
End-to-end Reinforcement Learning for Autonomous Longitudinal
Control Using Advantage Actor Critic with Temporal Context

Sampo Kuutti, Richard Bowden, Harita Joshi, Robert de Temple, Saber Fallah

Abstract— Reinforcement learning has been used widely for
autonomous longitudinal control algorithms. However, many
existing algorithms suffer from sample inefficiency in reinforce-
ment learning as well as the jerky driving behaviour of the
learned systems. In this paper, we propose a reinforcement
learning algorithm and a training framework to address these
two disadvantages of previous algorithms proposed in this field.
The proposed system uses an Advantage Actor Critic (A2C)
learning system with recurrent layers to introduce temporal
context within the network. This allows the learned system to
evaluate continuous control actions based on previous states and
actions in addition to current states. Moreover, slow training
of the algorithm caused by its sample inefficiency is addressed
by utilising another neural network to approximate the vehicle
dynamics. Using a neural network as a proxy for the simulator
has significant benefit to training as it reduces the requirement
for reinforcement learning to query the simulation (which is
a major bottleneck) in learning and as both reinforcement
learning network and proxy network can be deployed on the
same GPU, learning speed is considerably improved. Simulation
results from testing in IPG CarMaker show the effectiveness
of our recurrent A2C algorithm, compared to an A2C without
recurrent layers.

I. INTRODUCTION

Autonomous vehicles have been identified as the solution
to many problems in current transportation systems. Reduced
pollution, greatly increased safety, improved traffic flow and
passenger comfort have been reported as the main advantages
of autonomous vehicles [1]–[3]. Early autonomous vehicles
attempted to control the car with rule-based systems, where
the perception, planning, and control are achieved separately
[4]–[6]. However, such approaches require time intensive
hand-tuning of parameters and often fail to generalise to the
wide variety of operational conditions the vehicle might face
on the road. Currently, deep learning techniques have gained
significant interest due to the ability of deep neural networks
to generalise previously learned rules to new scenarios [7].

Reinforcement learning algorithms have been favoured in
autonomous longitudinal control systems, due to their ability
to generalise to new scenarios. State-of-the-art results have
been achieved in this domain using actor-critic algorithms.
Zhao et al. [8] proposed a reinforcement learning algorithm
for longitudinal control that trained an actor-critic network
using ranging sensor readings as input to the network to

Sampo Kuutti and Saber Fallah are with the Connected and Autonomous
Vehicles Lab, University of Surrey, Guildford, GU2 7XH, UK. Email:
{s.j.kuutti, s.fallah}@surrey.ac.uk

Richard Bowden is with the Centre for Vision, Speech and Signal Process-
ing, University of Surrey, GU2 7XH, UK. Email: r.bowden@surrey.ac.uk

Harita Joshi and Robert de Temple are with Jaguar Land Rover Limited,
Coventry, CV3 4LF, UK. Email: {hjoshi3, rdetempl}@jaguarlandrover.com

output the vehicle’s desired acceleration, which was then
achieved with a low level controller. Advantage actor critic
algorithms with recurrent network architectures have also
been used for end-to-end reinforcement learning for race
driving with discrete action spaces by Mnih et al. [9] in
a TORCS simulator and Jaritz et al. [10] in the World
Rally Championship 6 game. While these works demonstrate
that reinforcement learning can learn to drive in an end-to-
end manner, for a system to be potentially deployable in a
real autonomous vehicle, continuous action values should be
leveraged for better performance.

However, a common problem with reinforcement learning
in longitudinal control, is that the learned policy results to
jerky behaviour [11]. Without any temporal context given,
the agent has to decide the current action without any
consideration for the previous actions, sometimes leading to
rapid switching between the throttle and brake pedals. This
occurs as the physics of the simulator effectively smooths
the input control signals to produce smooth vehicle motion.
However, in reality this type of behaviour would pose a
problem both in terms of safety as well as occupant comfort
if used in an autonomous vehicle, not to mention it may
be damaging to the vehicle. Therefore, we propose to use
a recurrent network architectures to solve this problem, and
obtain smoother pedal behaviour. Introducing temporal con-
text into the reinforcement learning model allows the agent to
consider past actions and states when estimating the action at
the current time step. The combination of continuous action
spaces and temporal knowledge then allows the network to
predict smoother and safer control outputs.

Another downside with many current reinforcement learn-
ing algorithms is their sample inefficiency [12], which leads
to long training times. This makes training and optimising
reinforcement learning algorithms more time intensive and
can limit testing different parameters or approaches. The
use of recurrent architecture exacerbates the problem. Here,
we propose a novel solution to mitigate this and speed
up training significantly by training another neural network
with supervised learning to estimate the vehicle response
to control actions from the longitudinal control model. The
supervised learning network was trained with 45 hours of
collected driving data from IPG CarMaker [13], a popular
vehicle dynamics simulation software. By using the super-
vised network as a proxy for the simulator during training,
costly access to the simulator can be eliminated during
reinforcement learning. Furthermore, as the proxy simulator
network can be deployed on the same GPU as the Advantage
Actor Critic (A2C) network, significant speed benefits can be



obtained during training.
The contributions of this paper are two-fold. Firstly, we

present an implementation of an autonomous longitudinal
control system, using actor-critic reinforcement learning with
a recurrent network architecture introducing temporal context
in the model during learning. The system learns autonomous
vehicle longitudinal control in an end-to-end fashion map-
ping ranging sensor readings and host vehicle states to
pedal signals in continuous action space, maintaining a safe
distance from the lead vehicle. The performance is com-
pared with and without the recurrent layer, demonstrating
an improvement in performance when temporal context is
used. Secondly, we show that we can train our agent using
a supervised network, which has been trained to estimate
vehicle dynamics, thereby accelerating the training process
of the reinforcement learning algorithm. The performance of
the trained agent is then validated in IPG CarMaker.

The remainder of the paper is structured as follows.
Section II introduces the necessary background theory on
reinforcement learning and actor critic algorithms. Section
III describes the reinforcement learning algorithm used for
the longitudinal control of an autonomous vehicle as well as
the training framework. Section IV presents the simulation
results of the trained algorithm. Finally, concluding remarks
are presented in Section V.

II. REINFORCEMENT LEARNING

In reinforcement learning, an agent interacts with an
environment and aims to learn from its own actions. At each
time-step t, the agent observes a set of states st, takes an
action at from a possible set of actions A according to its
policy π(st). The agent then observes a new set of states st+1

and receives a reward rt according to a reward function R.
The agent then tries to maximise the total accumulated return
Rt. Reinforcement learning algorithms can generally be
divided into three groups [14]: value based, policy gradient,
and actor-critic methods. Value based methods learn a state-
action value function Q(st, at) = E[Rt|st = s, a] which
maps each possible action to a value for each state. For
continuous states and actions, this is typically approximated.
The action is then chosen by deterministic policy maximising
the state-action value function as

π(st) = argmax
a

Q(st, at) (1)

The downside is that there is no guarantee on the optimality
of the resulting policy [15]–[17]. On the other hand, policy
gradient methods do not estimate the value function. Instead,
policy gradient methods parametrise the policy π(s) by the
parameter vector θ, and calculate the gradient of the cost
function with respect to θ and a cost function J as

5θJ =
∂J

∂πθ

∂πθ
∂θ

(2)

and the parameters are then updated in the direction of the
gradient. Policy gradient methods generally have the advan-
tage of improved convergence, but have the disadvantage of
high variance in the policy gradient [18], [19].

Actor-Critic methods are hybrid methods combining both
value based and policy based methods, in order to utilise
the advantages of both techniques. An Actor-Critic algorithm
uses two neural networks. The Critic network estimates how
good being in any given state is, i.e. the value function
V (s) = E[Rt|st = s]. The Actor network estimates the
optimal policy function π∗(st), which maps each observed
state to an action. Estimating the value function is useful,
since we can not know the actual value of the actions taken
(i.e. total rewards for an episode) until the episode has
finished. The critic network allows the algorithm to estimate
the value of the actions taken during training. Therefore,
unlike policy gradient methods where total rewards are
calculated at the end of the episode so that network weights
can be updated, estimating the value function lets us update
the network weights before the episode is finished, such that
we can update the weights multiple times each episode [9].
During training, the agent interacts with the environment, and
based on the actions chosen in each state, the agent is given
a reward. The estimated value function and the reward are
then used to update the weights of both networks as shown
in Fig. 1.

Fig. 1. An Actor-Critic agent interacting with the environment. Dashed
lines represent a parameter update.

III. LONGITUDINAL CONTROL WITH REINFORCEMENT
LEARNING

A. A2C Algorithm

The A2C [9] algorithm uses an advantage function instead
of the value function for updating the weights, improving the
stability during training. The advantage function estimates
how much better the chosen action for a given state is
compared to the average action at that state.

A(st, at) = Q(st, at)− V (st) (3)

Due to difficulty in estimating the state-action value function
Q(st, at), the advantage function is typically estimated by
some advantage estimator, such as the temporal-difference
(TD) error [20] used here:

A(st, at) ≈ TD =

n−1∑
k

γkrt+k + γnV (st+n)− V (st) (4)

where γ ∈ [0,1) is the discount factor used to prioritise
immediate rewards over future rewards.

When used in a discrete action space, the actor network
in A2C outputs a probability for each discrete action, where
each probability corresponds to how confident the agent is



that the corresponding action is the correct one in its current
state. However, when working in a continuous action space a
further modification is needed. Here, the actor network has to
be modified to generate two outputs which are used to choose
the action in each state [9]. The actor network estimates
the action value µ and the estimated variance σ2. This is
transformed into a Gaussian probability distribution, where µ
is the location (or mean value) and σ is the standard deviation
of the distribution. The control action is then sampled from
the generated Gaussian distribution.

For the continuous action model, the value and policy
losses, Lv and Lπ , are then given by

Lv = (A(st, at))
2 (5)

Lπ = −log(π(at|st))A(st, at)− βH(π(st)) (6)

where β is the entropy coefficient and H(π(st)) is the en-
tropy added to encourage exploration in the policy, calculated
as

H(π(st)) =
1

2
(log(2πσ2) + 1) (7)

The inputs to the networks are host vehicle velocity vh,
host acceleration v̇h, relative velocity to lead vehicle vrel,
and time headway to lead vehicle th. The possible actions
at represent the vehicle pedal values, normalised to a single
parameter such that at ∈ [-1, 1], where positive values signal
the use of the gas pedal and negative values correspond to
the use of the brake pedal.

Both networks are decoupled such that they take the
observed states st = [vh, v̇h, vrel, th]T as an input. This is
then followed by three fully connected feed-forward hidden
layers in the actor network. The last feed-forward hidden
layer is followed by the recurrent layer, which is fully
connected to the two outputs, µ and σ2. In comparison, the
critic network has one hidden layer only, fully connected to
the output layer, which gives the value estimate V (s). The
hidden neurons all use a Relu-6 activation [21], the µ uses a
tanh activation, the σ2 uses a softplus activation, whilst the
value estimate has a linear activation.

The recurrent layer consists of Long Short-Term Memory
(LSTM) [22] cells, each fully connected to the output layer.
The architecture of a basic LSTM cell is shown in figure 2.

The LSTM cell takes the cell state, Ct−1, and cell output,
ht−1, from previous time-steps as well as the output of the
previous layer, xt, as an input to the cell. The inputs are
then connected to three gates within the cell: the forget gate,
input gate, and output gate (from left to right in Fig. 2). The
outputs of each gate, cell output, and new cell state are then
given as shown below.

ft = σ(Wf · [ht−1, xt] + bf ) (8)

it = σ(Wi · [ht−1, xt] + bi) (9)

ĉt = tanh(Wc · [ht−1, xt] + bc) (10)

Ct = ftCt−1 + itĉt (11)

ot = σ(Wo · [ht−1, xt] + bo) (12)

Fig. 2. The architecture of a LSTM cell in the recurrent layer. The
orange round connectors represent pointwise operations and green rectangles
represent hidden layers. The connections to the left and right represent
connections to the previous and next time-steps, respectively.

TABLE I
FINAL NETWORK HYPERPARAMETERS.

Parameter Value
No. hidden layers (actor) 3
No. neurons per hidden layer (actor) 50
No. of LSTM units (actor) 16
No. hidden layers (critic) 1
No. neurons per hidden layer (critic) 200
Learning rate (actor), ηactor 1x10-4

Learning rate (critic), ηcritic 1x10-3

Discount factor, γ 0.99
Entropy coefficient, β 1x10-3

Minibatch size 64
Trajectory length 80
Trauma ratio, αtrauma 1/64
RMSProp ε 1x10-10

RMSProp decay α 0.9
RMSProp momentum 0.0

ht = ottanh(Ct) (13)

Where Wx is weight matrix for layer x, bx is the bias vector
for layer x, and σ(x) is the sigmoid function.

After tuning the network hyperparameters using a grid
search, the final network architecture uses the hyperparame-
ters presented in Table I.

The network parameters θ are then updated during training
by an RMSProp optimiser [23] as

ḡ2t+1 = αḡ2t−1 + (1− α)g2t (14)

θt+1 = θt − η
gt√

ḡ2t+1 + ε
(15)

where g is the gradient, ḡ is the running mean of the gradient,
η is the learning rate, α is the decay rate, and ε is a small
value added to avoid division by zero. The update steps
for the actor and critic networks were also decoupled, such
that the actor network is updated using policy loss Lπ and
learning rate ηactor, whilst the critic network is updated using
the value loss Lv and learning rate ηcritic.

To encourage the agent to maintain a 2s time headway, a
reward function based on time headway and time headway



derivative was defined. This reward function is based on the
similar function used in [11], where the time headway term
encourages the agent to maintain a headway close to 2s,
while the headway derivative term rewards the agent for
taking actions which bring it closer to the ideal headway,
as shown in Figure 3. A large negative reward is applied
when a crash occurs to discourage the agent from crashing
into the lead vehicle, and a large positive reward is given
when the agent is close to the ideal time headway.

Fig. 3. Reward function for longitudinal control. The function consists
of two terms, time headway and time headway derivative; the former
encourages the agent to maintain the ideal time headway of 2s, whilst the
latter encourages actions which bring it closer to the ideal time headway.

To improve stability of training and avoid catastrophic
forgetting [24], [25], experience replay was used to update
network weights in addition to the on-policy updates. During
training, the agent records, at each time step, experiences
et = [st, at, rt, st+1] in the replay memory D. When
updating the weights, a minibatch of experiences are then
uniformly sampled from D. Since the network uses LSTMs
for temporal context, these minibatches are sampled as
sequenced trajectories of experiences. To avoid mismatches
with cell states, the cell state is initialised as a zero state
at the beginning of the update step [26]. In addition to the
standard experience replay, a second set of experiences called
trauma memory [27] was used to store trajectories which lead
to collisions. The trauma memory was used to ensure the
network learns to avoid collisions, since such events occur
rarely during training, using only random sampling from the
experience replay would rarely include these events in the
minibatches. When picking experiences for the minibatch,
the ratio αtrauma describes the ratio of trauma memory
samples to experience replay samples, which was tuned to
1/64 during the hyperparameter optimisation.

B. Training

1) Lead Vehicle and Environment Set-up: The training
was broken down into 5-minute training episodes, where the
episode ends after the 5 minutes or if a crash occurred. At
the start of each episode a road friction coefficient value

between 0.4 and 1.0 (with increments of 0.025) was chosen.
The lead vehicle performed randomly chosen manoeuvrers,
where its velocity was in the range vlead ∈ [17, 40]m/s,
and the acceleration was limited to v̇lead ∈ [-2, 2]m/s2. The
exception to this was emergency braking manoeuvrers, which
the lead vehicle performed, on average, once an hour. During
emergency braking the deceleration was chosen between
v̇lead ∈ [-6, -3]m/s2. The aim of the agent was to maintain
a 2s time headway from the vehicle in front, whilst the lead
vehicle varied its velocity under different manoeuvrers.

2) Proxy Network for Vehicle Dynamics: To integrate the
Python based Tensorflow [28] framework used for reinforce-
ment learning with the IPG CarMaker simulation platform, a
C-based library for communicating with CarMaker’s Appli-
cations Online (APO) communication service was developed.
The functionality of the library was compiled into a dynamic
link library and and an import library for use by external
applications, which were then imported to Python using the
ctypes module. The implemented integration allows commu-
nication with CarMaker through the APO service over TCP
and UDP sockets, allowing the reinforcement learning agent
to observe states and control the host vehicle in CarMaker,
while all learning is handled in Tensorflow. However, this
creates some delays in the communication pipeline. The
agent has to query states from CarMaker, choose an action
based on the learned policy, send the control command to
CarMaker, and then read the new states through the APO
communication service. This leads to 40ms of simulated time
between each control output when the simulator is running at
real time. However, at maximum simulation speed (∼20x real
time), up to 300ms of simulated time occurs between control
commands received by the simulator. Further delays can exist
when the network weights are updated using large batches.
Therefore, for training, the simulator was constrained to
running at real time. This poses a problem for training, since
due to the sample inefficiency of actor-critic reinforcement
learning, the network needs a relatively large amount of
experiences to converge to an optimal policy.

Similar problems have been overcome in robotics applica-
tions by training a Gaussian process as a simulator proxy to
estimate the simulator using data sampled from the Gaussian
process [29], [30]. However, Gaussian processes scale poorly
to large datasets [31]. Another potential solution would be
to use a simplified vehicle model to speed up simulation, but
this would reduce the model accuracy in certain scenarios.
Instead, a second neural network, the proxy network, was
trained using supervised learning to estimate the vehicle
response to the control actions of the A2C algorithm. This
has the benefit that the neural network can take advantage
of the GPU computing to speed up the training process. The
proxy network was trained on 45 hours of collected driving
data from IPG CarMaker, resulting in a dataset of 2,364,041
time steps, of which 1,418,424 are in the training set.

The network has 3 hidden layers, with 100 neurons each. It
takes host vehicle velocity v, acceleration v̇, road coefficient
of friction CoF , and pedal actions from current and last
time-step, yt and yt−1, as inputs. The output of the network



Fig. 4. Vehicle state estimation with IPG CarMaker (blue) and proxy
network (black).

is the host vehicle velocity at the next time-step, vt+1, using
time-steps of 40ms. The network was then trained using
supervised learning with the training data collected from IPG
CarMaker for 1,000,000 training steps with a batch size of
1000 and a learning rate of 1x10-6. The model with the lowest
validation loss was then chosen, resulting in a model with
mean absolute percentage error of 0.1893% and 0.2248%
for velocity and acceleration estimations, respectively, as
measured on the validation data. A typical highway driving
scenario can be seen in Fig. 4, with a comparison of vehicle
states simulated in IPG CarMaker and estimated with the
trained proxy network, using the same pedal values as input.
Here, it can be seen that the neural network can estimate the
vehicle response from the pedal values, although a slight
underestimation can be seen at the start of the episode,
which leads to the maximum absolute velocity error of
0.405m/s. Therefore, the neural network can estimate the
vehicle response to the pedal actions sufficiently well to be
used for training the A2C network, and final validation can
then be done in IPG CarMaker to ensure the validity of the
results.

Once the supervised network was trained to work as an
estimation of the IPG CarMaker simulation environment,
it was used to train the A2C algorithm. The A2C agent
was trained for 2,500 episodes which equals to over 200
hours of driving. The training was completed using the proxy
network in under 19 hours, with both the proxy network and
A2C network deployed on the same GPU. Once trained, the
performance of the trained A2C agent was then tested in
IPG CarMaker for which the results can be seen in the next
section.

IV. SIMULATION RESULTS

Once the training phase with the proxy network was
complete, the performance of the A2C network was val-
idated in various driving scenarios. All simulation experi-
ments presented here were performed in the IPG CarMaker
simulation environment to utilise its superior accuracy and
ensure the validity of the results, by combining the IPG
CarMaker platform with the A2C algorithm in Tensorflow

Fig. 5. A2C controllers without LSTM (left) and with LSTM (right)
following a lead vehicle with constant velocities and a deceleration at CoF
= 1.0.

as described previously in Section III-B. The A2C algorithm
was tested for 10 hours on highway driving with and without
the LSTM layer, for a total of 20 hours. Both networks
used the same parameters as shown previously in Table I
(with the exception of the LSTM layer) and were trained
for 2,500 episodes. As an additional baseline, the default
driver in CarMaker, IPGDriver, is used to compare the A2C
networks’ performance against a rule-based control strategy.
The section starts with discussing example episodes to anal-
yse the individual performance of both network architectures,
followed by discussion on the overall performance of each
10 hour testing run.

A typical highway driving scenario with the lead vehicle
decelerating to a lower velocity in dry road conditions can be
seen in Fig. 5. The subplots on the left show the performance
without the LSTM layer and the subplots on the right with
the LSTM. From these results it is clear that the LSTM
layer helps the agent use smoother pedal values to control
the vehicle. While both networks appear to have learned a
reasonable driving policy, the LSTM architecture shows a
significantly smoother driving style and maintains a closer
headway to the 2s target, with a mean th of 2.0114s compared
to 2.3280s without the LSTM. A highway driving scenario in
wet conditions can be seen in Fig. 6 where the lead vehicle
periodically accelerates and decelerates. Again, the network
with LSTM shows better performance in terms of headway
error and significantly smoother driving style.

As an example of safety critical scenarios tested in the
simulations, an emergency braking scenario in wet road
conditions can be seen in Fig. 7. The lead vehicle starts
the scenario with a constant velocity of 26m/s, and at t =
17s begins to decelerate at 5m/s2 to a velocity of 12m/s.
To demonstrate the performance against a rule-based control
strategy, the behaviour of the IPGDriver is also shown here.
All controllers successfully brake in time to avoid a collision
with the lead vehicle. In comparison to the IPGDriver, the
networks maintain a significantly safer distance and headway



TABLE II
A2C PERFORMANCE WITH 10 HOURS OF TESTING.

Parameter IPGDriver A2C without LSTM A2C with LSTM
min. xrel 10.737 m 6.851 m 7.780 m
mean xrel 75.16 m 68.89 m 58.01 m
max. vrel 13.90 m/s 8.053 m/s 7.891 m/s
mean vrel 0.187 m/s 0.0656 m/s 0.0289 m/s
min. th 1.046 s 0.9089 s 1.114 s
mean th 2.5471 s 2.379 s 2.007 s
collisions 0 0 0

Fig. 6. A2C controllers without LSTM (left) and with LSTM (right)
following a lead vehicle with varying velocity profile at CoF = 0.55.

errors. More importantly, the results show the network with
LSTM maintains a safer distance from the lead vehicle. Min-
imum distances and time headways for the LSTM network
are 20.744m and 1.727s compared to 19.476m and 1.558s
without LSTM.

The results for the complete 10 hour highway driving runs
can be seen in Table II for IPG Driver and both networks with
and without the LSTM layer. The results show both networks
have learned to control the vehicle and maintain a reasonable
distance from the lead vehicle. These results demonstrate
that even the simple network architecture without temporal
context offers benefits over the rule-based controller. How-
ever, it can be seen that the LSTM layer has significantly
improved the performance of the controller. The aim of the
agent was to maintain a 2s time headway from the lead
vehicle, and with the LSTM the mean headway was 2.007s
compared to 2.379s without the LSTM, showing significant
improvement using the recurrent layer. Moreover, previous
results show that the LSTM layer helps the agent plan a
smoother control policy using temporal context, reducing the
jerkiness of the vehicle. Although some rare rapid changes
from the gas pedal to the brake pedal could still be seen,
this type of behaviour was significantly reduced compared
to the non-LSTM network architecture. This would improve
the comfort of any occupants and the overall safety of the
autonomous vehicle significantly.

V. CONCLUDING REMARKS

In this paper, a reinforcement learning algorithm for
autonomous vehicle longitudinal control based on the A2C
algorithm was presented. The proposed algorithm leverages
multiple recent advancements in reinforcement learning and
longitudinal control algorithms. The recurrent layers were
introduced into the network architectures to provide tem-
poral context and improve performance. Using continuous
action spaces together with temporal context the network
could output smoother and safer control signals. Sequenced
experience replay, together with trauma memory, boosted the
stability of training and safety of the learned control policy.
The proposed solution was compared to a network without
recurrent layers, and shown to improve the performance
(in terms of time headway errors) and smoothness of the
continuous control actions. The agent was trained to maintain
a 2s time headway from the lead vehicle in a highway driving
environment. A variety friction coefficients and lead vehicle
manoeuvrers were used to increase the complexity of the
task. Moreover, the training framework using a proxy simu-
lator was shown to accelerate the training process, mitigating
the sample inefficiency problem of reinforcement learning.
The A2C network was trained using a supervised learning
network trained to estimate the host vehicle’s response to
pedal actions chosen by the reinforcement learning agent.
This sped up the training process. All validation experi-
ments were then performed in a more accurate simulation
environment, IPG CarMaker, to ensure the validity of the
results. A further advantage of the A2C algorithm is that it
also enables distributed training, where multiple agents can
collect experiences, further speeding the training.

ACKNOWLEDGMENT

This work was supported by the UK-EPSRC grant
EP/R512217/1 and Jaguar Land Rover.

REFERENCES

[1] Department for Transport, “Research on the Impacts of Connected
and Autonomous Vehicles (CAVs) on Traffic Flow: Summary Report,”
2017. [Online]. Available: https://www.gov.uk/government/uploads/
system/uploads/attachment data/file/530091/impacts-of-connected-
and-autonomous-vehicles-on-traffic-flow-summary-report.pdf

[2] U. Montanaro, S. Dixit, S. Fallah, M. Dianati, A. Stevens, D. Oxtoby,
and A. Mouzakitis, “Towards connected autonomous driving: review
of use-cases,” Vehicle System Dynamics, pp. 1–36, 2018.

[3] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Inter-
net of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.



Fig. 7. IPGDriver (left) as well as A2C controllers without LSTM (middle) and with LSTM (right) following a lead vehicle performing an emergency
braking manoeuvrer at CoF = 0.5.

[4] A. Sorniotti, P. Barber, and S. De Pinto, “Path tracking for automated
driving: A tutorial on control system formulations and ongoing re-
search,” in Automated Driving. Springer, 2017, pp. 71–140.

[5] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[6] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 5,
pp. 694–711, 2006.

[7] D. Silver, J. A. Bagnell, and A. Stentz, “Learning Autonomous Driving
Styles and Maneuvers from Expert Demonstration,” in Experimental
Robotics. Springer, Heidelberg, 2013, pp. 371–386.

[8] D. Zhao, Z. Xia, and Q. Zhang, “Model-free optimal control based
intelligent cruise control with hardware-in-the-loop demonstration [re-
search frontier],” IEEE Computational Intelligence Magazine, vol. 12,
no. 2, pp. 56–69, 2017.

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[10] M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 2070–2075.

[11] C. Desjardins and B. Chaib-Draa, “Cooperative adaptive cruise con-
trol: A reinforcement learning approach,” IEEE Transactions on intel-
ligent transportation systems, vol. 12, no. 4, pp. 1248–1260, 2011.

[12] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[13] IPG Automotive GmbH, “Carmaker: Virtual testing of automobiles
and light-duty vehicles,” 2017. [Online]. Available: https://ipg-
automotive.com/products-services/simulation-software/carmaker/

[14] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[15] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[16] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Machine Learning Proceedings 1995. Elsevier,
1995, pp. 30–37.

[17] G. J. Gordon, “Stable function approximation in dynamic program-

ming,” in Machine Learning Proceedings 1995. Elsevier, 1995, pp.
261–268.

[18] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[19] M. Riedmiller, J. Peters, and S. Schaal, “Evaluation of policy gradient
methods and variants on the cart-pole benchmark,” in Approximate
Dynamic Programming and Reinforcement Learning, 2007. ADPRL
2007. IEEE International Symposium on. IEEE, 2007, pp. 254–261.

[20] S. Bhatnagar, M. Ghavamzadeh, M. Lee, and R. S. Sutton, “Incremen-
tal natural actor-critic algorithms,” in Advances in neural information
processing systems, 2008, pp. 105–112.

[21] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks
on cifar-10,” Unpublished manuscript, vol. 40, no. 7, 2010.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[24] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[25] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[26] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” 2015. [Online]. Available: https://www.aaai.org/
ocs/index.php/FSS/FSS15/paper/view/11673/11503

[27] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W.
Choi, “Autonomous braking system via deep reinforcement learning,”
in 2017 IEEE 20th International Conference on Intelligent Transporta-
tion Systems (ITSC). IEEE, 2017, pp. 1–6.

[28] Google, “Tensorflow: An open source machine learning framework
for everyone,” 2017. [Online]. Available: https://www.tensorflow.org/

[29] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[30] R. McAllister and C. E. Rasmussen, “Data-efficient reinforcement
learning in continuous state-action gaussian-pomdps,” in Advances in
Neural Information Processing Systems, 2017, pp. 2040–2049.

[31] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When gaussian process meets
big data: A review of scalable gps,” arXiv preprint arXiv:1807.01065,
2018.


