries). They assume both faithfulness and sufficiency, and
evaluate on a range of low to medium dimensionality datasets (the highest number of dimensions
is approximately 6000 (DREAMS5 [156]).

5.1.2  Improving the Acyclicity Penalty. As described above, the NO TEARS acyclicity penalty/constraint
can be expensive to compute, and a number of methods have focussed on addressing this particular
issue. The NO BEARS method [142] reformulates the acyclicity constraint by using the spectral
radius of a matrix. Normally the spectral radius also requires O(d>) operations, but they present an
approximation that takes only O(d?). The spectral radius is the maximum magnitude of eigenvalues,
and the authors show how it forms an upper bound on the original NO TEARS acyclicity constraint.
Rather than using neural networks to increase the flexibility of the structural functions, they use a
polynomial (order 3) regression. NO BEARS is demonstrated to scale well even on data with as
many as 12,800 vertices.

Similarly, the authors of LEAST [283] propose a new acyclicity constraint intending to improve
upon the O(d®) cost of NO TEARS [279]. To do this, they first consider:

h(S) =tr(e8)—d=0 (15)
to be the NO TEARS constraint, where S = A ® A. This was subsequently altered by [272] to:
d
d
9(8) = tr(1+8)H) —d =1tr| >’ ( )sk =0 (16)
k=1 k

on the basis that €5 = Zi‘;{) %, where k is the length of a cycle. The authors of LEAST argue that
both of these have drawbacks relating to O(d®) complexity, as well as storage of e°. They note that
NO BEARS [142] framed the problem in terms of a spectral radius (the absolute value of the largest
Eigenvalue of S). However, this also requires O(d®) computation, so they derive an upper bound §
on this spectral radius as:

d
5® = Z b®[i] where

i=1
b® = (r(s™)* @ (c(s¥))'™* and (17)
s+ — (pR)-1g® p®)  4pq
D = Diag(b®)
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Combining a computable form for this upper bound with the least squares objective and [1
regularization, they show that this new objective is nearer to O(d), and trains between 5 and 15
times faster than NO TEARS. Note that edge thresholding is still required. They demonstrate the
benefits of this speedup by evaluating on both small graphs, as well as graphs with as many as
160,000 vertices.

A closely related approach is NO FEARS [259], which provides a detailed analysis of the acyclicity
constraint of NO TEARS (Eq. 6) and show that, following the augmented Lagrangian optimization,
it is not guaranteed to converge to a feasible solution of the intend constraint (i.e., when h(A) = 0).
Instead of a constraint that depends on A © A, they propose one that depends only on the absolute
value |A|, on the basis that there is a connection with the /1 penalty and sparsity. Following some
modifications to make the absolute value function differentiable, the authors modify existing
algorithms with knowledge derived through theoretic analysis, and show their proposal to improve
all baselines (including combinatoric approaches).

Following in a similar vain to other works such as NO BEARS, DAG-GNN, and NO FEARS, the
authors of GOLEM [177] note that NO TEARS uses a least-squares score function, and improve on
this by proposing a score function that directly maximizes the data likelihood. The authors show that
in the linear Gaussian case and under mild assumptions (such as faithfulness), a likelihood-based
objective with ‘soft’ sparsity regularization is sufficient to asymptotically identify a quasi-equivalent
(see original paper for definition) DAG and that a hard acyclicity constraint is not required. Further,
in the linear non-Gaussian scenario, they explain how an acyclicity constraint is not needed in the
asymptotic regime, although it may be necessary with finite samples. Finally, they explain how it is
sufficient to have a ‘soft” acyclicity penalty, instead of a hard constraint, which greatly reduces the
complexity of the optimization problem. They propose their own objective, including a likelihood
based score with an /1 regularizer and soft acyclicity constraint, which they optimize using Adam
[128]. Some post-processing is undertaken to threshold edges in order to guarantee acyclicity. The
primary distinctions from NO TEARS are, therefore, (a) the likelihood based score function, and (b)
the use of a soft (rather than hard) aycyclicity penalty.

Finally, a number of the same authors from NO TEARS have since revisited their original work.
We refer to this later work as NO TEARS+ [280], which seeks to extend NO TEARS acyclicity
constraint to handle nonparametric, general models of the form g; (f;(X)) (which subsumes additive
noise models, linear models, and generalized linear models). They integrate a multi-layer perceptron
into their derived framework (as well as a number of other variations). This model does not utilize an
adjacency matrix, and thus they frame acyclicity in terms of partial derivatives (an idea they attribute
to Rosasco et al. (2013) [206]) such that [W(f)]x; := ||9kfjl|2. This states that the dependency
structure between variable k and the function f; (which is described by the DAG represented in
matrix W) is the 2 norm of the partial derivative of f; with respect to Xj.

5.2 Methods Without an Acyclicity Penalty

Even though the NO TEARS acyclcity penalty has found popular assimilation into numerous
methods, there exist alternative ways to learn a causal graph, without necessarily imposing such a
constraint. We categorize these methods into those which use neural networks as well as interven-
tions or reinforcement learning approaches.

5.2.1 Neural Network Methods without an Acyclicity Penalty. There are a number of methods which
leverage the flexible function approximation capabilities of neural networks, without applying
an acyclicity regularizer. Not all of these methods learn an entire, multivariate DAG at once. For
instance, Causal Mosaic [263] is a neural network based non-linear Independent Component
Analysis which is intended for discriminating the causal direction between bivariate pairs. The
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method is motivated by the fact that for each cause-effect pair there may be a mixture of similar
underlying mechanisms. As such, they form a ‘mosaic’ ensemble of non-linear models for predicting
the direction of unseen cause-effect pairs. They demonstrate state of the art performance on the
Tuebingen cause-effect pairs dataset [164, 166]. Similarly, the authors of the AEQ method [63]
develop a score function based on an autoencoder’s reconstruction error for discovering the
directionality of vector valued cause-effect pairs, and do not utilise an acyclicity constraint. Their
key result is that the SEM Y = ¢g(f(X), U) only holds in one direction if X and Y are vectors and g
and f are neural network functions. They extend this result to univariate X by creating multivariate
versions of the variable based on a sorted concatenation of slices of the original. The complexity of
this multivariate surrogate is then measured using an autoencoder reconstruction error (they use an
12 loss). For a cause-effect pair, the variable with the higher loss is likely to be the cause. In the case
where the original variables are multivariate, they propose an adversarial conditional independence
method that discriminates between joint distributions and the product of the marginals.

Other neural network methods seek to estimate the full DAG. One such method, CGNN [74],
combines neural networks with hill-climbing or Tabu search. The neural networks are used to learn
the functions mapping variables (e.g. see the SEM breakdown in Figure 1), where the variables
themselves are selected according to the output of a greedy-search algorithm. The networks
are trained using the Adam [128] optimizer with a Maximum Mean Discrepancy (MMD) [79]
score function. During training, the edges are directed in order to minimize this discrepancy, and
following training, the graph is adjusted to remove cycles. CGNN incorporates a hill-climbing
search algorithm to optimize the structure of the DAG, and then the network optimization resumes.
This training cycle is repeated to convergence, and each edge has an associated score representing
its contribution to the global fit. They use a thresholding function to regularize the number of
edges in the graph. Finally, their method includes a means to identify possible hidden confounding,
by leveraging the fact that confounding can be modelled as correlations/associations between the
(otherwise) exogenous latent random variables.

Another neural network method which does not use the NO TEARS acyclicity constraint is
DEAR [219], which combines a Variational AutoEncoder (VAE) [129, 199] with an adversarial loss
[73] in order to infer a latent space with "causal" structure. Strictly, this is not a causal discovery
method, because they assume the ‘super-graph’ is given, and they learn the associated weights and
parameters. The latent space is given as supervision in the form of labels for the generative factors.
The latent structure is defined as:

z=f((1-AT)"h(e) (18)

Here, A is a weighted adjacency matrix, f and h are neural networks, and € is noise sampled from
a prior distribution. DEAR is notable for its use of high-dimensional data with semantic labels. It
maps from image data to the structured latent space, where the labels provide a form of supervision.

In CAREFL [126], the authors combine causal discovery with the deep learning framework known
as normalizing flows [131, 198]. Normalizing flows provide a means to construct generative models
which have the capacity to model complex densities using invertible transformations of a basic
and tractable density. They enable the exact computation of the log-likelihood (which constitute
their learning objective) via the use of the change of variables formula and inverse log Jacobian
determinant. Specifically, they use autoregressive flows, which are a form of normalizing flow for
which the transformations are affine and have simple, lower-triangular Jacobians [127, 158]. The
authors consider an SEM in terms of a causal ordering, whereby, according to the SEM/DAG, there
exists a permutation of the vertices that corresponds to the order of specified dependencies. For
example, a parent vertex precedes a child vertex in the causal ordering. The generic additive noise
SEM X = fj(pa;j) + U; can be written in terms of a causal ordering 7 as X; = fj(X<r(j)) + U;
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(which is assumed for CAREFL), where X, (;) represents variables that precede X in the causal
order (including its parents). This latter form is shown to bear resemblance to the autoregressive
flow model with a few constraints. The CAREFL method is shown to be flexible enough to answer
both counterfactual and interventional queries. As well as outputting a DAG, the method can also
be used to judge causal direction by using the log-likelihood to score different directions.

Finally, the authors of ICL [258] focus on the problem of structure discovery under the missing-
data setting, and provide definitions and examples of three types of missingness: Missing At Random
(MAR), Missing Completely At Random (MCAR), and Missing Not At Random (MNAR). They
propose the use of Generative Adversarial Networks (GANs) [73] and Variational AutoEncoders
(VAEs) [129, 199]. ICL takes incomplete data and simultaneously imputes the missing data using
the GAN, in order to match the generated distribution to the empirical distribution. The task of the
discriminator in the GAN is to differentiate between observed versus generated data. The skeleton
graph is estimated using a method following DAG-GNN [272]. Following this, the edges in the
skeleton are oriented following a method proposed by Cai et al. (2019) [29] which is based on the
additive noise model for causal direction identification.

5.2.2  Interventional and Reinforcement Learning Methods. There exist a number of methods which
‘act’ upon the graph being learned. By evaluating modifications of the graph, these methods can be
considered to fall under the umbrella of interventional or reinforcement learning methods. SDI [124],
for instance, is a neural network method which attempts to discover structure using data which have
been subject to unknown interventions. SDI assumes faithfulness and sufficiency, and is restricted to
discrete, categorical variables with no missingness; it assumes the available interventions are sparse
and only effect a single (possibly unknown) variable; the interventions may be soft; and there are
no compounding interventions (i.e., only one or less interventions occur in the data). The method is
trained in three stages which repeat until convergence. The first stage is concerned with updating
the functional parameters (those which map between vertices). The procedure involves randomly
drawing data samples and graph configurations, and optimizing the functional parameters using
the log-likelihood as a score function. In the second stage the structural parameters are updated
(those which model the edges between vertices), and interventional (unknown) data are sampled.
The variable subject to intervention is predicted using a simple heuristic; namely, that the variable
exhibiting the greatest reduction in log-likelihood is predicted on the basis that it is a poor fit to
the observational distribution. Given a new set of interventional data and sampled graphs, these
graphs can be scored whilst masking the intervened variable. In the third stage, and following
[18], the REINFORCE algorithm [261] is used to update the discrete structural parameters. The
method is evaluated on low-dimensional data (d < 100), and is shown to exceed state-of-the-art on
a number of benchmark datasets.

Similarly, Ke et al. (2020) [125] propose a meta-learning neural network method which also
incorporates interventions and leverages continuous representations of graphs. Training is split
into episodes where, for each episode, a graph is proposed and used to generate data for the duration
of the episode. The episode is further split into k time points, and for each time point a random
intervention is undertaken on the graph and data is generated. The model is then asked to predict
the outcome of the intervention, and thereby ends up ‘learning’ the causal relationships between the
variables in the graph. They also propose a Causal Relational Network (CRN), which accumulates
information about the interventions and graphs over time (similar to an LSTM [96]). They use a
graph decoder (the gradients from which are not backpropagated to the rest of the network) in
order to validate the graph’s continuous representation against the ground truth graph. It is shown
that CRNs learn new causal models quickly and efficiently. Interestingly, there is no discussion
about (a)cyclicity, but nonetheless their intention is to learn DAGs.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: March 2022.



1:22 Vowels et al.

CAN [167] is a Generative Adversarial Network (GAN) [73] that facilitates interventional sam-
pling from a structural graph (which the authors refer to as a causal graph) at inference time. It
comprises a Label Generation Network, which learns a graph from the dataset labels, and a Condi-
tional Image Generation Network, which generates the images conditioned on the interventional
distribution specified by the user at inference time. Their generator is a function of an adjacency
matrix applied to the noise vectors as X = G((I — AT)7'Z) where X is a sample from the joint
distribution, Z is random noise, A is a weighted adjacency matrix, I is the identity matrix, and G is
the non-linear generator function. In order to impose acyclicity they leverage an equality constraint
[272], such that acyclicity occurs if Eq. 10 is satisfied. As well as evaluating CAN on CelebA [147]
image data (including the generation of interventional samples), they also evaluate it on the more
traditional CHILD [227] and Alarm [14] datasets showing competitive performance.

Finally, the authors of RL-BIC [284] explicitly take a reinforcement learning approach to causal
discovery. They generate directed graphs using an encoder-decoder neural network model, which
forms the ‘actor’. The output of the encoder-decoder is the proposed graph, which is scored using
the BIC in order to generate a reward signal. A critic is used to update the proposed graphs and
therefore also to drive the optimization of the neural network parameters. They assume an additive
noise model X; = fi(pa;) + U; as well as faithfulness and causal sufficiency. Their output graph is
represented using a binary adjacency matrix. They mask out (i, i) edges to prevent self-loops, and
incorporate an adapted form of the NO TEARS acyclicity penalty (see Eq. 6). In order to guarantee
acyclicity (in the event that h(A) is small but non-zero), they augment it with a hard indicator
function penalty that acts on whether the graph is a valid DAG or not. All generated graphs are
stored during training, and the one with the best score is chosen, and this graph is finally pruned to
reduce false discovery. The method is trained using poly-gradient method and REINFORCE [261]
with Adam [128], and evaluated on relatively small graphs (< 30 nodes).

5.3 Miscellaneous Continuous Optimization Approaches without an Acyclicity
Penalty

We briefly discuss two methods which use neither acyclicity penalties, nor neural networks. Firstly,
Varando (2020) [251] proposes a proximal gradient [180] optimization objective that yields a linear
SEM and corresponding DAG. The method derives the novel objective by framing the learning
problem in terms of sparse matrix factorization, and the resulting method NODAG is shown to be
both effective and efficient. Secondly, ABIC [19] extends the continuous optimization paradigm
to discover various types (ancestral, arid, bow-free) of ADMGs which account for unmeasured
confounding. In the linear SEM case, unmeasured confounders manifest as correlated errors, which
are represented in a second adjacency matrix. They present three differentiable constraints which
can be used to discover a particular type of ADMG. They use the BIC criterion as the primary
objective/score function. The parameters are optimized using a Residual Iterative Conditional
Fitting algorithm [46].

5.4 Time Series Approaches

Despite time series causal discovery not being the principal focus of this survey, for completeness
we briefly describe a number of continuous optimization methods indended for this domain.
DYNOTEARS [179] seeks to discover structure in time series data, which is a topic we have not
covered in detail in this survey. By using second order optimization, DYNOTEARS seeks to learn a
Structural Vector AutoRegressive (SVAR) model, which is also a form of dynamic Bayesian network.
This is argued to be important on the basis that temporal dynamics are an essential part of real-
world systems, which cannot be captured using a static graph model. They assume that variables
potentially affect each other both contemporaneously, and in a time-lagged manner. DYNOTEARS
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is therefore not strictly Granger causal, because it accounts for contemporaneous effects [190,
p-203-208]. They model two adjacency matrices, W and A, for the intra-slice and inter-slice graph
edges, respectively. Because the edges represented in A only go forward in time, only W needs an
acyclicity constraint. They use the same constraint as NO TEARS (see Eq. 6 and the section above),
and incorporate it into an augmented Lagrangian problem which is optimized using L-BFGS-B
[282]. Following optimization, and similarly to other methods using acyclicity constraints, they
threshold edges with weights close to 0. DYNOTEARS is evaluated on S&P 500 returns data with
97 vertices, and on DREAM4 with 100 vertices [157].

In contrast, ACD [151] is a Granger-causality non-linear time-series method which leverages
black-box variational inference [20, 129, 194, 199] to infer a latent posterior graph. Granger causality
assumes there are no contemporaneous effects [190, p.203-208]. The method is demonstrated to
perform well under hidden confounding (and so does not assume causal sufficiency). ACD learns
from samples with different causal relationships but shared dynamics. This is motivated using
an example from neuroscience. They use the encoder to infer the causal graph from a particular
sample, and a decoder which models the dynamics and takes past samples and the inferred graph in
order to predict the future. Specifically, for sample X with graph encoder f and decoder dynamics
model g, the future is predicted as X:*! = g(X3!, £(X;)).

Finally, there exist two continuously optimized approaches which seek to discovery causes
in the dynamic and chaotic time series regime. Firstly, the CMS algorithm [152] is intended to
identify causal directionality between time varying variables in dynamic systems. The method
is inspired by convergent cross mapping methods [232, 269] which operate using time delayed
embeddings or shadow manifolds. In order to ascertain whether two variables X and Y from a time
varying dynamical system are causally related, CMS uses a radial basis function neural network to
map between the shadow embeddings for X and Y. The asymmetry in the error when mapping
from X to Y, compared with the error when mapping from Y to X, is used as a proxy to infer
causal directionality. Note that this method is only demonstrated to work when the input variables
are univariate, but may be used multiple times to ascertain the causal structure of more than
two observational variables. Secondly, NSM [253] provides a step-wise approach to discovering
the causal structure in video data representing objects varying in location. The method works
by first deriving a neural network embedding/representation of the visual state (such as object
coordinates/locations), and then evaluating the cross-map strength between the time series of
objects in this visual state. NSM is demonstrated to correctly identify the correct graph in synthetic
video data with three objects.

Method

Keywords & Software

causaleffect [240]
daggity [237]
dosearch [239]
Causal Discovery Toolbox [120]
pealg [122]
bnlearn [215]
rEDM [181]
DoWhy [218]
Causallmpact [25]
causal-cmd [262]
CausalNex [192]

general causality, R

general causality, R

causal effect identification, R

causal discovery, Python

causal discovery, R

causal discovery, R

dynamic modeling and convergent cross mapping, R
general causality, Python

intervention, time series, R

general causality, Python (py-causal) & JAVA + CLI
general causality, Python

Table 5. Python and R packages for general causal inference and discovery. CLI = command line interface

6 SUMMARY AND DISCUSSION

We have attempted to present the relevant background, definitions, assumptions, approaches to
causal discovery, common evaluation metrics, as well as providing a brief review of combinatoric
methods, and a detailed review of continuous optimization based methods. In terms of additional
resources, a range of software packages exist for undertaking causal inference and structure
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discovery and we have provided a list in Table 5 for convenience. Also, in Table 6 we provide a list
of datasets used for causal discovery. Finally, we encourage readers to explore various additional
references and commentaries. These include: A discussion of the relevance of causality to machine
learning [71, 175, 214]; Commentaries on the nature of causality [143, 160]; alternative reviews on
causal inference and causal discovery [69, 84, 92, 230, 268]; reviews with a focus on time-series
causal inference and discovery [51]; frameworks for dynamical SCMs with ODEs [163, 188]; guides
on the foundations for causal discovery [48]; some example applications [123, 146, 149, 211, 284];
textbooks on causal inference and causal discovery [184, 190, 228].

6.1 Opportunities and Future Directions

One of the main advantages to combinatoric approaches to structure discovery relates to the
provision of guarantees for identifying the true graph, or at least the true equivalence class. This
advantage comes at a significant cost, however, because such approaches are limited to low-
dimensional problems (or low-cardinality graphs) due to the super-exponential search space. One
might expect, then, that even though the continuous optimization approaches are confronted with a
non-trivial, non-convex solution space, they might at least scale to larger problems. Unfortunately,
and as can be seen from Table 2, most continuous optimization approaches have only been evaluated
on low-dimensional problems. This seems to be due to the fact that the most common acyclicity
constraint, namely the one in Eq. 6 from NO TEARS [279], contains a term that requires O(d>)
computations. This has motivated the development of higher-efficiency acyclicity constraints for
continuous optimization approaches to structure discovery, such as the one in LEAST [283]. One
further way to alleviate the issues when confronted with high-dimensional problems is to encode
the data into a lower-dimensional representation. This was undertaken in CausalVAE [267], who
applied the NO TEARS constraint to a graph operating in low-dimensional representation space.
Whilst this approach works well for non-semantic data (such as pixel data from images), it might
not be useful in situations whereby the data are both high-dimensional and semantic (as with gene
regulation data in the DREAMS5 dataset [156]). In the latter case, encoding semantic data into a
new subspace may or may not be meaningful, and will likely depend on the domain of application.

Dataset Vertices Notes

Multi-body Interaction [145] - up to 5 moving balls with physical interactions/relations
Fabric deformation [145] applying forces to different fabrics

Cause-effect pairs [235] bivariate distributions

Cause-effect pairs [162] bivariate distributions

Cause-effect pairs (Tuebingen) [164, 166] bivariate distributions

[N

SynTReN [247] user specified  synthetic gene expression data

Sachs [210] 11 proteins and phospholipids in human cells
Scale-Free Graphs [9] user specified  preferential attachment graph generation law
Erdos-Rényi Graphs (e.g. [139]) user specified  adds edges with probability p = dffd

Linear, GP Add, GP Mix, Sigmoid Add and Sigmoid Mix - mixed graph data

CausalWorld [1] - comprehensive robotics dataset

MPI3D [70] - visual disentanglement dataset
Pendulum-light-shadow [267] - image data

Phase coupled oscillator [5] - physical relations

NetSim [225] user specified  fMRI data simulation

Temperature [151]

BnLearn [215] - Repository

DREAM series [156, 157] up to 6000 simulated and in-vivo gene regulation networks
Causality 4 Climate [209] - climate change time series competition data
Archaeology [103] 8 archaeology data

S&P500 500 time series / stock returns

CauseMe [168] - Repository / benchmarking platform

Table 6. A list of datasets that have been used for testing structure discovery methods.

In terms of what we consider to present the most opportunity for future work, we note that there
are relatively few continuous optimization approaches which seek to learn structured, semantic
representations from non-semantic, high-dimensional data such as video or image data (exceptions
include CausalVAE [267] and DEAR [219], and related works on scene understanding include
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[13, 27, 50, 54]). Interestingly, the field of reinforcement learning, which involves the interaction of
learning agents with each other and their environment, has been relatively slow on the uptake
of causal perspectives [7, 42]. Ashton (2020) [7] even notes that one of the seminal texts on
reinforcement learning [234] makes no explicit reference to causality throughout the entire text. As
such, the application of causal discovery to reinforcement learning presents significant opportunity.’
Finally, whilst there were numerous combinatoric methods which are designed to handle unobserved
confounding and/or cyclicity (e.g., CCD [200], backshift [208], CCI [231]), there are relatively
few such continuous optimization approaches. Given the complexity of time-varying real-world
phenomena and the potential for cycles, we note the opportunity to develop continuous optimization
methods which can operate in a broader class of scenarios.

6.2 The Causal Leap

It was mentioned in Section 1, that a causal perspective is crucial to the empirical sciences as well
as for improving machine learning methods. More fundamentally, as humans we are interested
in how to reason about and interact in a world full of causal interactions. In general, the pursuit
of causality is essential to understanding the world and our universe. However, it is fraught with
difficulty, and below we finish with a discussion on some of the criticisms and warnings relating to
this otherwise laudable pursuit.

We now take the time to discuss how structure discovery methods take us from a structural
association (albeit, an association which may exhibit directional asymmetry) to that of a causal
association. What is there to suggest that learning or identifying such a graphical or structural
model is equivalent to learning or identifying causes and generative structure in reality? In order to
interpret graphical models causally, the the Causal Markov Condition (CMC) [228] is often assumed.
However, in our view (and see also [57]) the CMC simply represents an uninformative re-branding
of the regular Markov condition (which describes the conditional independence properties of the
graph), with the additional interpretation of the arrows as directed causal dependencies. As Dawid
(2008) [41, p.83] argues, "there is no reason to believe [the causal implications of the CMC] hold in
complete generality". It should be clear that the conditional independence properties of DAGs play
a foundational réle in causal discovery. However, as Dawid (2008) states in his work Beware of the
DAG!: "...for conditional independence the arrows are nothing but incidental construction features
supporting the d-separation semantics.”

The use of structural equations gets us somewhat closer to where we want to be when seeking
to represent causality, than do graphical models alone. This is because the structural equation
formalism can be more specific and informative than its simpler (yet intuitive) graphical counterpart
[190, p.106]. Nonetheless, as with graphical models, the interpretation of structural equations as
structural causal models cannot be made without strong and often untestable assumptions. Applying
these strong assumptions to structural or graphical models incites some harsh criticism. Indeed,
Korb & Wallace (1997) caricature research into causal discovery as "a glorious perversion" akin to
the "search for the philosopher’s stone" [134, p.551].

Such criticisms are important to assimilate, and they remind us to be careful when using statisti-
cal/causal models to draw inference about the nature of reality. In particular, even if a graphical
model bears resemblance to our own conception of a phenomenon, it may not be an appropriate or
fair way to represent complex social constructs (e.g., gender or race), representing what Freidman
described as a biased attempt to "quantify the qualitative, make discrete the continuous, or formalize
the nonformal" [58]. For instance, it is not clear what it means to be able to manipulate/intervene
on someone’s race, independently of their other attributes, or indeed at all. In general, we need

’Some exceptions include [39, 42, 93, 123, 170, 197, 207, 226, 273, 276].
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a thorough understanding of what a variable is supposed to represent, and whether it actually
represents it at all (both a problem of ontology and epistemology) before we perform meaningful
inference. However, a sufficiently clear understanding may be difficult if not impossible to attain.

The prevalence of reports of systemic bias arising from automated decision processes is increasing,
and an awareness for sources of bias is critical in undertaking fair and equitable machine learning
[97, 169, 224, 256]. Just because causal discovery methods define themselves as ‘causal’, does not
mean there are not significant difficulties associated with taking the leap from data to reality.
Indeed, blindly interpreting structured models as robustly representing causal quantities can be
immensely problematic. We appreciate Dawid’s [41] reference to Bourdieu who warns of "sliding
from the model of reality to the reality of the model" [23]. Furthermore, score-based approaches in
particular have recently been highlighted to be highly sensitive to data scaling [118, 196], making it
difficult to rely on such methods for robust structure learning, regardless of whether the structure
is interpreted causally or not.

In spite of these warnings, causal discovery methods may still be used productively, particularly
for exploratory purposes (e.g., in providing candidate causal links for further investigation and
validation) [41]. Furthermore, the combination of observational and interventional/experimental
data may provide us with opportunities to uniquely identify models which, at least under various
assumptions, correspond with some true external cause-effect relationships. More broadly, shifting
from naive associational and purely predictive machine learning models to models informed by
causal structure, may bring concomitant improvements in robustness and generalizability. If re-
searchers maintain a cautious approach when making the leap from modelling to causality, structure
discovery methods can be used in support of the endeavour to further human understanding.
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