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ABSTRACT Devising planning algorithms for autonomous driving is non-trivial due to the presence of
complex and uncertain interaction dynamics between road users. In this paper, we introduce a planning
framework encompassing multiple action policies that are learned jointly from episodes of human-human
interactions in naturalistic driving. The policy model is composed of encoder-decoder recurrent neural
networks for modeling the sequential nature of interactions and mixture density networks for characterizing
the probability distributions over driver actions. The model is used to simultaneously generate a finite set
of context-dependent candidate plans for an autonomous car and to anticipate the probable future plans of
human drivers. This is followed by an evaluation stage to select the plan with the highest expected utility for
execution. Our approach leverages rapid sampling of action distributions in parallel on a graphic processing
unit, offering fast computation even when modeling the interactions among multiple vehicles and over several
time steps. We present ablation experiments and comparison with two existing baseline methods to highlight
several design choices that we found to be essential to our model’s success. We test the proposed planning
approach in a simulated highway driving environment, showing that by using the model, the autonomous
car can plan actions that mimic the interactive behavior of humans.

INDEX TERMS Autonomous vehicle, autonomous driving, driver modeling, human-robot interaction,
interaction-aware motion prediction.

I. INTRODUCTION

Considering that an estimated 94% of traffic accidents can be
attributed to driving errors [1], there is a significant potential
to improve traffic safety by automating the driving task.
Despite the recent advances in sensing and control tech-
nologies, which have led to the successful demonstration
of autonomous driving on public roads [2], [3], one key
open research challenge lies in enabling self-driving vehi-
cles to navigate interactive scenarios involving other drivers.
An example scenario where such interactions are prevalent
arises when performing lane-change maneuvers in congested
traffic conditions.
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Given the safety-critical nature of driving, many existing
works have primarily focused on safety [4], treating vehi-
cles in the vicinity of the autonomous vehicle as bounded
disturbances [5], [6] and obstacles moving with constant
velocity [3]. Alternatively, the methods involve predicting
driver trajectories first and using these predictions to plan
collision-free trajectories in response [2], [7]. The main limi-
tation of these studies is that they do not consider interactions
with human drivers. In contrast, humans are often aware of
how their actions influence others—an autonomous vehicle
that fails to recognize its coupled interactions with human
drivers would potentially cause disruptions to the traffic flow
and create dangerous situations [8], [9].

To consider interactions, some works have integrated mod-
els of human driving behavior in their planning frameworks.
An intuitive way to construct a driver model is to learn the
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FIGURE 1. Example of an interaction scenario. The agent (orange) may
fail to successfully change its lane if it cannot anticipate the human
driver (yellow) yielding.

model directly from driving data [10]-[14]. We follow this
paradigm to learn a parametric model of interaction dynam-
ics from many exemplars of human-human interactions in
naturalistic driving. The model consists of encoder-decoder
recurrent neural networks (which we will refer to as an RNN
encoder-decoder) and mixture density networks (MDNs),
which are particularly well suited for modeling sequential
tasks [15] and stochastic processes [16], respectively. In our
approach, we use the model to both anticipate the future
actions of human drivers and to generate candidate action
plans for the autonomous agent. Subsequently, a planning
module scores each candidate plan according to an evalua-
tion function, and the agent plan with the highest score gets
executed in a receding horizon fashion.

In this work, we are particularly interested in lane-change
scenarios, similar to that shown in Fig. 1, where it may not be
possible to merge successfully without interacting with other
drivers. The scenario has three characteristics that motivate
our approach. First, given the dense traffic condition, there
are several vehicles that can influence each other. As such,
interactions among multiple vehicles have to be considered.
Second, the agent has to take actions while lacking knowledge
of all the factors that may influence the driving behavior of
humans. Such factors include varying driver preferences and
the position of vehicles occluded from the agent’s perceptual
field. Third, the driving behavior of humans, in most cases,
is inconsistent across different instants and scenarios. Thus,
the agent must plan accordingly by considering the inherent
uncertainty in drivers’ behavior.

This paper presents the following main contributions:

1) We use deep neural networks to learn a predictive
model of the non-deterministic driver behavior in
multi-vehicle scenarios (Section IV-B).

2) We propose a novel training strategy suited for con-
tinuous vehicle trajectories that improves the model’s
prediction accuracy (Section V-B).

3) We leverage the model to efficiently plan actions that
mimic the driving behavior of humans while fulfilling
the agent’s driving objective (Section VI-B).

4) We perform an ablation study to justify our model
design choices (Section VI-D).

Il. RELATED WORK
While planning in interactive traffic scenarios remains an
unsolved problem, it has attracted considerable interest in the
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recent years. In this section, we first provide a brief overview
of the existing research on driver modeling and discuss their
suitability for integration in planning frameworks. We then
present a review of several studies that have used driver mod-
els for planning in interactive scenarios. At last, we provide a
summary of our approach and contribution in the context of
former research.

A. DRIVER BEHAVIOR MODELING

Driver behavior modeling has long been a subject of
study for the application of traffic flow analysis and
infrastructure-based traffic management [17], [18]. The
developed models determine driver actions (e.g., acceleration
and turn rate) as a function of time or the traffic state. Despite
being suitable for large-scale traffic simulations, these models
rely on many strong inbuilt assumptions and do not account
for the stochastic nature of human driving behavior.

To capture the more subtle nuances of driver behavior,
several studies have proposed fitting probabilistic models
to naturalistic driving data [11], [12]. The traffic state can
then be propagated forward by iteratively drawing samples
from each driver’s action distribution, and using a vehicle
dynamics model to estimate the next traffic state. For high-
way driving, Lenz et al. [11] proposed fully connected Deep
Neural Networks (DNNs) to parameterize the distributions
over driver actions. The traffic state from the viewpoint of
each driver was used as input to the DNNs. As noted by the
authors of [11], requiring access to the traffic state from the
standpoint of a driver may limit the model’s usage in practice
due to the limited range of autonomous vehicles’ onboard
sensors. Schulz ef al. [12] proposed a similar approach, but
besides traffic states, they also conditioned their model on
drivers’ route intentions and local maps to make their model
applicable to urban traffic scenarios. Perhaps surprisingly,
results from both [11] and [12] suggest that a model that is
only conditioned on the current state of traffic outperforms
one conditioned on the history of past traffic states.

Lee et al. [19] proposed DESIRE, an end-to-end deep
learning-based framework for tackling interaction-aware
motion prediction. DESIRE consists of multiple modules,
including a trajectory sample generator using a conditional
variational auto-encoder, a trajectory ranking and refinement
module based on inverse reinforcement learning, and a mod-
ule for aggregating scene context and interactions between
multiple drivers. Although the computational demand of
their framework has not reported, such a complex archi-
tecture may present challenges for fast runtime inference,
which is of practical importance for sampling-based planning
approaches such as ours.

B. PLANNING APPROACHES

The efficacy of several planning algorithms based on the
Markov decision process formulation has been demonstrated
through both simulation-based [20] and real-world experi-
ments [21]. These methods can handle various sources of
uncertainty and allow for planning at multiple levels of
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abstraction, e.g., high-level tactical decisions and low-level
actions that directly influence the agent’s dynamics. The
primary weakness of the aforementioned literature is the use
of hand-engineered driver models, as there may be a large
mismatch between the driver models used by the autonomous
vehicle for planning and the actual driving behavior of
humans [22].

In [23], planning is formulated as a game whereby drivers
are treated as rational agents attempting to maximize a
defined objective. The value of the states vehicles can occupy
is determined based on their collision risk and how far the
vehicles are from reaching their desired velocity. While the
action space of the agent in [23] is a set of discrete lateral and
longitudinal behaviors, we are interested in planning over a
continuous action space, which would incur a prohibitively
high computational cost if the interactive planning problem
is treated as a game. Furthermore, the employed tree-type
structure in [23] grows exponentially with the number of
interacting vehicles, limiting the approach’s real-time appli-
cability in congested traffic scenarios.

Assuming access to the objective that governs driver
behavior, planning can be cast as a dynamical system and
solved via optimization. One option is to hand-code the objec-
tive using a combination of cost terms that reflect a typi-
cal driver’s goal of driving safely and efficiently [24]-[26].
To not rely on a hand-coded objective, another option is to fit
afamily of cost functions to data using Inverse Reinforcement
Learning (IRL) [27]. One commonly used variant of IRL
employs the maximum entropy principle [28], where the
aim is to maximize the likelihood of expert actions under a
parameterized objective. Using this principle in the context of
planning, Sadigh et al. [13] demonstrated that by exploiting
a learned driver objective, an autonomous vehicle is able
to both anticipate and influence the future action responses
of a human driver. To render optimization tractable, it is
assumed that the human has access to the planned actions of
the autonomous vehicle and responds optimally according to
his or her objective. This formulation is known as a Stack-
elberg game, which offers a lower computational load by
avoiding the recursive turn-taking of the full game-theoretic
setting. Nevertheless, the learned objective in [13] could only
express the single most probable human response. In contrast,
in this work we aim to capture a diverse range of human
responses.

Schmerling et al. [14] presented an approach similar to
ours, whereby a data-driven model of interaction dynamics
is used for interactive planning. Importantly, their model
can capture multimodal human action distributions, and their
employed receding horizon formulation yields fast responses
to human actions. While we use naturalistic vehicle trajecto-
ries as training data, in [14], training data were collected using
a simulator, which may not elicit the same driving behaviors
that occur when driving in real traffic with high-risk conse-
quences [29]. Furthermore, the agent’s action policy is con-
structed by evaluating a large number of context-independent
candidate plans. We instead aim to learn the agent’s action
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FIGURE 2. Proposed action planning cycle. The plan construction module
takes as input the candidate plans generated by the decoders, evaluates
them, and selects the plan with the highest expected utility for execution.

policy, allowing for the efficient exploration of the space of
context-dependent candidate plans.

C. OUR CONTRIBUTIONS

Thus, there is a great deal of work remaining in enabling
self-driving vehicles to navigate scenarios involving human-
robot interaction. Our ultimate goal is to enable an
autonomous vehicle to drive in congested traffic, which
exemplifies many scenarios involving driver interactions. Our
central idea is to model the interactions among several human
drivers and the autonomous agent via learned action policies,
for the purpose of interactive planning. In contrast to other
approaches in the literature that only predict the most likely
human actions [13] or learn a driver model solely for making
predictions [14], in this work we use the policies for the
probabilistic motion prediction of multiple vehicles and for
generating candidate agent plans. By doing so, the agent can
learn to emulate the interactive driving behavior of humans
with all its richness and complexities, which is naturally hard
to achieve using hand-coded strategies.

Ill. PROBLEM STATEMENT

The planning cycle for the proposed framework in this paper
is shown in Fig. 2. We seek to devise a planner that, given
the surrounding vehicles’ past motion history, produces an
action plan which is applied by the agent to move from its
current position towards a goal position, subject to safety
and interactivity. To evaluate the agent’s choices of actions,
the planner relies on the anticipation of how the neighboring
drivers might act in the future. Specifically, the safety of the
agent’s planned paths with respect to the movement of other
traffic participants has to be considered. To this end, a state
transition function is used, which specifies how the traffic
state evolves over time as a function of the agent’s and the
other vehicles’ actions.

A. STATE TRANSITION FUNCTION
To formalize the state transition function, we follow multi-
policy decision-making (MPDM), a theoretically grounded
formulation of planning for interactive, multi-vehicle sce-
narios originally presented in [21]. We briefly describe the
MPDM formulation and how it has been adapted for our
planning framework; for complete details, we guide the read-
ers to [21].

The notation used throughout the paper is as follows. Each
vehicle v € V can take an action a}, € A, at any given time
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t to transition from a state x/ € X, to x/*!. An action @,
is a tuple of a vehicle’s continuous longitudinal acceleration
and lateral speed, and state x|, contains the continuous vehicle
position and speed. Let x’ be a joint state, which contains the
state of the agent and human-driven vehicles. Let e denote the
agent and z, denote the agent’s observation of surrounding
vehicles’ state. Similarly, each vehicle can access the state
of its neighboring vehicles through an observation z, € Z,.
Assuming independence between the instantaneous actions
of each vehicle, the transition probability is governed by,

t+1\ ~ t o t+1 ot t t t
pxT) ~ /[pe(xe,xe s Zes Q) dz, dx,
X, 2,

x l_[ /./fpv(xé,xéﬂ,ztv,a’v) dd!, dz, dx!

veV|v#£e X, Z,A,

ey

where p,(x!, x!*1, 7 a') is the joint density for vehicle v.
MPDM assumes that each vehicle follows a high-level deci-
sion policy 7! € II (e.g., keeping lane or changing lane),
where a decision policy is a mapping 7, : Z, x X, — A,.
As such, the joint distribution factors as follows:

t+1

t t+1
pv(x,, X,

, 24, al) = px)p(ahlx)p(x]
t ..t 0t tyt ot t 2
x p(,|x,, 2, ) play |y, z,, T,) - (2)

;. )

decision policy action policy

In [21], the primary focus was on characterizing the deci-
sion policies, with the action policies being approximated via
hand-engineered, deterministic functions of the traffic state.
We instead focus on learning the action policies and exploit-
ing them for interactive planning. We simplify the problem by
assuming that an upstream decision-making module (similar
to the module in [21]) has already determined whether to
remain on the current lane or perform an autonomous lane
change to one of the adjacent lanes.

Due to the large state, observation and action spaces,
obtaining an exact solution to the integrals in (1) is compu-
tationally intractable. We can instead sample state transitions
rather than considering all possible state transitions. We esti-
mate the next state of a vehicle by drawing samples from its
action distributions. Then, given the vehicle’s sampled action
at each step of the planning horizon, we use the following
discrete-time equations to propagate the vehicle’s state for-
ward in time,

1
X x x4+ % AL+ Eii’vmz (©)
SRS YRS (.Y 4)
vt Ay, yiae ©)

where x, and y!, are the vehicle’s longitudinal and lateral
positions, respectively, X!, and y’, are the longitudinal and
lateral components of the vehicle’s action, respectively, X/, is
the vehicle’s longitudinal speed and At is the time step size.
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B. ACTION POLICY

The action policy in (2) is referred to as a stochastic pol-
icy [30], which is a mapping to a distribution over driver
action a',. A stochastic policy is suited for representing the
driving behavior of humans since there is not a ‘““correct”
way to act at any given moment, but rather there is a range of
plausible, context-dependent actions a driver can take. We use
deep neural networks parameterized by a parameter vector 6
to simultaneously learn the action policy of the agent and all
other drivers whose future actions we aim to predict.

Ideally, we would like to consider vehicles’ past action,
state, and observation history, as past motion often provides
useful cues that can inform future predictions. Furthermore,
changes in driver actions from one step to the next are at times
insignificant or random, making it more difficult to learn
the potential causes of actions without any temporal context.
In Section VI-D, we assess the utility of motion history to
policy performance with respect to prediction accuracy.

We also prefer a policy that characterizes the distributions
over drivers’ action plans as opposed to their instantaneous
actions. The rationale for this is twofold. First, the instan-
taneous driver actions often express the drivers’ short-term,
reactive responses, while a plan can capture the anticipatory
aspects of their behavior (i.e., the immediate driver actions
reflecting their expectation of future). Second, conditioning
the policy on drivers’ interaction history while training it
to predict the instantaneous driver actions is likely to yield
a policy that performs poorly in practice; the policy would
become prone to merely extrapolating between consecutive
actions instead of attempting to learn their underlying cause.'
A multi-step prediction method by contrast would force the
policy to find correlation patterns in data that are useful for
the prediction task rather than exploiting local, spurious data
correlations.

Let X, = (@, x%, 2%") denote the motion history from
the view point of vehicle v, where &8” is the joint action
history of the vehicle v and all other vehicles observed by v.
Our goal is to obtain the conditional distribution of an action
plan 7,

T
p(@|Xy; 0) =[] plai1a; !, X,; 0) 6)
i=1
where T is the number of time steps in the look-ahead hori-
zon. Besides Zz(v):t, we follow [14] in conditioning the policy
on the joint future actions a.’ +i=1 to account for the potential
presence of response dynamics, i.e., one vehicle’s predicted
response to the other vehicles’ predicted actions. In the rest
of the paper, we refer to the conditioning terms in (6) as
contextual information and denote it as ¢/t = (& +i~1, X,).
For notational simplicity, we drop the subscript v and the time
superscript when not reasoning about a specific vehicle or
time step.

Iprevious studies have faced this issue, whereby the neural-network-based
policy learned to ““cheat” by extrapolating from the past rather than learning
the underlying causes of driver behavior [31], [32].
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C. CONTEXTUAL INFORMATION

The contextual information carries the available cues about
how a driver might act in the future. It is common to assume
access to the local observation z,, and the joint vehicle action
a, when modeling the interactions between one autonomous
agent and one human driver [13], [14], i.e., the idea that
the agent can “see’ the environment from the viewpoint of
the other driver. However, we argue that unless vehicles can
explicitly communicate their current state and plan with each
other, this assumption does not hold in multi-vehicle, interaq-
tive scenarios. Consider the example of inferring p(a’g’ |c’v“3L’)
in the scenario depicted in Fig. 3. The behavior of v3 may have
been influenced by a preceding vehicle, whose behavior may
in turn have been influenced by another vehicle. In congested
traffic, this recursive dependence can repeat for an arbitrary
number of vehicles. Apart from the computational challenge
of reasoning about such chains of influence, the agent cannot
access the necessary information due to occlusions and its
limited perceptual field. To this end, we consider a more
realistic z, and a, from the agent’s perspective:

1) The agent can observe the state of vehicles in its lane
and its adjacent lanes that are within a 70 m percep-
tion range.

2) Vehicles of interest are the immediate vehicles that
are considered relevant for planning (for example see
vehicles vi, v, and v3 in Fig. 3).2

3) The agent e can only access its own observation z,, and
a, only contains the joint action of vehicles observed by
e. In other words, we do not assume that the agent can
perceive the traffic environment from the standpoint of
another vehicle.

Inevitably, the defined z, and a, lead to a loss of contextual
information; we aim to enrich the accessible context by tak-
ing into account the vehicles’ past motion in our modeling
approach. Furthermore, in real-world driving, sensor error
and occlusions must also be accounted for in the planning
framework. Future research may consider a high-fidelity per-
ception model that more accurately reflects the perceptual
field of the agent and other neighboring drivers from the
agent’s standpoint [33].

IV. METHODOLOGY

A. PLAN CONSTRUCTION

1) SPLINE-BASED PLAN REPRESENTATION

A drawback of a stochastic policy is that trajectories formed
from sequences of sampled actions are characterized by
jaggedness, potentially resulting in sharp action responses
from the agent. To form smooth trajectories, we use the
actions sampled at fixed time intervals of §; as control points,
and interpolate between the points via cubic splines. Each
spline segment

Sn * [ty th1] il @)
2In this work, we assume the number of vehicles V' relevant for planning

is known, for simplicity—we leave the consideration of an arbitrary number
of vehicles to future work.
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FIGURE 3. Example scenario showing the available information to the
agent when performing a lane-change maneuver. The agent is denoted as
e and the relevant vehicles whose future motion we want to predict are
considered to be v,, v, and vs. Other vehicles (white) are not considered
for prediction.

is a cubic polynomial representing a vehicle plan for the time
interval [t,,, t,+1], where n € [0, N) for a spline with N seg-
ments. The control points at times #, and 7,4+ fully character-
ize the spline segment s,,. Since two adjacent spline segments
share the same control points, transitions between them are
smooth and continuous. Additionally, when computing the
polynomial coefficients, we use the time derivative of the
agent’s current plan at the first time step #y as a constraint to
enforce smooth transitions between the actions of consecutive
planning iterations. We note that trajectories may still violate
dynamic constraints such as friction, bounded acceleration,
or steering angle. The development of an algorithm for the
online feasibility assessment and refinement of the generated
trajectories is however beyond the scope of this paper.

2) PLAN EVALUATION

We seek a mathematical representation of the agent’s driv-
ing goal for evaluating the agent’s candidate plans. Naively
selecting the plan with the highest likelihood according to the
learned policy is not always the best choice; the most likely
plan may direct the agent to an unsafe state in the case that
critical contextual information go uncaptured [8]. As such,
at every planning iteration, we select the plan t° that is an
approximate solution to the following maximization problem:

N T
arg maxE | w; | [ [p@lic)) = > v7a™* . dt | ®)

T R>T n=1 i=1

where y is the discount factor and a7 is an action sam-
ple drawn at time #,. The former term is the plan likeli-
hood, which is obtained by querying the probability den-
sity function over the action sequence. The latter term is
a cost function to favor plans with the lowest safety and
comfort cost, where the weight parameter w; can be tuned to
make a trade-off between the desire to select high-likelihood
plans vs choosing plans that incur the lowest cost. In our
implementation, the agent applies the first §, seconds of its
chosen plan 1) to move to the next state. Similar to other
model predictive control methods, new plans are computed
at the next planning iteration to respond to the changes in
the dynamic environment. We describe our implementation
in greater detail later in Section VI-A.

B. MODEL DESCRIPTION
The model architecture, depicted in Fig. 4, is composed
of a history encoder and four autoregressive sequence
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FIGURE 4. Overview of the proposed planning approach. The history encoder extracts cues from the vehicles’ interaction history. Each decoder LSTM is
followed by an MDN, which outputs a vector consisting of My, uy, o and a governing a mixture of K Gaussian action distributions. Subsequently,
a set of samples are drawn from the action distributions, aggregated, and transformed into spline-based plans. Next, the vehicle states are propagated
forward in time in order to obtain space-time trajectories over the prediction horizon. The trajectories are then used to estimate the expected utility of
the agent’s candidate plans. At last, the plan with the highest expected utility is selected for execution. Note: plan construction is only used at test

time and not during model training.

decoders that facilitate the generation of action sequences.
In this section, we describe the components of the model in
greater detail.

1) MIXTURE DENSITY NETWORKS
We model driver actions via a mixture of Gaussian distribu-
tions,

K
> My Nal ju, ) ©)

k=1

plalc) =

where My, puy and Xj are the context-dependent mixing
coefficients, means, and covariance matrices, respectively,
of the corresponding K mixture components. The neural
network policy outputs the parameters of the distribution
over a vehicle’s longitudinal acceleration and lateral speed.
To characterize this distribution, we have a mean vector and
a covariance matrix,

N ([mon,k} 7 [ Ok Pkalonz,kalat,k]> (10)
Hiat,k PkOlon,kOlat,k Olat, k

where sz and p; denote the variance and the correlation
parameters, respectively. We note that the mixing coefficients
must sum to 1, the variances must remain positive and the
correlation parameter is a value between —1 and 1. Asin [11],
we ensure that the parameter values remain valid by applying
a softmax activation function to My, an exponential operator
to Ukz and a tanh activation function to pi. The parameters of
the ith mixture component can thus be obtained by,

exp(M;) K
Mi= — P20 Mie 0,1, Y M=1 (1)
> k=1 €xp(My) k=1
al.z = exp(&iz), oiz >0 (12)
pi = tanh(p;), pi € (=1, 1) (13)
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where the parameter values specified by the neural network
are indexed by a hat ({J).

2) ENCODER-DECODER RECURRENT NEURAL NETWORKS
The basic building blocks of the history encoder and the
future decoders are the RNN variant Long Short-Term Mem-
ory (LSTM) [34], which have previously shown great success
in various sequence learning tasks [15], [16], [35]. The input
to the history encoder, as illustrated in Fig. 4, is a sequence of
feature vectors F = {F 0 Fl , F'} that together capture
the motion history of the relevant vehicles from the agent’s
perspective (discussed later in Section V-C3). The encoder
LSTMs encode the motion history into a fixed length state
representation A’

Once the encoder has read the entire sequence, the future
decoders take over to generate a set of action plans for
the vehicles. At the first time step, each decoder LSTM
receives ' and the vehicles’ joint action. Each decoder is
then followed by an MDN to parameterize p(av Ich). At a
subsequent time step #,,, each decoder receives i’, as well as
the decoder’s state 4" and the joint action G~ from the
previous time step as input. We assign a separate decoder
to each vehicle; however, we experiment with both a single
decoder (i.e., all the vehicles share the same decoder) and
the proposed multi-decoder architectural variant and provide
empirical results in Section VI.

V. MODEL TRAINING
A. OPTIMIZATION PROCEDURE

Every pair of history X¢ and action sequence Y?¢ = a/t'¥
in the driving dataset provides a training example, where
Y4 = {Y9},ey. The log probability p(Y¢|X?;6) can be
computed as,

N
log p(Y|X4:0) = > log plalr|ay™ ', X" 0) (14)

n=1
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As mentioned in the preceding section, the latter terms in the
above expression are represented by the LSTM state, i.e.,

log p(a'|a@Y"™ ", X?; 6) = log p(a'|c"; ) (15)

1, Ih— ~lp— ..
where ¢' = (W', ™', @'"). The training procedure for

optimizing the model parameters involves maximizing the
log-likelihood of generating the correct action sequence for
all the training pairs (X¢, Y9):

0* = arg max Z Z log p(Yd1x4; 0) (16)
o (xd,ydyveV

In practice, we use the mini-batch stochastic gradient
descent algorithm with a batch size of 512 to train the
model. We have implemented the model architecture shown
in Fig. 4 using the TensorFlow library [36]. The architecture
consists of a two-layer encoder and four decoder layers,
each with 128 LSTM units. We ran experiments with 5 and
10 mixture MDNSs, and found that for our dataset, both pro-
vide comparable validation error upon convergence. We use
a total of 5 mixtures for the rest of our analyses. For training,
we used the Adam optimizer [37] with default parameters
and a learning rate of 0.001. In addition to hyperparameter
annealing and regularization, we found that standardization
of both input and target values lead to a faster convergence.
Model training takes approximately 3 hours on an NVIDIA
GeForce GTX 1050 and an 3.2 GHz Intel i5-6500 CPU.

B. MODEL TRAINING STRATEGY

The continuous nature of driving trajectories brings unique
challenges to learning a model that yields a high prediction
accuracy at test time. To illustrate, consider the task of
computing p(ai" |C€;”) when training the policy model, where
¢ contains the true driver action a{,’"l. The subtle differ-
ence between al’ and a~' would result in the model pay-
ing a disproportionate attention to ar !, essentially failing
to learn an informative history representation and pick up
cues from &, """ for reasoning about response dynamics.
The over-reliance of the model on aﬁH would result in poor
predictions at test time when the model no longer has access
to true driver actions. One solution is immediately appar-
ent: we can encourage the model to learn a useful history
representation by feeding it with its own generated action
213‘*' instead of the true driver action. However, feeding the
model with &f,”’l has its downside; the model would end up
largely ignoring an, particularly towards the end of the
sequence, when errors in the generated actions accumulate
so much that a7~ conveys little information. An illustration
of this phenomena is provided in Fig. 5b. Feeding the model
with highly noisy actions amounts to assuming that a driver’s

sequence of actions are independent from each other:
fne
payley) ~ playrin', hy™) 7)

The undue deviation from p(af," |cC") has two adverse effects
on the model’s performance. First, the stochastic nature of the
policy coupled with the growing variance of p(a} |, )
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FIGURE 5. Comparison of different training strategies. The red plot
corresponds to the true driver plan and the crosses correspond to the
actions that are sequentially fed to the model.

with n would result in the model generating highly oscillating
plans that do not replicate the characteristics of true driver
trajectories. Second, the model would fail to produce an
adequately diverse—possibly multimodal—set of prediction
hypotheses. This is because unlike ctv", both A and hf,"’l,
as well as the internal structure of the LSTMs are entirely
deterministic. A major source of randomness is found in
the action distribution at one time step being conditioned on
every previously model-generated action.

To summarize, we require that the trained model can at
once: 1) discover useful history representations through the
encoder; 2) learn to pick up any cues present in a1 for
reasoning about response dynamics; and 3) capture multi-
modality in driver action distributions. We next describe two
techniques for addressing these competing requirements.

1) GUIDED LEARNING
A commonly used model training strategy, referred to as
teacher forcing, involves feeding the model with ground truth
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inputs throughout the duration of model training. As we dis-
cussed earlier in this section, always feeding the model with
ground truth inputs carries several downsides that can hurt
model performance. More advanced strategies for training
RNN-based natural language models were proposed in [35].
Although we explored these techniques in our preliminary
experiments, we found them to be ineffective for our task,
yielding a model with a relatively poor predictive accuracy at
test time.

We instead propose a simple approach for training
multi-step time series models such as ours trained on contin-
uous data. During training, we allow the model to use its own
generated actions (i.e., longitudinal acceleration and lateral
speed) as long as the action values are within an error bound
of E;3
if |agen — ayue| < E

feq = { “gen: (18)

Qyue, Otherwise

where areq is the action fed to the model, agye is the ground
truth action, agey, is the action generated by the model and the
error bound has the same unit as driver action. As illustrated
in Fig. 5c, every time a generated action exits outside the
error bound, the model is fed with the true action instead.
This way, the model is forced to extract more useful cues
from the interaction history and learn the action dependence
without becoming over-reliant on having access to the true
driver actions. We call this technique guided learning and
provide empirical results in Table 2.

2) ACTION SUB-SAMPLING

The driving data we use to train the model comes at a record-
ing frequency of 10 Hz. One way to increase the difference
between each consecutive pair of actions in a target sequence
is to sub-sample the sequence, which would increase the step
size §;. In Section VI, we present the results of experiments
performed to assess the influence of varying §,; on the model’s
prediction accuracy.

C. TRAINING DATA

1) DATA PREPROCESSING

To train the model, we use the publicly available Next
Generation Simulation (NGSIM) [38] dataset. The vehicle
trajectories in NGSIM were recorded from CCTV cameras
mounted at two highway locations: US 101 in Los Angeles,
California, and I-80 interstate in the San Francisco Bay Area,
California. Since the raw data are noisy, we have used the
extended Kalman filter and the exponential smoothing algo-
rithm from [39] to obtain better estimates of vehicle positions
and velocities.

2) DATA EXTRACTION
A model trained on the entire dataset is prone to estimating
concentrated probability densities at close to zero lateral

3Note that when E = 0 is equivalent to training a model via the teacher
forcing strategy.
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FIGURE 6. Example of a lateral motion profile of a driver changing lane
from the NGSIM dataset. As an estimate, we take the start of lane-change
episodes to be 2 s before their initiation instant.
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FIGURE 7. Visualization of 1800 driver trajectories extracted from the
NGSIM dataset.

speed as most highway driving involves drivers maintain-
ing their lane. We overcome this problem by extracting an
equal number of lane-change and lane-keeping episodes and
training the model on the partitioned dataset instead. The
method we use to estimate the beginning and the end of each
lane-change episode is as follows. For each driver performing
alane-change maneuver (e.g., see Fig. 6), the initiation instant
is considered to be the time at which the magnitude of the
vehicle’s lateral speed exceeds 0.1 ms—!. The exact instant
at which a driver decides to change lane is unknown and
cannot be specified from the NGSIM data (we note that
in general, the drivers’ state of mind stays hidden). As an
estimate, we take the start of an episode to be 2 s before the
initiation instant, and the end of an episode to be the time at
which the driver arrives at his or her desired lane. We extract
a total of 6000 episodes, corresponding to roughly six hours
of driving data.

A subset of the extracted trajectories of the drivers whose
behaviors we want the agent learn to imitate (i.e., ego drivers)
is visualized in Fig. 7. The occurrence frequencies of the ego
vehicles’ longitudinal speed and headway distance between
the ego vehicles and the first vehicles preceding them in their
target lane are shown in Fig. 8. We note that although we
have partitioned the dataset to overcome the large imbal-
ances among different behavior classes (i.e., keeping lane and
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FIGURE 8. Left: Occurrence frequency of headway distance between the
ego vehicles and the first vehicles preceding them in their target lane; the
red line marks the agent’s 70 m perception range. Right: Occurrence
frequency of the ego vehicles’ longitudinal speed. We use this dataset for
learning the action policies, which are evaluated on a randomly selected,
withheld (i.e., not used for model training) subset of the dataset. Data
source: NGSIM [38].

TABLE 1. Extracted features.

Features Description

Ax, longitudinal distance between vehicle v # e and e
Xy longitudinal speed of vehicle v
Xy longitudinal acceleration of vehicle v
. lateral speed of vehicle v, with positive values to the left and
v negative values to the right

A lateral position of ego vehicle, with Om at the center of the

Ye lane, positive values to the left and negative values to the right

lg ego driver’s target lane
I Boolean indicating which surrounding vehicles are present

changing lane), the data remains highly diverse, containing
driving conditions with a large range of vehicle speeds and
headway distances. This is also reflected in the varied nature
of the extracted driver trajectories.

3) TRAINING FEATURES

The motion history fed to the history encoder constitutes a
sequence of feature vectors that represent the local driving
context of ego vehicles. As well as the vehicles’ joint action,
state, and observation history, the feature vector contains two
additional features. We add a Boolean feature f}, to indicate
which surrounding vehicles are present within a 70 m range
of ego vehicles. We set the state and action values of the
missing vehicles to dummy values equal to their mean value
across all the training examples. We also include the ego
drivers’ target lane, denoted as [, in their corresponding
feature vectors,

Iy . ={-1, 0, 1} £ (right lane, current lane, left lane}
(19)

Together with [, and f}, each feature vector contains the
20 features shown in Table 1, where v € {e, vi, v, v3}.

VI. EXPERIMENTS

We conduct experiments to: 1) examine the performance of
the planner in simulation; 2) compare the prediction accuracy
of the RNN encoder-decoder to two existing baselines; and
3) assess the influence of several key design choices on the
model’s performance.
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FIGURE 9. Lane-change scenario. In (a), the initial traffic condition is
shown, where the traffic state is extracted from the NGSIM dataset. In (b),
the speed profiles for the vehicles of interest are shown, with the dashed
vertical line marking the instant at which we begin the simulation.

The method we use to evaluate the performance of the
planner in simulation proceeds as follows:

1) For a given scenario, the road is populated with vehicles
which are assigned with their true initial state from the
NGSIM dataset.

2) The planner receives 2 s of the vehicles’ past motion
history to produce an agent plan for execution.

3) The first 0.3 s of the chosen plan is applied by the agent
to move from its current state to the next state. For the
human drivers, we instead apply their true actions from
the NGSIM dataset.

4) A feature vector is obtained (see Section V-C3 for
details) from the new traffic state to update the history
with the latest contextual information.

5) Steps 2, 3 and 4 are repeated to propagate the traffic
state forward in time.

It is important to note that while the state of human-driven
vehicles are replays from the NGSIM dataset, the agent’s
states arise from its chosen control actions over time. This
evaluation method aims at answering one particular question:
How would have the agent responded if it encountered a
real traffic scenario? We apply the method mentioned above
to 600 randomly extracted scenarios from the test dataset,
collecting statistics on the agent’s visited states and collisions
between the simulated agent and its neighboring vehicles.

We compare the prediction accuracy of the RNN
encoder-decoder to a multilayer perceptron (MLP) pol-
icy [11] and an LSTM policy [12]. Both the LSTM and the
MLP-based policies follow a step-wise prediction strategy,
predicting driver actions for one step at a time as opposed
to our method of generating action plans. The MLP is a
five layer, fully connected neural network architecture that
only receives the current traffic state as input to parameterize
the distributions over driver actions. The LSTM is similar
to the MLP in parameterizing action distributions, however,
it additionally maintains an internal state that conditions the
policy on 2s of interaction history (i.e., same as the RNN
encoder-decoder).
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FIGURE 10. A simulated lane-change maneuver. (a) Time-lapse for the
lane-change maneuver. The trajectories correspond to the paths taken by
the human (red) and the agent (green), where the vehicles’ positions are
from the current instant. (b) Action and speed profiles belonging to the
agent and the human.

A. AGENT PLAN SELECTION

Through the multi-stage process depicted in Fig. 4, the agent
plan with the highest expected utility is selected and applied
in a receding horizon fashion. In our experiments, the agent
has a set of 100 candidate plans to choose from. For each
candidate plan, 50 anticipated human plans are considered
when approximating the expectation in (8).* In designing the
agent’s driving objective, our aim is to assign more value to
high-likelihood plans while discouraging actions that result in
discomfort and/or lead the agent to dangerous traffic states.
Similar to [14], the cost term J (x'*/, a’ %) = J..,+J, consists
of the running costs J., and J, corresponding to collision

40ur implementation has an average execution time of 465 ms per plan-
ning iteration on an NVIDIA GeForce GTX 1050 and an 3.2 GHz Intel
i5-6500 CPU.
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avoidance and comfort,

Jc,v = 700'l{lAXv|<3/\|AyV|<1}'(3'5_ AX%+Ay%) (20)
Jo = %2 +y? (21)

where | Ax, | and | Ay, | denote the longitudinal and lateral dis-
tance, respectively, between the agent and another vehicle v.
The plan likelihoods are normalized across all the agent’s
candidate plans to values between [0, 1], making it easier
to tune the weight parameter w; in (8). In our experiments,
we use a discount factor y = 0.9 and a weight parameter
w; = 4.

Two aspects related to the agent’s driving objective should
be taken into account. First, since the action policy has
already been conditioned on the agent’s target lane /,, there
is no need to incorporate I, in the objective. Second, the
objective is a design choice—it is possible to alter the
agent’s behavior by accommodating other cost terms and
adjusting their allocated weight. Admittedly though, design-
ing a suitable objective is a challenging task for the sys-
tem’s designers that reflects potentially competing trade-offs.
Unfortunately, there is currently no clear understanding of
how to obtain a quantitative measure when evaluating plan
quality in scenarios involving nuanced human-robot interac-
tions. For instance, when performing a lane-change maneu-
ver, the agent can maximize efficiency (potentially at a cost
to traffic safety) by cutting in front of the preceding vehicle
in the adjacent lane. Another option is to drive cautiously,
although this may result in unnecessary delays. Alternatively,
the agent can act in a more socially compliant manner, having
learned such tendencies from human drivers.

B. QUALITATIVE EVALUATION

We next give a qualitative impression of the agent’s behavior
in a simulated lane-change scenario. The scenario, shown in
Fig. 9a, involves merging into the gap between two vehicles in
relatively congested traffic, with a starting headway distance
of 4m between the agent and the preceding vehicle in the
agent’s target lane. Fig. 9b shows the speed profiles belonging
to the human drivers, with the dashed vertical line marking the
instant at which we begin the simulation.

Fig. 10a visualizes the agent’s trajectory as it performs the
lane-change maneuver, which takes approximately 5.5s to
complete. The corresponding speed and action profiles of the
agent and the lane changing human are shown in Fig. 10b.
We note that the agent’s emergent trajectory exhibits simi-
lar characteristics to the human trajectory. This mimicking
behavior of the agent arises as a result of its objective assign-
ing more value to plans with a higher relative likelihood.

A subset of the generated action plans for each vehicle
is shown in Fig. 11, where the vertical blue lines mark the
instant at which action generation begins and each column
corresponds to the action plans for each vehicle. Overall,
the model generated plans resemble those of the humans.
For instance, in Fig. 11a, the model rightly anticipates that
after about one second, vehicle v; (third column) is likely
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FIGURE 11. Plans (50 samples) for the time-lapse of an example lane-change maneuver. The columns show the plans for each vehicle and the rows
correspond to snapshots at different instants. The agent’s chosen plan is shown in green; the standard deviation corresponds to the range of candidate
plans considered. The vertical blue lines mark the instant at which action generation begins.

to have a lower acceleration. This example is particularly
interesting as the past actions of vy alone are not indicative
of its future actions, suggesting that the model has used other
traffic features to inform its predictions.

The model is also at times prone to making mistakes.
An example of a relatively poor prediction can be seen in
Fig. 11c, where for vehicle vy, the estimated probability
mass by the model does not closely align with the true
driver plan. Although the performance of data-driven models
such as ours often improve with more training examples,
it should be noted that predictive accuracy may still suffer in
situations where the accessible contextual information does
not sufficiently inform future predictions. In practice, the
continuous replanning step of the planner ensures that the
agent can respond reasonably well under the uncertainty in
model predictions. However, a more sophisticated approach
would identify and handle the operating conditions in which
the neural-network-based model becomes prone to erroneous
predictions. Addressing this problem is currently an active
research topic [40] but it is beyond the scope of this paper.

C. QUANTITATIVE EVALUATION

Fig. 12 shows two histograms that represent the occurrences
of Euclidean distances between the vehicles that arise from
the true human plans and those that emerge from the agent’s
planned actions. We find that the two distributions strongly
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FIGURE 12. Empirical distribution over the occurrences of Euclidean
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line marking the 3.5 m distance below which the agent’s candidate plans
incur a large negative cost.

60

overlap, implying that the agent exhibits a short-term driv-
ing behavior similar to human drivers. The closest distance
between the agent and another vehicle is 1.53 m. Impor-
tantly, there were no collisions in any of the 600 scenarios
extracted from the test dataset. This is to be expected since
the agent’s driving objective assigns a large collision avoid-
ance penalty to plans that lead the agent to near-collision
situations.
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FIGURE 13. Comparison of prediction accuracy for (a) sequence lengths
N (b) varying step sizes §; and (c) different baselines. The models shown
in (a) were all trained with a step size of §; = 0.1 s.

D. ABLATIONS

1) MODEL EVALUATION METRIC

As a model evaluation metric, we seek a similarity measure
between the true human trajectories and the distribution of
generated trajectories. We note that data likelihood, which
is a measure for the goodness-of-fit of the model to data,
is not a sufficient metric to assess model performance, as it
only captures similarity at the level of individual actions.
Following [10]-[12], we use the Root-Weighted Square
Error (RWSE) as the evaluation metric, which captures the
deviation of the model’s probability mass from ground truth
trajectories. The RWSE for m true trajectories and for the
predicted variable r is:

1 m
RWSE' = — > / pr).(rly =2 dr - (22)
=17

where r(’i) is the variable’s true value at time ¢ and p(r?) is
the modeled density. Since the above expression cannot be
evaluated analytically, it is approximated using Monte Carlo
integration with n model generated trajectories for each of the
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m true trajectories,

1 m n
T a2
RWSE' = | —3 > (= (i) (23)
i=1 j=1
where f'(ti ) is the predicted variable at time ¢ and under the
generated sample j. We use m = 600 randomly extracted tra-
jectories from the test dataset and produce n = 50 generated

trajectories.

2) ABLATIVE ANALYSIS

The RWSE values for the models trained with varying
sequence lengths and step sizes are shown in Fig. 13a and
Fig. 13b, respectively. In all these experiments, we have fixed
the look-ahead horizon to T = 20 (with At = 0.1s),
regardless of the action sequence length used for training. It is
clear from both figures that increasing N and §; on average
results in a lower prediction error, up to a limit, where there is
no further improvement. This result demonstrates the benefits
of learning a policy that directly maps to a sequence of
actions and applying action sub-sampling as a model training
technique.

Fig. 13c shows the RWSE values for the RNN
encoder-decoder and the baselines. The RNN encoder-
decoder achieves the best performance according to this
metric. The MLP accumulates less error over time than the
LSTM, indicating that a model fed with the current scene
state as input outperforms one that receives vehicles’ motion
history. In several existing studies [10]-[12], it was also
observed that neural-network-based models that are fed with
motion history often perform worse than variants that only
consider the current scene state for making predictions. This
is perhaps surprising since intuitively, vehicles’ past motion
should enrich the available contextual information. The major
difference between our RNN encoder-decoder and the LSTM
is that, unlike the RNN encoder-decoder, the LSTM is trained
to predict actions for one step at a time. For the reasons
discussed in Section III-B, this step-wise prediction strategy
carries several downsides which can hurt model performance.

The performance results for the model variants and the
baselines are listed in Table 2. The RNN encoder-decoder
models are all trained with N = 7 and §, = 0.3s.
We note that a multi-decoder setup consistently outperforms
a single decoder. This gain in prediction accuracy may be
attributed to the improved representation power of a model
with multiple decoders. The results also demonstrate that,
as a training strategy, guided learning is effective in further
lowering the model’s prediction error. Comparing the RNN
encoder-decoder model variants, it appears that modeling
response dynamics yields a marginal performance gain. This
suggests that for highway driving, the short-term future is
reasonably predictable from motion history alone. Given that
drivers are known to express anticipatory behaviors [41], one
plausible explanation is that the history encoder has learned
to pick up cues related to future interactions, making the con-
sideration of response dynamics less valuable to the model.
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TABLE 2. The prediction error for the presented model variants.

Model variants RWSExy at2s
Model Action Guid_ed Error Decoder < < < <
response | learning | bound (E) setup © Ye Vi Vi V2 Yvz V3 Yvs

MLP [11] X X - - 0.69 0.50 - - - - - -

LSTM [12] X X - - 1.23 0.72 - - - - - -
RNN encoder-decoder v X - single-decoder | 0.57 | 0.38 | 0.56 | 0.23 | 0.61 0.24 | 0.61 0.29
RNN encoder-decoder X X - multi-decoder 0.52 0.38 0.49 0.22 0.56 0.23 0.56 0.27
RNN encoder-decoder v X - multi-decoder 0.50 0.37 0.48 0.22 0.55 0.23 0.54 0.26
RNN encoder-decoder v v 0.2 multi-decoder 0.50 0.34 0.48 0.21 0.56 0.24 0.53 0.25
RNN encoder-decoder v v 0.4 multi-decoder | 0.43 | 0.33 | 0.43 | 0.21 | 0.52 | 0.22 | 0.50 | 0.24

Another contributing factor could be the nature of our training
examples: they all come from scenarios in which lane-change
maneuvers were successfully performed by human drivers.
Consideration of response dynamics may play a more impor-
tant role in scenarios involving a higher degree of ambiguity
(e.g., negotiation of the right of way at complicated urban
junctions).

VIi. CONCLUSION

We have presented a planning framework for autonomous
driving in scenarios involving interactions between an
autonomous car and other human drivers. The planner takes
as input the autonomous car’s target lane and the surrounding
vehicles’ past motion history to output a locally optimal plan
for execution. The key component of the planner is a predic-
tive model of interaction dynamics learned from a dataset of
many real driver interactions on US highways. Advantages
of the proposed approach include (1) computationally inex-
pensive modeling of interactions among multiple vehicles,
(2) the ability to capture the uncertainty in drivers’ predicted
motion, and (3) the generation of plans that mimic the driving
behavior of humans. Additionally, we have explored several
design choices and model learning strategies to produce a
model that outperforms two existing methods in terms of the
commonly used RWSE evaluation metric.

There are many potential avenues for extending this work.
Before deploying the planner onto real-world roads, we will
need to put more emphasis on its quantitative safety valida-
tion through high-fidelity traffic simulators [42] and scale
our experiments to much larger and more diverse datasets.
In addition, an important next step is to consider not only the
uncertainty associated with the driving behavior of humans
but also the uncertainty that emanates from the model’s expo-
sure to inputs that are underrepresented in the training data.
Finally, a promising future advancement to our framework
is to employ a more systematic approach for selecting the
autonomous car’s neighboring vehicles that are relevant for
planning. This would allow the planner to scale efficiently
to scenarios with an arbitrary number of interacting vehi-
cles. The code associated with this paper is available at
https://github.com/saArbabi/InteractivePlanning.
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