
Safe Deep Neural Network-driven Autonomous
Vehicles Using Software Safety Cages

Sampo Kuutti1[0000−0002−7020−4370], Richard Bowden2[0000−0003−3285−8020],
Harita Joshi3, Robert de Temple3, and Saber Fallah1[0000−0002−1298−1040]

1 Connected Autonomous Vehicles Lab, University of Surrey, UK
{s.j.kuutti,s.fallah}@surrey.ac.uk

2 Centre for Vision, Speech and Signal Processing, University of Surrey, UK
r.bowden@surrey.ac.uk

3 Jaguar Land Rover
{hjoshi3,rdetempl}@jaguarlandrover.com

Abstract. Deep learning is a promising class of techniques for control-
ling an autonomous vehicle. However, functional safety validation is seen
as a critical issue for these systems due to the lack of transparency in
deep neural networks and the safety-critical nature of autonomous vehi-
cles. The black box nature of deep neural networks limits the effectiveness
of traditional verification and validation methods. In this paper, we pro-
pose two software safety cages, which aim to limit the control action
of the neural network to a safe operational envelope. The safety cages
impose limits on the control action during critical scenarios, which if
breached, change the control action to a more conservative value. This
has the benefit that the behaviour of the safety cages is interpretable,
and therefore traditional functional safety validation techniques can be
applied. The work here presents a deep neural network trained for lon-
gitudinal vehicle control, with safety cages designed to prevent forward
collisions. Simulated testing in critical scenarios shows the effectiveness
of the safety cages in preventing forward collisions whilst under normal
highway driving unnecessary interruptions are eliminated, and the deep
learning control policy is able to perform unhindered. Interventions by
the safety cages are also used to re-train the network, resulting in a more
robust control policy.

Keywords: Automatic Control · Autonomous Vehicles · Cyber-physical
Systems · Deep Learning · Safety.

1 Introduction

Autonomous vehicles are proposed as the future of intelligent transportation
systems to address problems such as traffic congestion, pollution, and road
safety [4, 14, 16, 19]. Deep learning has emerged as a popular artificial intelli-
gence technique for autonomous vehicles, and has been proposed for many uses
in autonomous vehicles, including vehicle control [13]. The downside of deep
learning techniques is the opaqueness of the learned systems. In a safety-critical
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system, such as an autonomous vehicle, the safety of all sub-components as well
as the overall system must be validated to a high level of safety assurance. The
lack of interpretability in deep neural networks currently prevents effective safety
validation. Moreover, the complex nature of the driving task and the operational
environment mean that targeted testing methods are less useful due to the in-
ability to test the autonomous vehicle in all possible use cases [3,10]. In order to
introduce deep learning solutions to the next generation of intelligent vehicles,
new safety validation techniques must be found to address them specifically [13].

Safety cages have been proposed for black box systems, where the safety
of the system must be ensured without necessarily having full understanding
of how the system works. Given the opaqueness of deep neural networks, such
safety systems show great promise to improve the safety of the overall system.
Safety cages eliminate unsafe actions by imposing limits on possible control
actions. Utilising run-time monitoring, the safety cages can change dynamically
based on the state of the system and its environment [7]. For instance, the
safety cages in an autonomous vehicle can change the limits on acceleration
based on the relative distance to nearby vehicles or the current speed of the
vehicle. However, given that the safety cages intervene on the control output, a
well designed safety cage must minimise unnecessary interventions. Safety cages
have been used in cyber-physical systems where full offline safety validation is
not possible, such as in robotics [6,12] or aerospace [17] applications, to intervene
on the controller outputs in the presence of faults or dangerous control outputs.
For autonomous vehicles, Heckemann et al. [7] suggested that these techniques
could be useful for ensuring the safety of complex and adaptive machine learning
systems in autonomous vehicles. Adler et al. [1] proposed safety cages based on
five constraints such as ”accelerating if a slower vehicle is closely in front” to
meet the five Automotive Safety Integrity Levels (ASIL) defined in ISO26262 [8].

The contributions of this paper are three-fold. First, we present an imitation
learning method for longitudinal control of an autonomous vehicle. The model is
trained on data collected in IPG CarMaker [9], where the default driver demon-
strates the desired driving policy. Second, we present two software safety cages
designed to prevent forward collisions in an autonomous vehicle during highway
driving. The safety cages are used to intervene on the control output of the neural
network in safety critical scenarios, only when the network output is not reacting
adequately to the current danger. Unnecessary interventions on the control out-
put, which would degrade the performance of the controller and the comfort of
the passengers, are minimised. Extensive testing under normal driving scenarios
and in critical scenarios on two different neural networks demonstrate the effec-
tiveness of the approach. Third, we demonstrate that the interventions by the
safety cages can be used for re-training the network, improving the robustness
of the learned policy to mistakes in novel states. The remainder of the paper
is structured as follows. Section II describes the neural network algorithm de-
veloped for longitudinal control of an autonomous vehicle. Section III describes
the developed safety cages to prevent forward collisions. Testing of the safety
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cages in a simulated car following scenario are presented in Section IV. Finally,
concluding remarks and potential future work is given in Section V.

2 Longitudinal Control Algorithm

2.1 Data Collection

The collection of training data was carried out by defining various highway
driving scenarios in IPG CarMaker [9] where the lead vehicle varies its velocity
over time. In these scenarios, CarMaker’s pre-defined driver, IPG Driver, was
used to control the host vehicle and was set to maintain a 2s time headway
from the lead vehicle. The velocity of the lead vehicle was in the interval [17,
30]m/s, whilst the acceleration was limited to the interval [-2, 2]m/s2, since
higher acceleration magnitudes would be uncomfortable for passengers [20]. All
data was collected under dry road conditions with a road friction coefficient
µ = 1.0. The combined scenarios amount a total of 2 hours of driving data.
Sampling the simulation at 50Hz, this amounts to 375,000 data points. The
collected data set was then split into the training and validation data sets, with
80% of data in the training set and 20% in the validation set. This data was solely
used for training and validating the deep learning control policy. A further 10
hours of simulation, for each control policy, was used in live testing of these
policies in conjunction with the safety cages in a variety of scenarios and road
conditions that were not seen during training, and hence would be expected to
prove challenging for the control policy to generalise to.

2.2 Learning Algorithm

The inputs to the network were defined as time headway thw, relative velocity
vrel, host vehicle velocity v, and host vehicle acceleration a. The output of the
network y was defined as a single parameter based on the gas pedal and brake
pedal values such that y ∈ [-1, 1], where positive values signal the use of the
gas pedal whereas negative values correspond to the use of the brake pedal.
The activation function at each hidden layer neuron is the Rectified Linear Unit
(ReLU) function, whilst the output layer uses a tanh activation. The network
output is then compared to the output of IPG Driver, ŷk, in the training data.
The model is then trained through imitation learning, using the mean square
error between predicted output and ground truth as the loss function. After
performing a grid search for the network hyperparameters, the final network
architecture has 3 hidden layers with 50 neurons each, trained with a learning
rate of 1x10-2 and batch size of 100. The final model was trained for 1x106

training steps, resulting in a final validation loss of 0.0150463. For the purposes
of testing the effectiveness of the safety cages on an unsafe controller, a second
smaller neural network was also trained for the same task. The second suboptimal
network has the same parameters as the above-mentioned network, except it only
has one hidden layer with 10 neurons. Note, this network’s parameters were not
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optimised for performance, as a suboptimal model gives a better opportunity
to investigate the safety benefit offered by the proposed safety cages. To avoid
confusion between the two trained networks, the deeper network with optimised
hyperparameters will henceforth be referred to as the deep network and the
smaller suboptimal network will be referred to as the shallow network. The losses
during training for both networks can be seen in Fig. 1.

Fig. 1: Smoothed loss curves for training and validation sets.

3 Safety Cages

Software safety cages have been used in many applications as a means to improve
safety by limiting outputs to a safe operational envelope. In their simplest forms,
the safety cages can be hard upper/lower limits on the output. By using run-time
monitoring to observe the state of the system and its environment, context-aware
safety cages can use the observed states to dynamically limit the control output
as the situation requires. For instance, in the problem of autonomous driving,
a control output calling for full acceleration may be safe when there are no
vehicles ahead but would be unsafe if the host vehicle is already close to the lead
vehicle. Using such situational awareness, the potentially dangerous outputs of
the neural network can be prevented by limiting their outputs during critical
scenarios. Therefore, the safety validation requirements on the neural network
can be relaxed, given that the software safety cages can be validated with high
assurance [11].

The safety cages developed here focus on the longitudinal control of an au-
tonomous vehicle described in previous sections, attempting to prevent forward
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collisions in highway driving scenarios. The safety cages observe the time head-
way (thw) and time-to-collision (TTC) to the lead vehicle as given by:

thw =
xrel
v

(1)

TTC =
xrel
vrel

(2)

where v is the host vehicle velocity, vrel is the relative velocity of the host and
lead vehicles, and xrel is the distance to the lead vehicle.

The TTC and thw were chosen as the metrics for the safety cages as they
represent the risk of a forward collision. The TTC value represents the time
required for two vehicles to collide if they continue at their current velocities
and trajectories. Therefore, for a car following scenario in a single lane, such as
the scenarios considered in this paper, a low TTC value means a forward collision
is likely. However, TTC alone does not provide the full information regarding the
risk of a forward collision. For instance, two vehicles driving at high speeds on
the highway may be very close to each other, but if their relative speed is low or
zero the TTC metric would not indicate the full risk of the situation. If the lead
vehicle in this situation had to suddenly brake, the vehicle behind would be too
close to react in time and prevent a collision from occurring. Therefore, a metric
such as time headway is useful. Time headway represents the intervehicular
distance in time, based on the host vehicle’s velocity. Since thw does not make
assumptions about the lead vehicle’s actions as TTC does, it acts as a good
safety metric in a car following scenario. These observed states are then used to
identify a risk level for a possible forward collision. The risk levels were based on
the TTC and thw based risk threshold presented in [2, 5, 15] with the final risk
thresholds tuned to avoid collisions whilst minimising unnecessary interventions
by the safety cages, as shown in Fig. 2. The safety cages impose a minimum
brake pedal value when the risk of forward collision exceeds the given threshold.
The safety cages intervene on the control action, if the neural network outputs
a control action with less than the minimum required braking. Therefore, the
safety cages do not decide the correct action for each scenario, but only intervene
on the control action as a fall-back safety mechanism when the neural network
is not responding to the level of risk adequately. Using the notation from the
previous section, where a negative output y represents braking, the final control
action is given by

y = min(ynn, ysc) (3)

where ynn is the output of the neural network and ysc is the minimum required
braking imposed by the safety cages.

4 Simulation Results

In order to investigate the effectiveness of the proposed safety cages, the two
trained neural networks were tested under various car following scenarios. All
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Fig. 2: Safety Cages with Time headway and Time-to-Collision based safety en-
velopes.

testing was done in the IPG CarMaker simulation platform. The scenarios were
broken down to 5-minute episodes, where the episode ends after the 5 minutes
or if a crash occurred. At the start of each episode a road friction coefficient
value between 0.4 and 1.0 was chosen. The lead vehicle performed randomly
chosen manoeuvrers, with the velocity limited to vlead ∈ [17, 40]m/s, and the
acceleration limited to alead ∈ [-2, 2]m/s2. The exception to this was emergency
braking manoeuvrers, which the lead vehicle performed, on average, once an
hour. During emergency braking the deceleration was chosen between alead ∈ [-6,
-3]m/s2. The combined testing includes 40 hours of driving overall, with various
road conditions and different manoeuvrers performed by the lead vehicle. This
includes testing the deep network with safety cages, shallow network with safety
cages, shallow network without safety cages, and re-trained shallow network,
for 10 hours each. We start the section by presenting results of the key types of
scenarios (e.g. normal highway driving, emergency braking, wet road conditions)
to investigate what the networks have learned and the effectiveness of the safety
cages. Finally, we present and discuss the overall results of each 10 hour test
run.

The first tests validated the performance of the networks under typical high-
way driving scenarios similar to those seen in the training data (Fig. 3a). Both
networks show that they have learned a reasonable driving policy, keeping a safe
headway close to the target headway of 2s. Moreover, no safety cage interven-
tions are required in these scenarios for either network. This is not surprising
as we are asking the networks to predict vehicle control actions for scenarios
similar to those they were trained to operate in. Following this, the generali-
sation capability to completely new scenarios was tested. Firstly, the networks
were tested under different road conditions. Since all training data was from dry
road conditions (road friction coefficient µ = 1.0), the performance was tested
under various µ values ranging from 0.4 to 1.0. Vehicle following scenario at µ
= 0.55 can be seen in Fig. 3b. Both networks have learned to keep a safe time
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headway and adjust well to different road conditions, even if they were trained
only on dry road condition. Again, no interventions by the safety cages occur in
these scenarios. This in itself is impressive and demonstrates the power of deep
learning.

(a) (b)

Fig. 3: Neural network controllers following a lead vehicle at (a) µ = 1.0 and (b)
µ = 0.55.

The second generalisation tests involved emergency braking performed by
the lead vehicle. Since no emergency manoeuvrers were included in the training
data, the networks’ response to emergency braking by the lead vehicle is more
interesting. Fig. 4a and 4b show emergency braking manoeuvrers performed
by the lead vehicle with a deceleration of 5m/s2 at µ values of 0.9 and 0.5,
respectively. Here, the deep network generalises its previously learned rules to
perform well at the emergency manoeuvrer, whilst the shallow network fails to
generalise. Both emergency braking scenarios lead to the shallow network causing
a forward collision with the lead vehicle when no safety cages are used. The
shallow network initially starts to decelerate as the lead vehicle decelerates, but
when seeing inputs to the network not seen during training, it cannot generalise
to the new situation due to insufficient amount of parameters compared to the
deep network and begins to accelerate until it crashes. However, when safety
cages intervene on the shallow network’s control action, the braking by the safety
cages brings the vehicle back from the low time headway to a safe one, where
the shallow network resumes control of the vehicle. Moreover, these scenarios
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(a) (b)

Fig. 4: Neural network controllers with the lead vehicle performing an emergency
braking manoeuvrer (a) at µ = 0.9, where the shallow network without safety
cages crashes at t = 24.72 s and (b) at µ = 0.5, where the shallow network
without safety cages crashes at t = 21.96 s.

show that the safety cages can respond adequately to an emergency scenario by
keeping the vehicle at a safe distance without excessive braking.

The networks were each tested in 10 hours of overall driving, for which the
results can be seen in Table 1. The results from the IPG Driver demonstrator are
also shown as a baseline for comparison. It can be seen from the results that the
deep network has learned a safe driving policy, which keeps the vehicle at a safe
distance from the lead vehicle without requiring the safety cages to intervene.
The results show that the deep network has learned to outperform the IPG
Driver, showing it generalises better to new scenarios (e.g. emergency braking)
compared to the rule-based system. Also, given that the deep network can safely
operate the vehicle, it can be seen that the safety cages never unnecessarily
intervened on the control output, which could degrade the performance of the
controller and lead to discomfort for the passengers. In comparison, the shallow
network showed adequate performance in situations where the network inputs
were in the same region as those seen during training. However, under emergency
braking scenarios the shallow network fails to generalise and unexpectedly begins
to accelerate until it crashes. This type of unexpected behaviour in new scenarios
shows the efficacy of the proposed safety cages. The safety cages intervene on
the network outputs, by decelerating the vehicle to a low risk region before
handing the control back to the neural network again. Without the safety cages,
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the shallow network crashed 6 times in 10 hours, whilst using the safety cages
caused the cages to intervene on 360 control actions (equal to only 14.40 s total
duration) which prevented all collisions from occurring.

As an additional experiment for improving the robustness of the neural net-
work, the interventions by the safety cages were used to augment the original
training set. The shallow network was then re-trained for a further 100,000 train-
ing steps using the new augmented training set and previously stated training
parameters. This approach is inspired by similar multi-stage training methods,
such as DAgger [18], where the agent is initially trained using imitation learning,
then tested in its intended operational domain, and the states seen during test-
ing are re-labelled by the expert (which was used to generate the initial dataset)
to create an augmented dataset, which is then used for re-training. However, for
autonomous vehicles, the expert (i.e. human driver) would be costly to use for
re-labelling all the states seen during testing. Instead, in our approach the safety
cages provide a more accessible signal for ground truth, albeit only in scenarios
where the neural network is outputting dangerous actions. Using this framework,
the re-trained shallow network was then tested again through 10 hours of simu-
lated driving, with the new results shown in the last row of Table 1. Although
some interventions are still required, the results show that the re-training has
improved the overall performance and safety of the shallow network. Thus, in our
training framework, the agent is allowed to make mistakes and the knowledge
from the safety cages is used to teach the network how to correct these mistakes,
thereby boosting the robustness of the network without requiring costly queries
to a human expert for ground truth labels.

Table 1: Neural network performance with 10 hours of testing.

Network
xrel

min./mean (m)

vrel

max./mean (m/s)

thw

min./mean (s)
collisions

safety cage

violations

IPG Driver 10.7372 / 75.1552 13.8896 / 0.1866 1.0459 / 2.5471 0 -

Deep 23.8440 / 57.3687 8.8781 / 0.0197 1.7383 / 1.9895 0 0

Shallow 7.2504 / 54.4619 13.4619 / 0.0096 0.7765 / 1.8836 0 360

Shallow

(no safety cages)
0 / 54.4530 20.8884 / 0.0005 0 / 1.8789 6 -

Shallow

(re-trained)
13.1289 / 57.5260 11.2086 / 0.0222 1.1527 / 1.9881 0 198

5 Concluding Remarks

In this paper, two safety cages were proposed for prevention of forward collisions
in an autonomous vehicle. The safety cages aim to improve the safety and relia-
bility of the system, without requiring any white-box knowledge of the machine
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learning system. This is achieved by limiting the control output of the system
to a safe envelope, which is defined by the time headway and time-to-collision
to the vehicle in front. Therefore, by using run-time monitoring to observe the
state of the host vehicle and the lead vehicle, the control action can be limited
dynamically by a context-aware software safety cage. The results presented in
Section IV demonstrated the efficacy of the proposed safety cages. The safety
cages were shown to correctly identify unsafe scenarios where control interven-
tions were required and bring the vehicle back to a low risk region. Moreover,
the results under normal highway driving indicate that the safety cages do not
unnecessarily intervene on the controllers actions and degrade the overall perfor-
mance of the system. Instead, the safety cages step in when the neural network
shows unexpected behaviour (e.g. by failing to generalise to a completely new
scenario not included in the training data set) and ensure safe control actions
are used. Therefore, the safety cages increase the confidence in the safety of
the autonomous vehicle, by ensuring that incorrect outputs can be eliminated
and giving an idea of what the worst case performance of the vehicle would
be in safety-critical scenarios. Furthermore, it was shown that interventions by
the safety cages could be used for re-training the network, which improved the
performance and safety of the learned policy.

This work opens multiple potential avenues for future work. The safety cages
presented here mitigate forward collisions under highway driving. The presented
techniques could be used to further develop safety cages to account for lateral
control, urban driving, etc. To improve the safety offered by the safety cages,
fault identification and mitigation could be used to identify the effect of faulty
measurements on the effectiveness of the safety cages. Furthermore, the inter-
ventions by the safety cages could be leveraged to better understand what the
network has learned (or has not learned) by identifying the edge cases where
the network fails. Further improvements to the re-training framework could also
be investigated, for example, by using iterative testing and re-training, or by
addressing the imbalance between the scarce interventions of the safety cages
relative to the significantly larger original dataset.
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