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Abstract

Recent approaches to Sign Language Production (SLP)
have adopted spoken language Neural Machine Translation
(NMT) architectures, applied without sign-specific modifi-
cations. In addition, these works represent sign language
as a sequence of skeleton pose vectors, projected to an ab-
stract representation with no inherent skeletal structure.

In this paper, we represent sign language sequences as
a skeletal graph structure, with joints as nodes and both
spatial and temporal connections as edges. To operate on
this graphical structure, we propose Skeletal Graph Self-
Attention (SGSA), a novel graphical attention layer that
embeds a skeleton inductive bias into the SLP model. Re-
taining the skeletal feature representation throughout, we
directly apply a spatio-temporal adjacency matrix into the
self-attention formulation. This provides structure and con-
text to each skeletal joint that is not possible when using
a non-graphical abstract representation, enabling fluid and
expressive sign language production.

We evaluate our Skeletal Graph Self-Attention architec-
ture on the challenging RWTH-PHOENIX-Weather-2014T
(PHOENIX14T) dataset, achieving state-of-the-art back
translation performance with an 8% and 7% improvement
over competing methods for the dev and test sets.

1. Introduction

Sign languages are rich visual languages, the native lan-
guages of the Deaf communities. Comprised of both man-
ual (hands) and non-manual (face and body) features, sign
languages can be visualised as spatio-temporal motion of
the hands and body [58]. When signing, the local context
of motions is particularly important, such as the connec-
tions between fingers in a sign, or the lip patterns when
mouthing [44]. Although commonly represented via a
graphical avatar, more recent deep learning approaches to
Sign Language Production (SLP) have represented sign as
a continuous sequence of skeleton poses [51, 56, 71].

Due to the recent success of Neural Machine Transla-
tion (NMT), computational sign language research often
naively applies spoken language architectures without sign-
specific modifications. However, the domains of sign and
spoken language are drastically different [55], with the con-
tinuous nature and inherent spatial structure of sign requir-
ing sign-dependent architectures. Saunders et al. [49] intro-
duced Progressive Transformers, an SLP architecture spe-
cific to a continuous skeletal representation. However, this
still projects the skeletal input to an abstract feature repre-
sentation, losing the skeletal inductive bias inherent to the
body, where each joint upholds its own spatial representa-
tion. Even if spatio-temporal skeletal relationships can be
maintained in an latent representation, a trained model may
not correctly learn this complex structure.

Graphical structures can be used to represent pairwise
relationships between objects in an ordered space. Graph
Neural Networks (GNNs) are neural models used to cap-
ture graphical relationships, and predominantly operate on
a high-level graphical structure [4], with each node con-
taining an abstract feature representation and relationships
occurring at the meta level. Conversely, skeleton pose se-
quences can be defined as spatio-temporal graphical rep-
resentations, with both intra-frame spatial adjacency be-
tween limbs and inter-frame temporal adjacency between
frames. In this work, we employ attention mechanisms as
global graphical structures, with each node attending to all
others. Even though there have been attempts to combine
graphical representations and attention [15, 61, 70], there
has been no work on graphical self-attention specific to a
spatio-temporal skeletal structure.

In this paper, we represent sign language sequences as
spatio-temporal skeletal graphs, the first SLP model to op-
erate with a graphical structure. As seen in the centre of
Figure 1, we encode skeletal joints as nodes, J (blue dots),
and natural limb connections as edges, E , with both spatial
(blue lines) and temporal (green lines) relationships. Oper-
ating on a graphical structure explicitly upholds the skeletal
representation throughout, learning deeper and more infor-
mative features than using an abstract representation.
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Figure 1. An overview of our proposed SLP network, showing an initial translation from a spoken language sentence using a text encoder,
with gloss supervision. A subsequent skeletal graphical structure is formed, with multiple proposed Skeletal Graph Self-Attention layers
applied to embed a skeleton inductive bias and produce expressive sign language sequences.

Additionally, we propose Skeletal Graph Self-Attention
(SGSA), a novel spatio-temporal graphical attention layer
that embeds a hierarchical body inductive bias into the self-
attention mechanism. We directly mask the self-attention
by applying a sparse adjacency matrix to the weights of the
value computation, ensuring a spatial information propaga-
tion. To the best of our knowledge, ours is the first work to
embed a graphical structure directly into the self-attention
mechanism. In addition, we expand our model to the spatio-
temporal domain by modelling the temporal adjacency only
on N neighbouring frames.

Our full SLP model can be seen in Figure 1, initially
translating from spoken language using a spoken language
encoder with gloss supervision. The intermediary graph-
ical structure is then processed by a graphical sign lan-
guage decoder containing our proposed SGSA layers, with
a final output of sign language sequences. We evalu-
ate on the challenging RWTH-PHOENIX-Weather-2014T
(PHOENIX14T) dataset, performing spatial and temporal
ablation studies of the proposed SGSA architecture. Fur-
thermore, we achieve state-of-the-art back translation re-
sults for the text to pose task, with an 8% and 7% perfor-
mance increase over competing methods for the develop-
ment and test sets respectively.

The contributions of this paper can be summarised as:

• The first SLP system to model sign language as a
spatio-temporal graphical structure, applying both spa-
tial and temporal adjacency.

• A novel Skeletal Graph Self-Attention (SGSA) layer,
that embeds a skeleton inductive bias into the model.

• State-of-the-art Text-to-Pose SLP results on the
PHOENIX14T dataset.

2. Related Work
Sign Language Production The past 30 years has seen
extensive research into computational sign language [35,

62]. Early work focused on isolated Sign Language Recog-
nition (SLR) [20,36], with a subsequent move to continuous
SLR [6, 28]. The task of Sign Language Translation (SLT)
was introduced by Camgoz et al. [7] and has since become
a prominent research area [8, 46, 68]. Sign Language Pro-
duction (SLP), the automatic translation from spoken lan-
guage sentences to sign language sequences, was initially
tackled using avatar-based technologies [17, 38]. The rule-
based Statistical Machine Translation (SMT) achieved par-
tial success [26,31], albeit with costly, labour-intensive pre-
processing.

Recently, there have been many deep learning ap-
proaches to SLP proposed [23, 42, 48, 50, 52, 56, 63, 71],
with Saunders et al. achieving state-of-the-art results with
gloss supervision [52]. These works predominantly repre-
sent sign languages as sequences of skeletal frames, with
each frame encoded as a vector of joint coordinates [51] that
disregards any spatio-temporal structure available within a
skeletal representation. In addition, these models apply
standard spoken language architectures [60], disregarding
the structural format of the skeletal data. Conversely, in this
work we propose a novel spatio-temporal graphical atten-
tion layer that injects an inductive skeletal bias into SLP.

Graph Neural Networks A graph is a data structure con-
sisting of nodes, J , and edges, E , where E defines the rela-
tionships between J . Graph Neural Networks (GNNs) [4]
apply neural layers on these graphical structures to learn
representations [45, 74], classify nodes [64, 67] or gener-
ate new data [34, 66]. A skeleton pose representation can
be structured as a graph, with joints as J and natural limb
connections as E [53, 57]. GNNs have been proposed for
operating on such dynamic skeletal graphs, in the context
of action recognition [25, 40, 53, 64] and human pose esti-
mation [57].

Attention networks can be formalised as a fully con-
nected GNN, where the adjacency between each word,



Figure 2. Weighted calculation of Queries, Q, Keys, K and Values, V , for global self-attention.

E , is a weighting learnt using self-attention. Expanding
this, Graph Attention Networks (GATs) [61] define explicit
weighted adjacency between nodes, achieving state-of-the-
art results across multiple domains [5, 30, 54]. Recently,
there have been multiple graphical transformer architectures
proposed [15, 29, 33, 70], which have been extended to the
spatio-temporal domain for applications such as multiple
object tracking [13] and pedestrian tracking [69].

However, there has been no work on graphical attention
mechanisms where the features of each time step holds a
relevant graphical structure. We build a spatio-temporal
graphical architecture that operates on a skeletal represen-
tation per frame, explicitly injecting a skeletal inductive
bias into the model. There have been some applications
of GNNs in computational sign language in the context of
SLR [14, 18, 24, 41, 59]. We extend these works to the SLP
domain with our proposed Skeletal Graph Self-Attention ar-
chitecture.

Local Attention Attention mechanisms have demon-
strated strong Natural Language Processing (NLP) perfor-
mance [2], particularly with the introduction of transform-
ers [60]. Although proposed with global context [2], more
recent works have selectively restricted attention to only a
local context [12, 37, 65] or the top-k tokens [73], often due
to computational issues or to enable long-range dependen-
cies. In this paper, we propose using local attention to repre-
sent temporal adjacency within our graphical skeletal struc-
ture.

3. Background
In this section, we provide a brief background on self-

attention. Attention mechanisms were initially proposed
to overcome the information bottleneck found in encoder-
decoder architectures [2,39]. Transformers [60] apply mul-
tiple scaled self-attention layers in both encoder and de-
coder modules, where the input is a set of queries, Q ∈
Rdk , and keys, K ∈ Rdk , and values, V ∈ Rdv . Self-
attention aims to learn a context value for each time-step
as a weighted sum of all values, where the weight is de-
termined by the relationship of the query with each corre-
sponding key. An associated weight vector, WQ/K/V , is

first applied to each input, as shown in Figure 2, as:

QW = Q ·WQ, KW = K ·WK , V W = V ·WV (1)

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk and WV ∈
Rdmodel×dv are weights related to each input variable and
dmodel is the dimensionality of the self-attention layer. For-
mally, scaled self-attention (SA) outputs a weighted vector
combination of values, V W , by the relevant queries, QW ,
keys, KW , and dimensionality, dk, as:

SA(Q,K, V ) = softmax(
QW (KW )T√

dk
)V W (2)

Multi-Headed Attention (MHA) applies h parallel atten-
tion mechanisms to the same input queries, keys and values,
each with different learnt parameters. In the initial architec-
ture [60], the dimensionality of each head is proportionally
smaller than the full model, dh = dmodel/h. The output of
each head is then concatenated and projected forward, as:

MHA(Q,K,V ) = [head1, ..., headh] ·WO,

where headi = SA(QW ,KW , V W ) (3)

where WO ∈ Rdmodel×dmodel . In this paper, we introduce
Skeletal Graph Self-Attention layers that inject a skeletal
inductive bias into the self-attention mechanism.

4. Methodology
The ultimate goal of SLP is to automatically translate

from a source spoken language sentence, X = (x1, ..., xT )
with T words, to a target sign language sequence,
G = (g1, ..., gU ) of U time steps. Additionally, an in-
termediary gloss1 sequence representation can be used,
Z = (z1, ..., zP ) with P glosses. Current approaches [51,
56,71] predominantly represent sign language as a sequence
of skeletal frames, with each frame containing a vector of
body joint coordinates. In addition, they project this skele-
tal structure to an abstract representation before being pro-
cessed by the model [49]. However, this approach removes
all spatial information contained within the skeletal data,

1Glosses are a written representation of sign, defined as minimal lexical
items.
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Figure 3. Overview of the proposed model architecture, detailing the Spoken Language Encoder (Sec. 4.1) and the Graphical Sign
Language Decoder (Sec. 4.2). We propose novel Skeletal Graph Self-Attention layers to operate on the sign language skeletal graphs, G.

restricting the model to only learning the internal relation-
ships within a latent representation.

Contrary to previous work, in this paper we represent
sign language sequences as spatio-temporal skeletal graphs,
G, as in the centre of Figure 1. As per graph theory [3],
G can be formulated as a function of nodes, J and edges,
E . We define J as the skeleton pose sequence of temporal
length U and spatial width S, with each node representing
a single skeletal joint coordinate from a single frame (blue
dots in Fig. 1). S is therefore the dimensionality of the
skeleton representation of each frame. E can be represented
as a spatial adjacency matrix,A, defined as the natural limb
connections between skeleton joints both of its own frame
(blue lines) and of neighbouring frames (green lines).

As outlined in Sec. 3, classical self-attention operates
with global context over all sequence time-steps. However,
a skeletal inductive bias can be embedded into a model by
restricting attention to only the natural limb connections
within the skeleton. To embed a skeleton inductive bias
into self-attention, we propose a novel Skeletal Graph Self-
Attention (SGSA) layer that operates with sparse attention.
Modeled within a transformer decoder, SGSA retains the
original skeletal structure throughout multiple deep layers,
ensuring the processing of spatio-temporal information con-
tained in skeletal pose sequences. In-built adjacency ma-
trices of both intra- and inter-frame relationships provide
structure and context directly to each skeletal joint that is
not possible when using a non-graphical abstract represen-
tation.

In the rest of this section, we outline the full SLP model,
containing a spoken language encoder and a graphical sign
language decoder, with an overview shown in Figure 3.

4.1. Spoken Language Encoder

As shown on the left of Figure 3, we first translate from
a spoken language sentence, X , of dimension E ×T , where
E is the encoder embedding size, to a sign language rep-

resentation, R = (r1, ..., rU ) (Fig. 1 Left). We build a
classical transformer encoder [60] that applies self-attention
using the global context of a spoken language sequence. R
is represented with a spatio-temporal structure, containing
identical temporal length, U , and spatial shape, S, as the
final skeletal graph, G. This structure enables a graphical
processing by the proposed sign language decoder. Addi-
tionally, as proposed in [52], we employ a gloss supervi-
sion to the intermediate sign language representation. This
prompts the model to learn a meaningful latent sign repre-
sentation for the ultimate goal of sign language production.

4.2. Graphical Sign Language Decoder

Given the intermediary sign language representation,
R ∈, we build an auto-regressive transformer decoder con-
taining our novel Skeletal Graph Self-Attention (SGSA)
layers (Figure 3 middle). This produces a graphical sign
language sequence, Ĝ, of spatial shape, S, and temporal
length, U .

Spatial Adjacency We define a spatial adjacency matrix,
A ∈ RS×S , expressed as a sparse attention map, as seen in
Figure 4. A contains a spatial skeleton adjacency structure,
modelled as the natural skeletal limb connections within a
frame (blue lines in Fig. 1). A can be formalised as:

Ai,j =

{
1, if Con(i, j)
0, otherwise

(4)

where Con(i, j) = True if joints i and j are connected. For
example, the skeletal elbow joint is connected to the skele-
tal wrist joint. We use an undirected graph representation,
defining E as bidirectional edges.

Temporal Adjacency We expand the spatial adjacency
matrix to the spatio-temporal domain by modelling the
inter-frame edges of the skeletal graph structure (green lines



Figure 4. Skeletal Graph Self-Attention: Weighted calculation of Values, V , masked with a spatio-temporal adjacency matrix A∗ to embed
a skeleton inductive bias.

in Fig. 1). The updated spatial-temporal adjacency matrix
can be formalised as A ∈ RS×S×U . We set N as the tem-
poral distance that defines ‘adjacent’, where edges are es-
tablished as both same joint connections and natural limb
connections between the N adjacent frames. In the stan-
dard attention shown in Sec. 3, each time-step can globally
attend to all others, which can be modelled as N =∞. We
formalise our spatio-temporal adjacency matrix, as:

Ai,j,t =

{
1, if Con(i, j) and t ≤ N
0, otherwise

(5)

where t is the temporal distance from the reference frame,
t = u − uref.

Self-loops and Normalisation To account for informa-
tion propagation loops back to the same joint [3], we add
self-loops to A using the identity matrix, I ∈ RS×S . In
practice, due to our multi-dimensional skeletal representa-
tion, we add self-loops from each coordinate of the joint
both to itself and all other coordinates of the same joint,
which we define as I∗ ∈ RS×S . Furthermore, to prevent
numerical instabilities and exploding gradients [3], we nor-
malise the adjacency matrix by inversely applying the de-
gree matrix, D ∈ RS . D is defined as the numbers of edges
a node is connected to. Normalisation can be formulated as:

A∗ = D−1(A+ I∗) (6)

where A∗ is the normalised adjacency matrix.

Skeletal Graph Self-Attention We apply A∗ as a
sparsely weighted mask onto the weighted value calcula-
tion, V W = V · WV , of Eq. 1, ensuring that the values
used in the weighted context for each node is only impacted
by the adjacent nodes of the previous layer:

V A = V · A∗ ·WV (7)

where Figure 4 shows a visual representation of the sparse
adjacent matrixA∗ containing spatio-temporal connections,
applied as a mask to the weighted calculation. With a value

matrix containing a skeletal structure, V ∈ RS , A∗ re-
stricts the information propagation of self-attention layers
only through the spatial and temporal skeletal edges, E ,
and thus embeds a skeleton inductive bias into the attention
mechanism.

We formally define a Skeletal Graph Self-Attention
(SGSA) layer by plugging both the weighted variable com-
putation of Eq. 1 and the adjacent weighted computation of
Eq. 7 into the self-attention Eq. 2, as:

SGSA(Q,K, V,A) =

softmax(
Q ·WQ(K ·WK)T√

dk
)V · A∗ ·WV (8)

where dmodel = S. This explicitly retains the spatial skele-
tal shape, S, throughout the sign language decoder, en-
abling a spatial structure to be extracted.

To extend this to a multi-headed transformer decoder, we
replace self-attention in Eq. 3 with our proposed SGSA
layers. To retain the spatial skeletal representation within
each head, the dimensionality of each head is kept as the
full model dimension, dh = dmodel = S, with the final
projection layer enlarged to h× S .

We build our auto-regressive sign language decoder with
L multi-headed SGSA sub-layers, interleaved with fully-
connected layers and a final feed-forward layer, each with
a consistent spatial dimension of S. A residual connec-
tion [22] and subsequent layer norm [1] is employed around
each of the sub-layers, to aid training. As shown on the right
of Figure 3, the final output of our sign language decoder
module is a graphical skeletal sequence, Ĝ, that contains U
frames of skeleton pose, each with a spatial shape of S.

We train our sign language decoder using the Mean
Squared Error (MSE) loss between the predicted sequence,
Ĝ, and the ground truth sequence, G∗. This is formalised as
LMSE = 1

U

∑u
i=1 ĝ1:U−g∗1:U )2, where ĝ and g∗ represent

the frames of the produced and ground truth sign language
sequences, respectively. We train our full SLP model end-
to-end with a weighted combination of the encoder gloss
supervision [52] and decoder skeleton pose losses.



Skeletal Graph DEV SET TEST SET
Layers, L: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

0 (4 SA) 14.25 17.73 23.47 34.79 37.65 13.64 17.03 23.09 35.03 36.59
1 14.37 17.67 23.13 33.95 36.98 13.63 17.08 23.17 35.39 37.05
2 14.50 18.14 24.10 35.96 38.09 13.85 17.23 23.14 34.93 37.33
3 14.53 18.02 24.00 35.71 37.62 13.72 17.23 23.10 34.45 36.99
4 14.68 18.30 24.31 36.16 38.51 14.05 17.59 23.73 35.63 37.47
5 14.72 18.39 24.29 35.79 38.72 14.27 17.79 23.79 35.72 37.79

Table 1. Impact of Skeletal Graph Self-Attention layers, L, on model performance.

4.3. Sign Language Output

Generating a sign language video from the produced
graphical skeletal sequence, Ĝ, is then a trivial task, ani-
mating each frame in temporal order. Frame animation is
done by connecting the nodes, J , using the natural limb
connections defined by E , as seen in Fig. 1.

5. Experiments

Dataset We evaluate our approach on the PHOENIX14T
dataset introduced by Camgoz et al. [7], containing paral-
lel sequences of 8257 German sentences, sign gloss trans-
lations and sign language videos. Other available sign
datasets are either simple sentence repetition tasks of non-
natural signing not appropriate for translation [16, 72], or
contain larger domains of discourse that currently prove dif-
ficult for the SLP field [10, 21]. We extract 3D skeletal
joint positions from the sign language videos to represent
our spatio-temporal graphical skeletal structure. Manual
and non-manual features of each video are first extracted
in 2D using OpenPose [11], with the manuals lifted to 3D
using the skeletal model estimation model proposed in [71].
We normalise the skeleton pose and set the spatial skeleton
shape, S, as 291, with 290 joint coordinates and 1 counter
decoding value (as in [49]). Adjacency information, A, is
defined as the natural limb connections of 3D body, hand
and face joints, as in [71], where each coordinate of a joint
is adjacent to both the coordinates of its own joint and all
connected joints. We define the counter value as global ad-
jacency, with connections to all joints.

Implementation Details We setup our SLP model with a
spoken language encoder of 2 layers, 4 heads and an em-
bedding size, E , of 256, and a graphical sign language de-
coder of 5 layers, 4 heads and an embedding size of S. Our
best performing model contains 9M trainable parameters.
As proposed by Saunders et al. [49], we apply Gaussian
noise augmentation with a noise rate of 5. We train all parts
of our network with Xavier initialisation [19], Adam opti-
mization [27] with default parameters and a learning rate of
10−3. Our code is based on Kreutzer et al.’s NMT toolkit,
JoeyNMT [32], and implemented using PyTorch [43].

Evaluation We use the back translation metric [49] for
evaluation, which employs a pre-trained SLT model [9] to
translate the produced sign pose sequences back to spoken
language. We compute BLEU and ROUGE scores against
the original input, with BLEU n-grams from 1 to 4 pro-
vided. The SLP evaluation protocols on the PHOENIX14T
dataset have been set by [49]. We share results on the
Text to Pose (T2P) task which constitutes the production
of sign language sequences directly from spoken language
sentences, the ultimate goal of an SLP system. We omit
Gloss to Pose evaluation to focus on the more important
spoken language translation task.

Skeletal Graph Self-Attention Layers We start our ex-
periments on the proposed Skeletal Graph Self-Attention
layers, evaluating the effect of stacking multiple SGSA lay-
ers, L, each with a multi-head size, h, of 4. We first ablate
the effect of using no SGSA layers, and replacing them
with 4 standard self-attention layers, as described in Sec-
tion 3. We then build our graphical sign language decoder
with 1 to 5 SGSA layers, with each model retaining a con-
stant spoken language encoder size and a global temporal
adjacency.

Table 1 shows that using standard self-attention layers
achieves the worst performance of 14.25 BLEU-4, showing
the benefit of our proposed SGSA layers. Increasing the
number of SGSA layers, as expected, increases model per-
formance to a peak of 14.72 BLEU-4. A larger number of
layers enables a deeper representation of the skeletal graph
and thus provides a stronger skeleton inductive bias to the
model. In lieu of this, for the rest of our experiments we
build our sign language decoder with five SGSA layers.

Temporal Adjacency In our next set of experiments, we
examine the impact of the temporal adjacency distance, N ,
defined in Sec. 4.2. In order to logically set N , we analyse
the trained temporal attention matrix of the best performing
decoder evaluated above. We notice that the attention pre-
dominantly falls on the last 3 frames, as the model learns
to attend to the local temporal context of skeletal motion.
Manually restricting the temporal attention provides this in-
formation as an inductive bias into the model, rather than



Temporal DEV SET TEST SET
Adjacency, N : BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

∞ 14.72 18.39 24.29 35.79 38.72 14.27 17.79 23.79 35.72 37.79
1 15.15 18.67 24.47 35.88 38.44 14.33 17.77 23.72 35.26 37.96
2 15.09 18.51 24.43 36.17 38.04 14.07 17.62 23.91 36.28 37.82
3 15.08 18.84 24.89 36.66 38.95 14.32 17.95 24.04 36.10 38.38
5 14.90 18.81 25.30 37.31 39.55 14.21 17.79 23.98 35.88 38.44

Table 2. Impact of Temporal Adjacency, N , on SGSA model performance

relying on this being learnt.
Table 2 shows results of our temporal adjacency evalu-

ation, ranging from an infinite adjacency (no constraint) to
N ∈ [1, 5]. It can be seen that a temporal adjacency dis-
tance of one achieves the best BLEU-4 performance. Note:
Although we report BLEU of n-grams 1-4 for complete-
ness, we use BLEU-4 as our final evaluation metric to en-
able a clear result. Although counter-intuitive to the global
self-attention utilised by a transformer decoder, we believe
this is modelling the Markov property, where future frames
only depend on the current state. Due to the intermediary
gloss supervision [52], the defined sign language represen-
tation, R, should contain all frame-level information rele-
vant to a sign language translation. The sign language de-
coder then has the sole task of accurately animating each
skeletal frame. Therefore, a single temporal adjacency in
the graphical decoder makes sense, as no new information
is required to be learnt from temporally distant frames.

Baseline Comparisons We compare the performance of
the proposed Skeletal Graph Self-Attention architecture
against 4 baseline SLP models: 1) Progressive transform-
ers [49], which applied the classical transformer architec-
ture to sign language production. 2) Adversarial training
[47], which utilised an adversarial discriminator to prompt
more expressive productions, 3) Mixture Density Networks
(MDNs) [51], which modelled the variation found in sign
language using multiple distributions to parameterise the
entire prediction subspace, and 4) Mixture of Motion Prim-
itives (MOMP) [52], which split the SLP task into two
distinct jointly-trained sub-tasks and learnt a set of motion
primitives for animation.

Table 3 presents Text to Pose results, showing that

SGSA achieves 15.15/14.33 BLEU-4 for the development
and test sets respectively, an 8/7% improvement over the
state-of-the-art. These results highlight the significant suc-
cess of our proposed SGSA layers. We have shown that
representing sign pose skeletons in a graphical skeletal
structure and embedding a skeletal inductive bias into the
self-attention mechanism enables a fluid and expressive
sign language production.

6. Conclusion
In this paper, we proposed a skeletal graph structure

for SLP, with joints as nodes and both spatial and tem-
poral connections as edges. We proposed a novel graphi-
cal attention layer, Skeletal Graph Self-Attention, to oper-
ate on the graphical skeletal structure. Retaining the skele-
tal feature representation throughout, we directly applied a
spatio-temporal adjacency matrix into the self-attention for-
mulation, embedding a skeleton inductive bias for expres-
sive sign language production. We evaluated SGSA on the
challenging PHOENIX14T dataset, achieving state-of-the-
art back translation performance with an 8% and 7% im-
provement over competing methods for the dev and test set.
For future work, we aim to apply SGSA layers to the wider
computational sign language tasks of SLR and SLT.
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DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Progressive Transformers [49] 11.82 14.80 19.97 31.41 33.18 10.51 13.54 19.04 31.36 32.46
Adversarial Training [47] 12.65 15.61 20.58 31.84 33.68 10.81 13.72 18.99 30.93 32.74

Mixture Density Networks [51] 11.54 14.48 19.63 30.94 33.40 11.68 14.55 19.70 31.56 33.19
Mixture of Motion Primitives [52] 14.03 17.50 23.49 35.23 37.76 13.30 16.86 23.27 35.89 36.77

Skeletal Graph Self-Attention 15.15 18.67 24.47 35.88 38.44 14.33 17.77 23.72 35.26 37.96

Table 3. Baseline comparisons on the PHOENIX14T dataset for the Text to Pose task.
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