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Abstract—In this work we present a new approach to the field of weakly supervised learning in the video domain. Our method is
relevant to sequence learning problems which can be split up into sub-problems that occur in parallel. Here, we experiment with sign
language data. The approach exploits sequence constraints within each independent stream and combines them by explicitly imposing
synchronisation points to make use of parallelism that all sub-problems share. We do this with multi-stream HMMs while adding
intermediate synchronisation constraints among the streams. We embed powerful CNN-LSTM models in each HMM stream following
the hybrid approach. This allows the discovery of attributes which on their own lack sufficient discriminative power to be identified. We
apply the approach to the domain of sign language recognition exploiting the sequential parallelism to learn sign language, mouth
shape and hand shape classifiers. We evaluate the classifiers on three publicly available benchmark data sets featuring challenging
real-life sign language with over 1000 classes, full sentence based lip-reading and articulated hand shape recognition on a fine-grained
hand shape taxonomy featuring over 60 different hand shapes. We clearly outperform the state-of-the-art on all data sets and observe
significantly faster convergence using the parallel alignment approach.
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1 INTRODUCTION

IN this manuscript we propose a new solution to the
problem of weakly supervised learning in the field of

videos. Our approach exploits parallelism in the visual
domain and trains multiple strong classifiers based on weak
labels that occur in the image sequences. The approach is
relevant to problems which can be split into sub-tasks that
occur in parallel. In this work, we only consider the use
case of sign language recognition. We model continuous
sign language as a sequence of signs that are represented
as co-occurring mouth and hand shape patterns. Our al-
gorithm learns strong CNN-LSTM classifiers end-to-end
based on weak and noisy labels and embeds them into
a multi-stream Hidden-Markov-Model (HMM). We jointly
align these modalities by introducing intermediate synchro-
nisation constraints in the HMM that represent the parallel
nature of the streams. As such, we boost the learning of
mouth shapes and hand shapes from weak labels.

This paper is a novel contribution that can be best
understood in the context of our previous work in the
field of weakly supervised learning for the labelling of
sequence data. In our early work on lip-reading [1], [2],
we have shown that HMMs can be used to discover high-
quality labels describing mouth shapes present in natural
continuous sign language sequences. In [3] we proposed an
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end-to-end embedding of Convolutional Neural Networks
(CNNs) into HMMs and showed its superior performance
by exploiting over 1 million weakly labelled articulated
hand images. Both applications solved each weak learning
problem separately from the other. However, hand motion,
shape and mouth gestures are sub-problems of the more
complex sign language recognition task and actually occur
simultaneously. This can be exploited by jointly defining
the weakly supervised learning solution. Actually, many
sequence learning problems in the visual domain can be
split up into a set of parallel sub-problems. To address this,
in this work we make the following contributions:

• To the best of our knowledge, we are the first to
tackle weakly supervised learning with intermediate
synchronisation constraints among multiple streams.
This allows the discovery of groups of attributes
which on their own lack sufficient discriminative
power to be identified.

• Rather than constraining the input of expert net-
works by error prone preprocessing (e.g. tracking
and cropping the mouth for lip reading), we propose
to add multiple loss functions with weakly learnt
labels. As such, we dispense with preprocessing and
learn powerful mouth and hand shape classifier di-
rectly from full images. We compare this to training
a system on cropped hands and faces.

• We evaluate our approach on three challenging pub-
licly available data sets for continuous sign language
recognition, mouth shape detection and hand shape
classification, where we clearly outperform the state-
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of-the-art. On PHOENIX 2014, we reduce the word
error rate (WER) to 26.0% on both the dev and test
set.

• Our proposed hybrid multi-stream CNN-LSTM-
HMM achieves significantly faster convergence as
opposed to standard single stream methods.

2 RELATED WORK

This work deals with the problem of weakly supervised
learning from sequence labels. To tackle the problem, we
exploit weak labels covering three modalities, namely ges-
ture, mouth shape and hand shape and exploit the fact
that all three contain sequential information with loose
time synchronisation with respect to each other. We extend
our previous work on hybrid HMM modelling for sign
language recognition [3] [4] [5] by adding multi-stream
HMMs with synchronisation constraints. The hybrid HMM
modelling has shown to outperform other sequence learning
approaches on sign language recognition data sets while
requiring less memory and allowing for deeper architec-
tures [4]. In this section, we therefore look at related work in
the domain of multi-stream modelling, but we also consider
literature tackling weakly supervised learning in general.

In 1966, HMMs were first introduced by Baum et al.
calling them “Probabilistic Functions of Markov Chains” [6].
Speech recognition soon became an important application
for the HMM and the three main problems (probability
calculation, state sequence estimation and parameter esti-
mation) had been solved by the time Lawrence Rabiner
published his well-known tutorial paper [7] in 1989. One
drawback for applications in the field of computer vision,
was the fact that standard HMMs are only able to model a
single sequential process. However, in the late 90s and early
2000s simultaneously in several fields, the focus shifted
towards HMMs that are able to model observations orig-
inating from multiple processes: This happened in speech
recognition [8] [9], audio-visual speech recognition [10] [11],
action recognition [12] and sign language recognition [13]
[14] [15] [16].

The different approaches of modelling multiple pro-
cesses can be divided into the broad categories of feature
fusion and decision fusion methods [17]. Where the former
stack the features of multiple processes together and model
them as a single vector with a multivariate function. How-
ever, processes that do not evolve synchronously cannot be
appropriately modelled like this: a large disadvantage for
the application to the visual domain. The latter group of
decision fusion builds the classifier into the fusion process,
where approaches may be based on early, intermediate or
late fusion.

Early fusion behaves similar to the feature fusion. Multi-
ple HMM streams that have to be characterised by the same
number of states evolve in lock-step. All streams always
reside in the same pair of locked states. This approach is
therefore also known as a state synchronous multi-stream
HMM and is more flexible than the feature fusion as the
streams can be differently weighted. It assumes, however,
that the different processes have absolute synchronicity. An
assumption which is often false.

Late fusion trains independent models and combines
their final model outputs after processing the inputs sep-
arately. While this allows for complete independence and
asynchronism of the processes to be modelled, it does not
exploit interaction and partial synchronisation, which is
shown by our work to be essential to boosting weakly
supervised learning performance.

Intermediate fusion combines model outputs while pro-
cessing the streams. We can either think of it as modelling
conditional probabilities where a state in one stream de-
pends on states in the other streams or it may involve
completely different independent streams that have specific
mechanisms of synchronisation. This is the category our
work belongs to and it is particularly well suited for weakly
supervised learning. A variety of different schemes in this
group have been developed. A good overview can be found
in [17]. The most general way of combining several streams
that originate from multiple processes are product HMMs
[18] [10], [19]. These allow full temporal asynchronicity be-
tween the streams and also different topologies (e.g. number
of states) per stream. Product HMMs express each possible
combination of states as a new composite state, which
are then typically modelled with an independent Gaussian
Mixture Model (GMM). If in addition to the combination of
independent asynchronous streams, we expect them to have
specific temporal points of intermediate synchronisation,
then the concept of multi-stream HMMs with synchroni-
sation points introduced by Bourlard et al. [8] constitutes a
powerful option. Bourlard et al. applied the idea to noise
robust sub-band speech recognition, where each stream is
trained separately on a different frequency band and tempo-
ral synchronisation among the multiple streams is imposed
at phoneme, syllable or word boundaries. In his work, the
asynchronous parts of the multi-stream HMMs (e.g. inside
a syllable) are implicitly represented as a product HMM.

There are several other multi-stream HMM models, such
as the factorial HMM [20], the coupled HMM [21] and the
asynchronous HMM [11] [22]. Factorial HMMs constitute
completely asynchronous streams without any synchronisa-
tion until the end of the sequence. They were developed to
allow a distributed and therefore more efficient state rep-
resentation (when multiple sources are involved). Ghahra-
mani presents an algorithm based on mean field approxima-
tion that allows for O(TN2M) complexity, where T is the
sequence length, N is the maximum number of states and
M the number of streams [20]. In coupled HMMs the states
and particularly their emission probabilities depend on all
streams. Brand proposes an algorithm (“N-head dynamic
programming”) that reaches O(T (NM)2) complexity [21].
The asynchronous HMM requires both streams to share the
same topology [23]. This is imposed due to the assumption
that there is a single underlying hidden process that has
multiple distinct probabilities to emit an observation on all
or just on a single stream. Bengio presents an algorithm
with O(TMN2) complexity if all streams have the same
observation length T [22].

Grouping approaches by application domain, in terms of
sign language recognition there have been two published
works that included multi-stream HMMs with synchroni-
sation constraints in a meaningful way [13] [24]. How-
ever, both works deal with a limited vocabulary size and
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with weak GMM-HMM models, instead of strong state-of-
the-art hybrid neural network-based or even CNN-LSTM-
HMM models. Moreover, these approaches do not train
their models with synchronisation constraints (the models
are trained independently and the temporal constraints are
only applied during testing). Specifically, in 1999, Vogler
and Metaxas [13] used multi-stream GMM-HMMs with
synchronisation constraints on sign ends (which they call
parallel HMMs) and apply them to continuous American
Sign Language recognition using cyber-gloves for feature
extraction of the right and the left hand. They report an
improvement from 6.7% to 5.8% WER for their 22 sign
vocabulary task using 400 training and 99 test sentences.
Moreover, their single-stream HMM is trained on right hand
input only, while the multi-stream HMM has information
from both hands. How much of the improvement is actually
due to the multi-stream HMM is left unclear. While they
perform recognition using the multi-stream scheme, they
train each stream independently. In 2008, von Agris et
al. [24], report continuous sign language recognition results
of German sign language (DGS) distinguishing a vocabulary
of 100 signs, while looking at the hands only. They report
an accuracy of 87.8% but do not provide a comparison to
using less streams. Moreover, they combine the streams in
an unweighted fashion with no normalisation. Several other
works which claim to use parallel HMMs [14] [25] [26] for
sign language exist. However, they all deal with signs in
isolation (not in a continuous sentence sequence), which es-
sentially turns the multi-stream HMM with synchronisation
at the end of signs into a standard late fusion approach
and is therefore not comparable to the approach analysed
in this paper. In 2013, Forster et al. [23] compared different
modality combination techniques to recognise continuous
DGS with a vocabulary of up to 455 signs. They use multi-
stream HMMs with synchronisation constraints at the word-
level. However, they only employ the combination during
recognition, training each stream separately. As such, they
report the performance between a single stream HMM and
multi-stream HMM to be 45.6% and 41.9% WER. There
exist more recent approaches relying on recurrent neural
networks (RNNs) (without HMMs) for sequence modelling
that perform intermediate fusion of multiple channels [27].
However, besides using a small inventory of 10 gestures,
the authors exclude the problem of temporal segmentation
(weak learning) and rely on frame labels instead, which
precludes application to more realistic scenarios.

Audio-visual speech recognition constitutes a perfect
application to analyse the modelling of sequential paral-
lelism. Both streams (audio and visual stream) are not
perfectly synchronous while maintaining synchronisation
at least on the word or even at the phone level. In 1996,
Tomlinson et al. [19] compared multi-stream HMMs to
standard single-stream HMMs on an audio-visual speech
recognition task. They model tri-phone sub-word units both
for auditory and visual features and apply synchronisation
constraints at the phone level. The multi-stream HMM
clearly outperforms a single-stream HMM when the audio
data is noisy with WERs of 20.3% against 25.7%. Similarly,
Neti et al. [28] compare both variants and report 35.2%
WER against 37.0% with a multi-stream HMM architec-
ture (synchronised at the phone level) and a single-stream

HMM on noisy data. Due to the advances in deep learn-
ing, more recent publications often tackle the audio-visual
speech recognition (or lip reading only) task with RNN-
based encoder-decoder [29] networks. A few of these works
also consider learning from multiple streams. Petridis et
al. [30] take a variety of profile view angles as different
streams. Their pretraining of the single streams prior to
training the multi-stream architecture helps in the absence
of specific synchronisation constraints. Chung et al. [31]
use an encoder-decoder scheme with attention [32]. More
exactly, they have a separate attention mechanism for the
audio and the video streams. Their approach to adding
implicit (word-level) synchronisation constraints starts by
training on single word segments first and later evolving
to truncated and full sentences. Even though they do not
train the underlying CNN feature extractor, the authors run
into memory problems, which is often a problem for the
encoder-decoder architectures, where full sequences do not
fit in the GPU memory. Hybrid CNN-LSTM-HMM models
learnt with an Expectation Maximization (EM) algorithm
alleviate such problems [4].

Speech recognition was the domain where the multi-
stream approach with synchronisation was first ap-
plied [33] [8]. Variations with slightly different synchroni-
sation constraints and databases appeared in the following
years [34] [35].

There are many approaches to learning from ambigu-
ous labels or weakly supervised learning (see [36] for
an overview). A common approach is to employ multiple
instance learning (MIL), treating a video sequence as a bag
which is only labelled positive if it contains at least one
true positive instance. MIL iteratively estimates the instance
labels measuring a predefined loss. Buehler et al. [37] and
similarly Kelly et al. [38] apply MIL to learning sign cat-
egories from TV subtitles, circumventing the translation
problem by performing sign spotting. However, Farhadi
and Forsyth [39] were the first to approach the subtitle-sign-
alignment problem. They used a HMM to find sign bound-
aries. Cooper and Bowden [40] solved the same problem by
applying efficient data mining methods, an idea that was in-
troduced to the vision community by Quack et al. [41]. Other
works use EM [42] to link text and image regions [43]. Wu et
al. [44] introduced a non-linear kernel discriminant analysis
step in between the expectation and maximisation step. This
helped to map the features to a lower dimensional space and
allowed the subsequent generative model to better separate
the classes. In the field of Automatic Speech Recognition
(ASR) we encounter the use of a discriminative classifier
with EM [45]. Closely related is also the clustering of spatio-
temporal motion patterns for action recognition [46] and
Nayak’s work on iterated conditional modes [47] to extract
signs from continuous sentences. Learning from weak video
level annotations is an under exploited approach in the
vision community and the previous literature has several
shortcomings that we address with this work:

1) Weak learning with specific temporal synchronisa-
tion constraints has not been tackled so far.

2) Multi-stream hybrid HMMs with state of the art
CNNs and long short term memorys (LSTMs) have
not been investigated before
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3) Sign language has used multi-stream HMMs but
only on very small tasks with weak models and
never applied during training.

3 WEAKLY SUPERVISED CNN-LSTM TRAINING
WITH MULTI-STREAM HMMS

The proposed algorithm constitutes a powerful solution
to the problem of weakly supervised learning from noisy
sequence labels to obtain strong and reliable frame labels.
It significantly outperforms previous algorithms by adding
synchronisation constraints between multiple streams of
sequential classifiers learnt on weak labels. Figure 1 shows
an example segment from the employed data set with three
streams of annotations representing different modalities. It
can be seen that each modality on its own has sequential
nature, while all three considered jointly evolve in parallel
with respect to the synchronisation points (vertical bars in
Figure 1).

To better understand the proposed weak learning ap-
proach, let us focus on a single stream first. The way we
process each stream in isolation is represented in Figure 2,
which shows the overall pipeline using only a single modal-
ity and a single stream of labels. We assume that the video
data is organised into segments of variable length with weak
annotation labels available per segment. We consider these
labels to be weak in the sense that we have multiple options
of label sequences per segment without knowing which one
is the correct one. The task is to find the right label sequence
or discard all available sequences. Moreover, it is part of the
task to find the exact beginning and end video frame of each
symbol in the correct label sequence, i.e. align the annotation
to the video. The process works as follows: To start with,
the algorithm first considers a random weak label option
(or the most likely, if prior data exists) to be the correct
one. As an initial alignment guess, it linearly segments the
available video with respect to the number of symbols in the
chosen label sequence. Then we use this frame labelling to
learn a CNN-LSTM model from it, which we term the max-
imisation step. We can then employ the model in a hybrid
CNN-LSTM-HMM force alignment framework, which re-
estimates the frame alignment. This is the expectation step.
The important part is that we use the learnt model to choose
the most likely weak label option by estimating the single
best viterbi alignment. The algorithm then iterates between
expectation and maximisation step and iteratively improves
the frame labelling using the EM [42] method. After several
re-alignment iterations, the algorithm converges and finally
yields a sequence of labels which match the video frames
well and a strong CNN-LSTM model, distinguishing the
label classes.

3.1 From Single to Multi-Stream

The visual domain possesses highly parallel properties.
However, the single-stream weakly learning approach pre-
sented in the previous section only makes use of sequential
information. We want to exploit the parallelism in the vi-
sual medium and extend the approach to multiple streams.
Our idea is to incorporate synchronisation points between
independently evolving streams. Each stream models the

sequential aspects of its modality while the synchronisation
ensures that the streams evolve in parallel as shown in
Figure 1.

Our proposed multi-stream approach is depicted in Fig-
ure 3. It shows how we incorporate sequential parallelism in
the learning. To achieve this, we modify the expectation step
and incorporate synchronisation constraints in the HMM
that estimates the viterbi alignment. We are inspired by
multi-stream HMMs introduced by Bourlard et al. [33] in
the late ninetees, who used such kind of models for multi-
band speech recognition (cf. Section 2). In our proposition,
each stream is modelled in a hybrid fashion [48] where a
CNN-LSTM estimates the HMM emission probabilities of
its stream symbols. The HMM has independent streams
that can evolve freely. But we introduce synchronisation
points between the streams, which can only be reached
by all streams at the same time. They do not resemble
standard HMM states as they do not emit any symbols,
but they recombine the posterior of all independent streams
into a single posterior probability. The exact way this re-
combination is implemented is a design choice and will
be a weighted sum in our case. To sum up, the multi-
stream weakly learning approach represents an alteration
of the alignment phase (expectation step). Each stream is a
separate CNN-LSTM and during modelling (maximisation
step) all streams have access to the input images which can
be the same or different for each stream. We show that it
is feasible to dismiss any preprocessing such as tracking as
the neural networks are able to focus on the important parts
of the input images based on the different stream labels
describing each of the desired modalities.

3.2 What Problems Can We Apply this to?

As long as you can break a weakly supervised learning
problem down into a number of parallel sub-problems
where each on its own has sequential nature, our proposed
joint multi-stream weak learning, can be applied. As an ex-
ample, think of gesture recognition, where you have access
to gesture labels. We are able to reformulate the problem as
a combination of hand shape sequences, hand orientations
and movements. Each such modality on its own occurs in
sequence, but to form a specific gesture the occurrence in
parallel is important. In a similar way, the task of activity
recognition can be broken down into parallel sub-problems.
Activities are composed of human actions with interacting
objects. A specific activity requires actions and interacting
objects to be present in parallel.

For this manuscript, we use the field of sign language
recognition which serves as perfect test bed. It has firm
properties of sequential parallelism. Sign linguists represent
sign language as parallel co-execution of subunits across
multiple modalities. Sign language theory defines four so-
called manual parameters which consist of the hand shape,
orientation, place of articulation and movement. Addi-
tionally, there are non-manual parameters such as mouth
shapes, facial expression, head and upper body orienta-
tion. Each type of subunit is characterised by a limited
number of units. However, combined they can represent
an arbitrary number of signs. If we look at how users of
sign language actually combine subunits, we notice that
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Fig. 1. Example showing from top to bottom: the a video segment of continuous sign language and the three aligned streams: the sign glosses, the
mouth shapes described by phonemes and the hand shapes. Vertical bars illustrate the synchronisation constraints across all streams, horizontal
bars represent the garbage class.

Hand Shape
Model

Weak Label Options

Input Images 1. Flat Start

CNN LSTMCNN LSTM

2. Expectation Maximisation

Fig. 2. Single CNN-HMM Stream. Showing initialisation and iterative label and temporal segmentation refinement in an expectation maximisation
fashion. We first linearly partition the input stream (1. Flat Start), train a CNN-LSTM model and use this model to re-estimate a new segmentation.

the different modalities occur in parallel, e.g. a sign has a
specific configuration of hand shape, movement and mouth
shape. Nevertheless, within a single modality we often
have sequential concatenations of different subunits, such
as sequentially changing hand or mouth shapes. This can be
verified in the example shown in Figure 1.

3.3 Problem Formulation

This paper tackles the problem of weakly supervised
learning with application to continuous sign language
recognition. Given a sequence of input images xT1 =
x1, . . . , xt, . . . , xT and weak annotations for each of the
M modalities, the task of weakly supervised learning con-
sists of attributing a matching frame label per modality
to each xt. Weak labels refer to annotations that are not
accurate. They typically cover multiple annotation options
per sample. One of those annotation options may match
the data, or they may be wrong. Typically weak labels
originate from automatic processes (automatic translation)
or transferred annotations that have not been annotated to
match the actual target data. Note, that we use Pr(·) to
indicate true probability distributions while p(·) indicates
model assumptions. The modality-specific labels are drawn
from an inventory Im = {c1m, . . . , ccm, . . . , cCm,∅m} of
Cm + 1 class symbols. Each inventory contains a separate
garbage model ∅m to address cases when none of the
weak labels match the data. We refer to these models as

the garbage class. The symbols are represented by single
state HMMs. In this work, we consider sign glosses, mouth
shapes and hand shapes as modalities. Hand shapes, for
example, encompass symbol classes such as a flat hand or
a fist. We break sign language modelling down into mouth
and hand shape modelling. We have no manually annotated
labels for these modalities available. But we can make
certain assumptions about what hand and mouth shapes
may be valid candidates to occur with a certain sign. These
assumptions are the basis of the weak labels employed in
this work. We use these assumptions to generate a finite set
of possible sign-mouth-hand combinations, which we call
weak label options.

Let us formalise this: An input video segment xT1
is known to contain the sign word classes wN1 =
w1, . . . , wn, . . . , wN . The weak label options are stored in
our modality-specific lexicon ψm which contains a variety
of mappings from w → c̃ , where each c̃ is a sequence of L
concatenated class symbols cm,

ψm =
{
w : c̃L1 | c̃ ∈ Im

}
(1)

By combining the limited number of class symbols cm we
can express an unlimited number of sign words w. Each
sign word w can map to multiple symbol sequences (which
is important as c̃ is ambiguous and a one-to-one mapping
would not be sufficient). In terms of sequence constraints,
we require each symbol to span an arbitrary length of sub-
sequent images as we assume that symbols are stationary
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Fig. 3. Multi-stream (3-stream) CNN-HMM with synchronisation at the sign end. Three independent CNN-LSTM models are trained on the same full
frame input, while having different loss functions yielding classifiers for sign-gloss, mouth & hand shape modalities. In a hybrid multi-stream HMM
framework the networks model HMM emission probabilities. All streams can evolve different in time, but have to recombine at the sign ends which
have been chosen as synchronisation points. The HMM is used to re-estimate the frame labelling, improving the modelling in several EM iterations.

and do not instantly disappear or appear. We maximise the
m symbol sequences c jointly.[

cM1

]
opt

= argmax
cM1 ,cm∈ψm

{
Pr(wN1 , c

M
1 |xT1 )

}
(2)

Expressing this as a HMM and representing the words and
symbols by modality-specific hidden states sm, where each
hidden state is mapped to a single input image, reveals the
weakly supervised learning problem: It is exactly the hidden
state sequence of each modality we are interested in. We
synchronise each modalities hidden states only with respect
to the N sign words. We only consider the best path (viterbi)
and finally optimise:[
sT1

]
opt

= argmax
sT1

{ N∏
n=1

M∏
m=1

max
stntn−1+1,m

tn∏
tn−1+1

p(xt, st,m|st−1,m, wn)γm
}
(3)

Where tn represents the end time of w1 and t0 + 1 points to
the first image of the segment.

M∑
m=1

γm = 1 (4)

assures that the probabilities sum up to one, where γm is the
stream-weight hyperparameter in the optimisation. Due to
the discriminatory capabilities of CNN-LSTMs, we solve the
problem in an iterative fashion with the EM algorithm [42]
embedded in an HMM and use independent CNN-LSTMs
for modelling p(sm|x). Following [48], we convert the CNN-
LSTM posteriors into likelihoods by normalising with the
priors of each stream. The priors are scaled by the prior
scale hyperparameter β:

p(xt, st,m|st−1,m, wn) =
p (st,m|xt)
p (sm)

β
· p
(
st,m|st−1,m, wN1

)
(5)

p
(
st,m|st−1,m, wN1

)
are transition probabilities, which we

fix and pool across all classes and streams with the exception
of the garbage classes that have separately pooled transi-
tion probabilities. We intuitively define the synchronisation
points at the end of each sign word. This allows sequences
of subunits to be found in the data with very weak labels
which on their own would not contain enough discrimina-
tive power to be successfully identified in the data.

4 DATA SETS

We work with several different data sets to validate the ap-
proach. All data sets are or will be made publicly available
as of publishing this work. The well known challenging real-
life continuous sign language data set RWTH-PHOENIX-
Weather 2014 [49] [50] [51] constitutes the basis of our
work. It covers unconstrained sign language of 9 different
signers with a vocabulary of 1081 different signs. The corpus
features sign language interpreters and has been recorded
from broadcast news. It has been annotated using sign-
glosses by deaf specialists. However, the corpus does not
have mouth shape annotations. Therefore, following our
previous work in [1] and [2], we exploit the correlation
between spoken German and mouth shape sequences vis-
ible on the signers mouth. We therefore created RWTH-
PHOENIX-Weather 2014 T [52], an extension of the previous
RWTH-PHOENIX-Weather 2014. It constitutes a parallel
corpus including sign language videos, sign-gloss annota-
tions and also German translations (spoken by the news
anchor), which are all segmented into parallel sentences.
These segmentations originate mostly from PHOENIX 2014,
however, several segments differ in length and number due
to the different sentence structure of the German transla-
tions. Wherever new sentence boundaries were required,
we used the PHOENIX 2014 models in [3] to estimate new
boundaries based on a forced alignment on the data. Care
has been taken to assure that no test and no dev segments
from PHOENIX 2014 can be found in the PHOENIX 2014
T train set and also no test and no dev segments from
PHOENIX 2014 T can be found in the PHOENIX 2014 train
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set. Moreover, we ensured no segments that have been
annotated for mouthing sequences in [1] to be present in any
sets. Therefore, one can safely evaluate trained PHOENIX
2014 T models on the mouth shapes evaluation from [1]
and also on the hand shape evaluation from [3]. The WERs
of PHOENIX 2014 and PHOENIX 2014 T are similar but
not exactly comparable, as they are calculated on a set with
slightly different boundaries and number of segments. Most
of our experiments are done on RWTH-PHOENIX-Weather
2014 T, as this allows evaluation on three modalities, namely
glosses, mouth shapes and hand shapes. We repeated the
best working setup on RWTH-PHOENIX-Weather 2014 to
compare against the state-of-the-art. In order to evaluate the
mouth shape and hand shape recognition performance, we
compete in the mouth shape weakly learning task [1] and
the 1 million hands weakly learning task [3]. The former
consists of 3687 labelled mouth shapes, annotated from
continuous sign language sequences with 11 viseme class
labels or a garbage label, while the latter contains 3361
hand shape images that are annotated with one out of 45
orientation independent hand shape class labels. To sum up,
this work employs the following data sets:

• RWTH-PHOENIX-Weather 2014 T [52]
• RWTH-PHOENIX-Weather 2014 [51]
• mouthing weakly learning task [1]
• 1 million hands weakly learning task [3]

Statistics of the RWTH-PHOENIX-Weather 2014 T data set
is given in Table 1. Figure 6 and Table 2 show the statistics
of the 1 million hands data set and mouthing data set,
respectively.

TABLE 1
Statistics of the PHOENIX 2014 T recognition (“Gloss”) & translation

(“German”) set.

PHOENIX 2014 T Gloss PHOENIX 2014 T German
Train Dev Test Train Dev Test

# segments 7,096 519 642 7,096 519 642
frames 827,354 55,775 64,627 827,354 55,775 64,627

tot. words 67,781 3,745 4,257 99,081 6,820 7,816
vocabulary 1,085 393 411 2,887 951 1,001

OOV [%] - 0.5 0.5 - 0.8 0.7
singletons 337 - - 1,077 - -

4.1 Creating Weak Mouth Shape Labels
Sign languages and their spoken counterparts do not share
the same word order, nor does one word always trans-
late to exactly one sign. Spoken German typically follows
the ‘subject (S), verb (V), object (O)’ structure, while DGS
quite strictly uses ‘SOV’. We want to exploit the fact that
mouthings in sign language often originate from contact
with speech. In our corpus PHOENIX 2014 T, for each video

TABLE 2
Annotation statistics for the RWTH-PHOENIX-Weather continuous

mouthing challenge [1] Annotation fraction [%] for each of the employed
11 visemes. ‘gb’ denotes non-mouthings.

Total frames A E F I L O Q P S U T gb
3687 12.4 8.2 8.8 10.6 4.4 11.9 13.0 9.4 4.3 7.8 22.6 48.6 %

segment we have two annotations comprising a sequence
of sign-glosses which are in the order of the signs in the
video and a translated sentence of spoken German words.
Following [1], we employ a forced alignment technique
from statistical machine translation presented in [53], which
maximises the alignment likelihood on a training corpus
of sentence pairs each with a pair of sequences of Ger-
man words w = wJ1 := w1, . . . , wJ and DGS glosses
g = gI1 := g1, . . . , gI (w,g). The alignment variable a = aJ1
describes the mapping from a source position j to a target
position aj for each sentence pair. The applied approach
finds the best Viterbi alignment by maximising the statistical
alignment model pθ , which depends on a set of unknown
parameters θ that is learnt from the data:

âJ1 = argmax
aJ1

pθ(w
J
1 , a

J
1 |gI1) (6)

The technique includes the so called IBM Models as
alignment models, which account for lexical translation
and reordering. For more details refer to [53]. We use the
single best alignment words. To cope with noise in those
alignments, we apply filtering to the generated (w, g) pairs
constituting a mapping M : G → P(W), where w ∈
W =

{
all spoken words

}
and g ∈ G =

{
all sign glosses

}
.

As we expect our CNN-LSTM-HMM modelling scheme to
be much stronger than the GMM-HMMs employed in [1],
we use a softer filtering to remove noisy annotations. We
apply only an absolute filtering ϑA threshold and no relative
filtering, such that

M(g)′ =
{
w ∈M(g)

c(w, g) > ϑA
}
, (7)

where c(w, g) counts the number of occurring pairs (w, g)
and ϑA is set to 2 instead of 4 as in [1].

Based on the German words that each gloss now maps
to, we can build a pronunciation lexicon, which defines
the finite set of possible pronunciations that occur with a
sign. For this purpose we use a standard automatic speech
recognition (ASR) word to phoneme lexicon which has been
generated with the publicly available Sequitur Grapheme-
to-Phoneme converter [54] trained on a standard ASR task.

However, the mouthings produced by signers often do
not constitute fully pronounced words, but rather short
fragments of words. Thus, for each full pronunciation we
add multiple shorter pronunciations to our lexicon ψ by
truncating the word w which consists of a sequence of
phonemes sN1 = s1, . . . , sN , such that

ψ =
{
w′ : sN−φ1 |φ ∈ {0, . . . , φtrunc} ∧N − φ ≥ φmin

}
(8)

Moreover a garbage or ‘Non-mouthing’ option is added
to the lexicon for each entry. See an exemplar entry for the
sign-gloss SONNE (english: SUN) which has been aligned
to the German adjective sonnig (sunny), with three differ-
ently truncated phonetic pronunciations (in SAMPA) and a
garbage option as they are added to the lexicon:

SONNE#sonnig :
{ /z O n I C/, /z O n I/, /z O n/, GARBAGE }

The phonetic inventory consists of 39 phoneme classes
and a garbage class.
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Fig. 4. A SignWriting entry describing the sign RAIN in DGS.

4.2 Creating Weak Hand Shape Labels

There are no hand shape annotations available for the
RWTH-PHOENIX-Weather 2014 data. Therefore, follow-
ing [3], we employ a publicly available user-edited sign
language dictionary called SignWriting [55]. It constitutes
an open online resource, where people can create entries
translating from written language to sign language using a
pictorial notation form called SignWriting. The sign writing
entries also contain hand information. At the time, when
processing the German SignWriting lexicon it comprised
24.293 entries. Inspired by [56], we parsed1 all entries to
create the mapping ψ from sign annotations to possible
hand shape sequences, where we removed all hand pose
related information (such as rotations) from the hand an-
notations. SignWriting is a universal notation for sign lan-
guages developed by Valery Sutton in 1974. It uses the
International SignWriting Alphabet 2010, which represents
manual and non-manual parts of signs by a set of visual
symbols classified in a hierarchical system comprising a
total of 652 icon bases. Each base has several degrees of
freedom when used in writing a sign: It can be rotated,
mirrored and put in context with other parts of the sign
(i.e. a right hand). The SignWriting subunit nomenclature
consists of a starting “S” and five following digits. The
first three digits specify the base symbol, whereas the last
two represent its degree of rotation and its state of be-
ing mirrored or not. SignWriting bears, due to its stylised
nature, little resemblance to continuous signing, but has
been used for 3D avatar animation [57] before. Furthermore,
SignWriting has redundancy. The same signs can be written
in a variety of ways. The SignWriting dictionary is user-
edited, published under Creative Commons license and can
be freely downloaded in XML format. Each dictionary entry
is encoded as a Formal and Regular SignWriting (FSW) code
and contains the symbols and their position used to write
specific signs. The dictionary is available for over 80 differ-
ent sign languages, but within the context of this work, only
the German Sign Language database is considered. Figure 4
shows the entry of a signing variant for RAIN. Despite the
large number of entries in the database, only those entries
matching the inventory of the RWTH-PHOENIX-Weather
corpus are of interest. Similar to the weak mouth shape
labels in Section 4.1, we create a lexicon with mappings
from gloss-signs g to possible hand shape sequences h also
including the garbage hand shape class ∅.

ψhand =
{
g′ : h|g′ ∈ G, h ∈ {h1 . . . hH ,∅}

}
(9)

1. Parser available at: www.hltpr.rwth-aachen.de/˜koller/

Fig. 5. 12 exemplary manually annotated hand shape classes are
shown. Three labelled frames per class demonstrate intra-class vari-
ance and inter-class similarities. Hand-Icons from [58].

It is clear that this kind of mapping from sign-glosses to
hand shapes has to be considered a very weak annotation
as it has not been created or manually refined for the data
set it is finally applied to.

Construction of Lexicon. The next step is to construct
the lexicon ψ, given the hand shape annotations. If a se-
quence of more than one hand shape annotation is available
for a given video, we add the whole sequence and each of
the hand shapes on its own to the lexicon ψ. This results
in multiple hand shape annotations per video, all of which
we add to the lexicon ψ. Within the lexicon definition, we
also allow the garbage class to be able to account for frames
before and after any hand shape.

Throughout this work we follow a hand shape taxonomy
by the danish sign language association, which amounts
to over 60 different hand shapes, often with very subtle
differences such as a flexed versus straight thumb.

Evaluation of hand shapes. To evaluate the final CNN-
LSTM hand shape classifier, we chose the challenging ar-
ticulated hand shape evaluation from [3]. It consists of
3361 manually labelled images from the RWTH-PHOENIX-
Weather 2014 Development set. Some of the 45 encountered
pose-independent hand shape classes are depicted in Fig-
ure 5. They show the large intra-class variance and the
strong similarity between several classes. The hand shapes
occur with different frequency in the data. The distribution
of counts per class can be verified in Figure 6 showing
that the top 14 hand shapes explain 90% of the annotated
samples.

5 EXPERIMENTAL EVALUATION

The aim of this section is to understand the effects of
the proposed multi-stream CNN-LSTM-HMM architecture
for weakly supervised learning. We consider the case of
a single-stream HMM, a 2-stream HMM and a 3-stream
HMM. As stated in Section 4, we evaluate the presented
approach on three different tasks and data sets, namely con-
tinuous sign language recognition, articulated mouth shape
and hand shape recognition. We test on the real-life contin-
uous sign language recognition corpus RWTH-PHOENIX-
Weather 2014 T [52], the continuous sign language mouth
shape data set [1] and the 1-million-hands articulated
hand shapes data set [3]. Our focus is on weakly super-
vised learning, e.g. discovering the articulated signs/mouth
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Fig. 6. Ground truth hand shape label count of all 3361 annotations. 45
out of 60 classes are present in the data & could be labelled. If several
hand shapes appear close to one label counting bar, each hand shape
alone amounts to the mentioned fraction of labels. Hand-Icons from [58].

shapes/hands in the data. Therefore, we model each stream
and each classifier’s probabilities independently from the
others. The main contribution lies in the multi-stream archi-
tecture and the joint multi-stream alignment with a state-of-
the-art CNN-LSTM-HMM as described in detail in Section 3.

Data preparation. In this work, we show that the pro-
posed approach does not require tracking of the hands,
face or mouth regions to learn the corresponding classifiers.
However, we still want to evaluate the effect of this design
decision and therefore additionally create experiments with
tracked inputs. As general preprocessing, we perform a
pixelwise mean subtraction based on the statistics of the
training set. The main gloss stream always gets the full
body as input. The mouth and hand streams either get the
same input or learn from tracked hands and face regions.
For tracking hands, we employ a model-free dynamic pro-
gramming tracker and follow our previous work [3]. For
the mouth stream, we track facial landmarks with an Active
Appearance Model (AAM) as in [2] and crop the image
based on the smallest rectangular region covering all AAM
tracked points representing the whole face. All streams are
scaled to 256x256 pixels and randomly cropped to 224x224
pixels during training.

Lexicons that represent weak labels are necessary for
our weak learning scheme. The creation of the mouth shape
lexicon ψmouth has been specified in Section 4.1 and the
hand shape lexicon ψhand in Section 4.2 respectively. The
main sign language data set PHOENIX 2014 T has been
annotated with a sequence of sign-gloss annotations without
explicit start and end times. These annotations provide the

strongest supervision. The mouth and hand shape annota-
tions are represented by mappings from these sign-glosses
to sequences of mouth and hand shapes. This is represented
as one to many mapping, where the entries for a specific
sign-gloss also comprise a garbage class to discard this
annotation for a given modality. We also allow the insertion
of garbage models at the beginning and the end of each
modality’s mappings to account for temporally different
starting and ending points of the mouth shapes with respect
to the hand shapes.

Initialisation of the algorithm. The input videos are
linearly partitioned (e.g. a flat start) based on a single
specific mouth and hand shape label sequence from the
lexicons ψmouth and ψhand, considering the beginning and
end of each segment as garbage class.

HMM settings. We base the HMM part of this work
on the freely available state-of-the-art open source speech
recognition system RASR [59] for which we have im-
plemented a multi-stream alignment procedure. The 1200
modelled gloss classes and the 60 hand shape classes are
represented by a three repeated states where two consec-
utive states share their probability distributions, whereas
the stream-dependent garbage class is always represented
by a single state for higher flexibility. For the 39 mouth
shapes we employ a single repeated state to accommodate
the high speed of mouth shape changes. This results in
3601, 40 and 181 softmax outputs for the gloss, mouth and
hand stream, respectively. For forced alignment, we use
fixed, non-optimised transition penalties being ‘1-0-1.5-2’ for
‘loop-forward-skip-exit’ for all HMM states in all streams
and ‘1.5-0-2’ for the garbage ‘loop-forward-exit’ penalties.
The usage of fixed, pooled transition penalties has become
standard in ASR and Automatic Sign Language Recognition
(ASLR). The exit penalties are applied to the hypothesis
score when the last state in a mapping has been reached and
the stream arrived at a synchronisation point. The prior scal-
ing factor β is set to 0.6 in our experiments for all streams.
As already pointed out by [60], we also observe a strong bias
in the distribution of hand shape classes in our data, but we
decided to maintain it. We expect the Bayesian conversion
from posteriors to scaled likelihoods to account for this
fact, as described in Section 3.3. We apply different stream-
weights λ, which have been optimised on the held out data
with a simple grid search. For 2-streams we obtain best
results with λsign-gloss = 0.8 and λhand/mouth = 0.2,
while in the three stream case we get best results with
λsign-gloss = 0.7, λmouth = 0.2 and λhand = 0.1.

CNN-LSTM training. For the neural network train-
ing, we extend a powerful and deep CNN with two bi-
directional LSTM layers [61], [62]. In order to train the full
network end-to-end, the CNN architecture of choice should
have a low memory footprint, while still being deep. After
comparing different CNN architectures [63], [64], [65], we
opted for the 22 layer deep GoogleNet [65] architecture,
which we initially pre-train on the 1.4M images from the
ILSVRC-2012 [66]. The main building blocks of this architec-
ture are inception modules which are the fusion of multiple
convolutional layers with different receptive fields applied
to the output of a 1x1 convolution layer which serves as
a dimensionality reduction tool. Finally, in addition to the
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last classifier, GoogLeNet also makes use of two auxiliary
classifiers at lower layers which are added to the final
loss with a weight of 0.3. The pre-trained standalone CNN
achieves a top-1 accuracy of 68.7% and a top-5 accuracy
of 88.9% in the ILSVRC. The network uses ReLUs as non-
linearity in its convolutional layers and dropout on the fully
connected layers preceding the softmax layers. Dropout
ratio is set to 70% on the auxiliary classifiers and 40% on
the final classifier to prevent over-fitting.

LSTMs are RNN variants that were developed to over-
come the vanishing gradient problem [67] and as such
can learn long time dependencies much better than vanilla
RNNs. As the gradients are fully differentiable, we can train
the recurrent network with Back Propagation Through Time
(BPTT) [68]. We use stochastic gradient descent with an
initial learning rate λ0 = 0.001 for CNN-LSTM architectures
and λ0 = 0.01 for CNN networks. We employ a polynomial
scheme to decrease the learning rate λi for iteration i as
the training advances while reaching λimax = 0 for the
maximum number of iterations imax =̂ 4 epochs in our
experiments.

λi = λ0 ·
(
1− i

imax

)0.5

(10)

Training scheme and scrambled start.
Comparable to [4] and with a similar effect as ‘curricu-

lum learning’ [69], we observe fastest convergence if we first
train a CNN-HMM model with randomly shuffled input
images for 4 EM re-alignment iterations starting from a flat
start in each stream. Each re-alignment iteration finetunes
from the previous one. This yields a sensible temporal
alignment. However, remember that for the flat start we had
to choose a specific weak label sequence from the set of op-
tions. We noticed a skew towards the selected label option.
To overcome this, we found it crucial to restart the neural
network weight learning from scratch (e.g. from pretrained
GoogleNet), but take the new temporal segmentation start
and end boundaries for each class in an utterance as intiali-
sation points for a ‘scrambled start’. In the lexicons ψmouth
and ψhand we find multiple weak label options per sign. For
a ‘scrambled start’, we use all of them for initialisation. Each
label option allows us to generate one initialisation option
with pseudo labels. We do this by linearly distributing
the class states to the image frames within the temporal
boundaries (flat start with temporal boundaries). We then
unify all initialisation options by scrambling and mixing
them together. This means we go over each frame of the
video. On the first frame we take a pseudo-label from the
first weak label initialisation option. On the next frame we
take it from the second option and continue accordingly. We
train from the given pseudo-label initialisation for 3 EM re-
alignment iterations.

After that, we add 2 bi-directional long short term mem-
ory (BLSTM) layers to the final classifier (maintaining the
first two auxiliary classifiers with standard feed forward
structure and a weight of 0.3) and finetune with ordered
samples and a batch size of 32 for 5 EM re-alignment
iterations.

We perform multi-stream alignment on the dev data as
well and use it as an automatic validation measure to verify
the learning and choose the best epoch (which is usually

the last). In previous experiments [3], we found that the
automatic and manual validation converged in a similar
fashion, which is why we only rely on automatic validation
in this work.

In terms of run time, the CNN-LSTM trains with over
170 frames per second (fps) on a NVIDIA Titan X with batch
sizes of 32 images. The multi-stream alignment with minor
pruning takes roughly 2 seconds in the 2-stream case and
248 seconds in the 3-stream case per sentence on a single
core AMD Opteron 6176 Processor, where each sentence
contains on average 10 sign-glosses.

Please note, that even though we trained a multi-stream
system and used that for efficient weakly supervised learn-
ing, we discard the non-related streams when evaluat-
ing. Modelling the stream posteriors conditioned on each
other can have a positive influence as initial tests revealed.
However, a thorough analysis is beyond the scope of this
manuscript.

5.1 Task 1: Continuous Sign Language Recognition

Sign language recognition (SLR) is a very challenging test
case for weakly supervised sequence learning algorithms.
It is a difficult but well defined problem offering real-life
challenges (w.r.t. occlusion, motion blur, variety of hand
shapes and other articulators). We provide here experiments
on the RWTH-PHOENIX-Weather 2014 T data set, as this
allows us to evaluate 3-stream modelling. But in order to
compare with the state-of-the-art, we also provide results
on the RWTH-PHOENIX-Weather 2014 corpus. There, we
use exactly the same corpus partitioning as in [51] to ensure
comparability to previously published results. We perform
hybrid CNN-LSTM-HMM recognition. We measure the er-
ror in WER:

WER =
#deletions +#insertions +#substitutions

#number of reference observations
(11)

Figure 7 shows the WER measured on the PHOENIX
2014 T dev corpus as a function of the EM re-alignment
iterations. The graph shows 1-stream (using sign-glosses
during training only), 2-stream (using sign-glosses and
mouth shape information during training) and 3-stream
setups (using sign-glosses, mouth shape and hand shape
information during training). One can clearly see that multi-
stream networks result in a much faster convergence, which
is due to the improved alignment. Furthermore, we see
that each additional stream helps convergence and also
results in a lower final error rate. As each re-alignment takes
around 6 hours for CNN-LSTM training. Table 3 provides
the best achieved WERs with each of the architectures. The
3-stream architecture clearly outperforms the single stream
approach on the dev set with 22.1% WER (the lower the
better) as opposed to a WER of 24.5% for the single-stream.
On the test set, it reaches 24.1% as opposed to 26.5%.
The rise in WER at iteration 5 is due to the scrambled
start which uses the temporal segmentation and subsequent
training from scratch of the neural network parameters. The
improvements with respect to the state-of-the-art can be
explained by better initialisation using the scrambled start
and stronger alignments during training due to the multi-
stream architecture.
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We have tested the results for statistical significance
using the Matched Pair Sentence-Segment Word Error Rate
(MAPSSWE) test. The MAPSSWE test was suggested for
speech recognition evaluations by Gillick [70]. We used the
implementation [71] as part of the NIST evalutation tools.
Testing the 1-stream baseline against the 3-stream case, finds
strong statistical significance at the level of p < 0.001.
Testing the baseline against the 2-stream case also finds
statistical significance with a level of p = 0.021.

We further evaluate the effect of tracking hands and faces
for the respective streams and find that tracking helps. The
WER drops from 23.1% on dev and 24.8% on test without
tracking to 22.1% and 24.1% with tracking. Hand tracking
is done using a dynamic programming based model-free
tracker as in [51]. Facial landmarks are tracked based on
AAMs as presented in [72]. We crop the smallest rectangle
containing all landmarks. Note, that the tracked input is
only used for the hand and the face stream and the align-
ments. The gloss stream, which we evaluate on, operates on
full images.
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Fig. 7. Dev set WER [%] on glosses with cropped hand and face inputs:
compare 1stream against 2stream (gloss, mouth) and 3stream (gloss,
mouth, hand)

TABLE 3
Achieved word error rates on RWTH-PHOENIX-Weather 2014 T

continuous sign recognition corpus with cropped hand and face inputs

PHOENIX 2014 T
Setup Dev Test
1 stream CNN-LSTM-HMM 24.5 26.5
2 stream CNN-LSTM-HMM 24.5 25.4
3 stream CNN-LSTM-HMM 22.1 24.1

Table 4 shows the results on the PHOENIX 2014 corpus.
It allows a direct comparison to recently published state-
of-the-art approaches. The best previously published state
of the art [73] achieved 39.4% WER on the dev set and
38.7% on the test set. In [4], we achieved 27.1% WER on
the dev set and 26.8% on the test set using a single gloss
stream. However, this result was generated relying on an
external GMM-HMM alignment to start. For comparison,
we provide the WER achieved on a single-stream system,
which represents the same setup as in [4]. If we dismiss
any external alignments and instead start the learning from
scratch, the hybrid single-stream achieves 27.5% and 28.3%

WER on the dev and test corpus respectively. The 2-stream
sign-gloss and mouth shape system outperforms both re-
sults with 26.0% WER on the dev set and 26.0% on the test
set. We cannot report 3-stream results, as PHOENIX 2014
has no translations available that can be used to infer the
mouthings.

TABLE 4
Comparison to the state of the art on RWTH-PHOENIX-Weather 2014

continuous sign recognition corpus, showing the 1-stream and the
2-stream systems. Note, that no external alignment has been used to

generate the multi-stream results.

Tracked
hands

External
alignment

PHOENIX 2014
Method Dev Test
CNN-LSTM with CTC [74] yes no 40.8 40.7
CNN-HMM [75] yes yes 38.3 38.8
CNN-LSTM with CTC [73] yes no 39.4 38.7
CNN-HMM 1-stream [5] yes no 33.6 34.6
CNN-HMM 1-stream [4] no yes 29.0 29.4
CNN-LSTM-HMM 1-stream [4] no yes 27.1 26.8
CNN-LSTM-HMM 1-stream no no 27.5 28.3
CNN-LSTM-HMM 2-stream no no 26.0 26.0

5.2 Task 2: Sign Language Mouth Shape Detection

Figure 8 demonstrates the benefit of the multi-stream HMM
for weakly supervised learning of mouth shapes. It shows
the precision and recall (on the equal error point) for a 1-
stream model trained with mouth shape information only,
a 2-stream model additionally using sign-gloss annotations
and a 3-stream system that also adds the hand shape stream.
Note, that the sign-gloss stream provides the strongest su-
pervision, while the hand shapes constitute the signal with
the weakest supervision. They originate from a completely
unrelated data set as described in Section 4. Figure 8 shows,
how the mouthing stream alone (‘1-Stream’) is strongly
outperformed by the 2-stream system. This is due to the
fact, that mouth shapes on their own are difficult to align
to the data, particularly if we have only access to weak
labels originating from the spoken German translations and
no labels that actually represent what can be read on the
signers lips. The 2-stream system yields 56.8% precision
and recall, while the 1-stream system only achieves 47.5%.
The third stream (hand shapes) only marginally improves
the 2-stream result with 57.0%. This is due to the low
degree of supervision this stream provides. Table 5 shows
a comparison against previously published results on the
continuous mouth shape data set. It shows two previously
published results, that relied on an unpublished corpus
for training the approach, which contained better quality
labels. Additionally, the previously published results relied
on heavy pre-processing by an AAM based face tracker
that allowed extraction of the mouth region. Our proposed
3-stream approach clearly outperforms the previous ap-
proaches, without requiring any preprocessing (we do not
use tracking).

5.3 Task 3: Articulated Hand Shape Recognition

In this subsection we present the validation of our method
measured on the 1 million hand shape data set from [3].
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TABLE 5
Previously published results on the mouthing sequences. Clean Set comprises no frames labelled as garbage.

Corpus for training AAM facial tracker Tuned directly
on test set

Clean Set All Set
Method Precision Recall Precision Recall
GMM-HMM [1] unpublished yes yes 47.1 48.2 31.3 43.2
GMM-HMM, then CNN-HMM [2] unpublished yes yes 55.7 55.6 – –
1-stream CNN-LSTM-HMM PHOENIX 2014 T no no 47.5 47.5 36.6 50.9
2-stream CNN-LSTM-HMM PHOENIX 2014 T no no 56.8 56.8 42.8 59.2
3-stream CNN-LSTM-HMM PHOENIX 2014 T no no 57.0 57.0 42.9 59.5
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Fig. 8. mouthings (precision/recall), clean conditions: compare 1stream
against 2stream (gloss and mouth) and 3stream (gloss, mouth, hand)

Figure 9 shows the results across several re-alignment iter-
ations of a hand-only 1-stream system, a 2-stream system
additionally trained with sign-glosses and a 3-stream sys-
tem based on hands, sign-glosses and mouth shapes. We
clearly see, how quickly the 1-stream degrades after the
peak around the third EM iteration. This is due to drift in
the re-alignment process and underlines the weak nature
of the labels which originate, as stated in Section 4, from
the SignWriting dictionary. As such, the mapping has not
been created specifically for the PHOENIX 2014 T data
set. When adding the second and the third stream we see,
how convergence becomes much more stable. Drift is more
difficult (although it still occurs after several iterations)
in multi-stream hidden Markov models (HMMs) as the
synchronisation constraints prevent it. One can also note
that both the sign-gloss stream with stronger supervision,
but also the weaker mouth stream significantly improve the
final result.

In Table 6, we compare the multi-stream approach
against the state-of-the-art on this data set. Note, although
[3] used two additional sign language resources for training,
namely a Danish and a New Zealand sign language dictio-
nary, we only employ PHOENIX 2014 T. The added sign
language dictionaries cover single word signs with weak
hand shape annotations. In [3] a curriculum learning strat-
egy is employed that first trains on these samples providing
stronger supervision and then starts to train on the much
weaker PHOENIX 2014 labels. Nevertheless, the proposed
3-stream approach is able to outperform the previous ap-
proach. In Figure 10, we used a gradient-weighted class
activation mapping [76] to highlight those image regions
that showed the highest activations in the last convolutional

1 2 3 4 5 6 7 8

66

68

70

72

74

Re-alignment Iteration
A

cc
ur

ac
y

[%
]

1-Stream
2-Stream
3-Stream

Fig. 9. hands (accuracy): compare 1stream against 2stream (gloss and
hand) and 3stream (gloss, mouth, hand)

TABLE 6
Comparison of proposed multi-stream CNN-LSTM-HMM against

previously published results on the 1-million-hands test data.

Method Train corpus Acc. [%]
CNN-HMM [3] PHOENIX 2014 + Danish + n. Zealand 62.8
Proposed 2-stream PHOENIX 2014 T 72.6
Proposed 3-stream PHOENIX 2014 T 73.4

layer of the CNN-LSTM when classifying the sequence. In
each of the three rows we show the activation maps of
a different stream. It illustrates how the sign-gloss model
focuses on both hands and face while the mouth model and
the hand model focus on their respective modalities even
though they were all trained on the same input.

6 CONCLUSION & FUTURE WORK

In this work we presented an approach to the field of weakly
supervised learning in the video domain. Our method
exploits sequence constraints within a set of independent
streams and combines them by explicitly imposing synchro-
nisation points to make use of parallelism present in visual
data. We do this by learning multi-stream HMMs while
adding intermediate synchronisation constraints among the
streams. We embed powerful CNN-LSTM models in each
of the HMM streams following the hybrid approach. The
hybrid approach allows us to constrain the LSTM context to
a feasible length that fits in modern GPUs, while training
very deep CNN-BLSTM models end-to-end.

We apply the approach to the domain of sign language
recognition exploiting the sequential parallelism to learn a
sign language, mouth shape and hand shape classifier. We
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Fig. 10. Saliency maps showing the CNN-LSTMs highest activations. Generated with Grad-Cam [76], from top to bottom: sign-gloss stream, mouth
shape stream, hand shape stream. It can be seen that the hand model focuses on the right hand, the mouth model on the mouth and the sign-gloss
swaps between both hands and the mouth.

evaluate the classifiers on three publicly available bench-
mark data sets featuring challenging real-life sign language
data with over 1000 classes, full sentence based lip-reading
and articulated hand shape recognition on a fine-grained
hand shape taxonomy featuring over 60 different hand
shapes. We clearly outperform the state-of-the-art on all
data sets, improving the best published WER on RWTH-
PHOENIX-Weather 2014 to 26.0% and observe significantly
faster convergence. We also looked at the activation maps
of the learned CNN-LSTMs and can see that each stream
focuses on its respective modality even though they were
all trained on the same input.

There are several routes that are worth exploring in
terms of future work. It would be interesting to extend the
approach to the recognition search problem. We could limit
the computational complexity by limiting the maximal offset
between the streams. Additionally, the proposed model has
some limitations: Until now, we do not rely on dynamic
weighting of the streams, which would assume that certain
streams are experts for certain classes and could further
boost results. Moreover, computational complexity of the
current implementation makes it difficult to go beyond 4
streams. A parallel GPU implementation seems promising.
Also, the multi-stream boundaries (e.g. start and end of
the sub-streams) could be more flexible. In sign language
we observe mouth shape sequences can overlap with the
next sign, which is not supported by our proposed model.
Finally, we also noticed that our hand annotations are very
weak and noisy. The fact that we did not particularly focus
on one hand (e.g. through tracking and cropping) was
also responsible for this issue. It might therefore be worth
modelling both hands explicitly.
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