
Auto-Perceptive Reinforcement Learning (APRiL)
Rebecca Allday, Simon Hadfield, and Richard Bowden 1

Abstract— The relationship between the feedback given in
Reinforcement Learning (RL) and visual data input is often
extremely complex. Given this, expecting a single system trained
end-to-end to learn both how to perceive and interact with
its environment is unrealistic for complex domains. In this
paper we propose Auto-Perceptive Reinforcement Learning
(APRiL), separating the perception and the control elements
of the task. This method uses an auto-perceptive network to
encode a feature space. The feature space may explicitly encode
available knowledge from the semantically understood state
space but the network is also free to encode unanticipated
auxiliary data. By decoupling visual perception from the RL
process, APRiL can make use of techniques shown to improve
performance and efficiency of RL training, which are often
difficult to apply directly with a visual input. We present results
showing that APRiL is effective in tasks where the semantically
understood state space is known. We also demonstrate that
allowing the feature space to learn auxiliary information, allows
it to use the visual perception system to improve performance
by approximately 30%. We also show that maintaining some
level of semantics in the encoded state, which can then make
use of state-of-the art RL techniques, saves around 75% of the
time that would be used to collect simulation examples.

I . I N T R O D U C T I O N

Unifying deep reinforcement learning with visual per-
ception is often slow and ineffective for high dimensional
problems with continuous action spaces. This is perhaps
unsurprising as training directly from percepts through to
actions for control is a complex relationship with poorly
constrained supervision. This is especially true due to the
high dimensionality of the image domain and the fact that
many techniques used to speed up learning cannot be applied
in image based systems. In nature, learning to interpret our
surroundings and interact with them are learnt simultaneously
but not necessarily as one continuous system [1]. Inspired by
this, we use interaction with the world to co-train separate
visual perception and control systems (Fig. 1).

This work shows how an auto-perception network can
be used to learn an effective state space for reinforcement
learning. Unlike previous RL techniques which try to learn
an encoded state space, the proposed solution generalises
across all levels of state observability. When the state space
is completely or partially observable at training time then it
is used to condition the learning of a representative feature
space. The conditioned auto-encoder can be used to create a
feature space which includes this knowledge but is not limited
to it - allowing retrieval of other auxiliary information from
the observations which may not have been considered by the
developer.

1All authors are with Center for Vision, Speech and Signal Processing
(CVSSP), University of Surrey, Guildford, United Kingdom {r.allday,
s.hadfield, r.bowden}@surrey.ac.uk

Fig. 1: Perception and control in the brain are linked but
separate systems requiring different feedback.

I I . R E L AT E D W O R K

Deep RL has seen advances recently with work like Deep Q-
Networks [7] which uses a deep convolutional neural network
(CNN) to approximate the action-value function in a Q-
learning method to learn to play Atari games. There have
since been many variations on DQNs such as using recurrent
neural networks in place of a standard feed-forward CNN
[12] and adaptations for use with continuous action spaces
[13]. Whilst these value based methods for RL have proved
popular, policy based and actor-critic methods have also been
successfully adapted for deep learning. In this work we use a
synchronous version of Mnih et al.’s Asynchronous Advantage
Actor-Critic (A3C) method [11].

RL algorithms are often tested using simple software sim-
ulators such as video games or simple physics problems (e.g.
cart-pole). This makes it easy to accumulate the number of
episodes required to train the networks, which is not practical
for more realistic robotics applications. Many techniques for
approaching the issue of data collection have been suggested.
For example, Hindsight Experience Replay (HER) [14] allows
RL to learn from unsuccessful episodes by changing the goal
and hence the reward feedback. However, in order to apply
this to the image domain, a method for synthesising images
is required to change the goal. There have also been model
based techniques aimed at reducing the number of experiences
needed for training. Black-DROPS (Black-box Data-efficient
RObot Policy Search) [15], for example, uses Gaussian
Processes (GPs) to learn the dynamics of a system with a
small number of experiences and then produces experiences
for training the RL directly from the GPs. This accelerates
the RL process but is focused on systems where the state is
fully observed and has a small number of dimensions. The
large dimensionality of observations only available as images
are not suitable for GP dynamics modeling.

Advances in deep learning has meant that feature spaces
can be created which represent the important aspects of a
visual observation. Deep auto-encoders [16] have been used
extensively to reduce dimensionality of data and have been
used with CNNs [17] to help retain the spatial relationships
in images. As well as providing a low-dimensional feature

TABLE I: Comparison of different works using Reinforcement Learning (RL) and Auto-encoders (AE)

Use of AE RL method RL Input Space Goal conditioned Semantics
in RL input

Lange and Riedmiller
(2010) [2]

Encode image FQI [3] Latent space No None

Finn et al.
(2016) [4]

Encode image Gaussian Controller +
Guided Policy Search [5]

Robot state +
latent space

Implicit in image -
encoded into latent space

Partially

Stadie et al.
(2015) [6]

Encode image for
augmented reward

DQN [7] Images Implicit in image -

Kimura (2018) [8] Pretrain RL network DQN [7] Images Implicit in image -

Nair et al.
(2018) [9]

Encode image, Calc
reward, Generate data

TD3 [10] Latent space Conditioned with a point
in the state space

None

APRiL (Ours) Encode image A2C [11] Available env and robot
state + latent space

Implicit in input (state or
latent space)

Variable

space they are also used to create generative models, for
example in image restoration [18].

Considering the problems high dimensional spaces cause
in RL, it is not surprising that attempts to use auto-encoder
networks with RL have been made. Table I compares the
uses of auto-encoders in RL systems. Finn et al. [4] use an
auto-encoder to create a set of feature points representing
positions in the image that describe the environment, for
example where objects are. Stadie et al. [6] encode a state
for training a dynamics model in order to improve exploration
by increasing curiosity, but still use the raw observation as
the input to the learning system. Lange and Riedmiller [2]
use a deep auto-encoder to compress a visual input to a
low dimensional feature space, which is not semantically
understood. This improves the reinforcement learning data-
efficiency. Kimura [8] uses auto-encoders as pre-training for a
DQN system. However, none of these approaches can exploit
valuable RL techniques, such as HER. Lange and Reidmiller’s
work does not have the semantic understanding required in
the features in order to adapt the episode with a new goal.
Kimura’s requires images, for fine-tuning of the network,
which cannot be adapted for a new goal.

Nair et al. [9] propose a solution to goal-conditioned RL,
using an encoder-decoder system to learn a latent space which
can be used to sample goals, provide a lower dimensional,
structured input for RL, and to compute a reward signal.
Although this allows HER to be used for visual problems,
it introduces its own limitations. In using an image as an
explicit goal, the agent’s flexibility is limited. For example, in
a pick and place problem it restrains the final position of the
robot when the final position of the object is more important.
They also assume that only the image is available to the RL
system at train time, they do not consider cases where we
may want to make use of the state that is available - meaning
information is wasted.

In contrast APRiL makes use of whatever semantically
understood state information is available at train time, whilst
still allowing additional auxiliary information to be encoded
from the visual input. This gives a system which makes full
use of the information and RL techniques available at train
time but can still be deployed using vision as the input.

I I I . M E T H O D O L O G Y

Fig. 2 shows the outline of the proposed APRiL approach.
The black arrows show the data flow at deployment. The
observation image of the agent and environment is passed to
the encoder which provides an encoded state, which may be
completely or partially semantically understood. This is then
passed to the trained reinforcement learning system which
selects an action which is passed back to the agent to be
executed.

The flow of the data when the system is being trained
can also be seen in Fig. 2. The optional loss can be
used if semantically understood knowledge of the state is
partly or fully available. The perception network is trained
independently on data collected with an initial random walk
policy from the RL system. The RL block is trained using
data both from the agent (in this case a physics simulator)
and from a pre-trained Gaussian Process which models the
dynamics of the system. This means that the RL system can
obtain vast quantities of data points without having to run
them all through a physics simulator, speeding up the process.
The following sections elaborate on the individual elements
and how they are trained.

A. Reinforcement Learning

A formalisation of episodic reinforcement learning is used
where an agent interacts with an environment at discrete time
steps, t, with a maximum number of steps T . There is a set
of states st ∈ S and a set of actions the agent can perform
at ∈ A. The goal is to maximise the discounted sum of
reward signal rt over time,

Rt =

∞∑
k=0

γkrt+k (1)

where γ ∈ [0, 1] is the discount factor for future rewards. In
order to maximise Rt we learn a policy π(a | st), which
estimates a distribution over the possible actions, a ∈ A,
conditioned on the current state st. We sample at from this
distribution π(a | st). The value is defined as V π(st) =
E (Rt | st, π), the expected return Rt given a particular policy
starting in a particular state st. Finally, the action-value
function is defined as Qπ(st, at) = E (Rt | st, at, π), the
expected return Rt given a particular policy, starting with a
particular action at from a specified stated st. For the visual
aspect we define ot ∈ O as an image of the system.

Control

Perception

Agent and
Environment

Encoder

Observation Reconstructed
Observation

Reinforcement Learning

Decoder
Observation

(𝑜 ∈ 𝑂)

Action (a ∈ 𝐴)

Observation (𝑜 ∈ 𝑂)

Encoded state
(s ∈ 𝑆 ⊂ ℝ𝑛)

Available semantic state
(ҧ𝑠 ∈ ҧ𝑆 ⊂ ℝ𝑚, 𝑚 ≤ 𝑛)

Reward (𝑟 ∈ ℝ)

Forward data

flow

Optional loss

Loss

Fig. 2: Overview of APRiL. The optional loss and the |S| determines how much of the encoded latent space is semantically
understood. Black arrows: the data flow in the forward pass, Orange arrows: the data flow in the backward pass.

In this work we use Advantage-Actor-Critic style reinforce-
ment learning [11]. This system produces two outputs - a
stochastic policy (the actor) and an estimate of the value
function (the critic). The ground truth value Rt is used to
calculate the value loss

Lv = Rt − V (st). (2)
The policy loss is calculated using the advantage, given by

A(st, at) = Q(st, at)− V (st). (3)
The advantage gives the difference between the expected
return given the action taken and the expected return of the
state itself given the current policy - showing how much better
or worse the action performed than expected. This can be
approximated as the discounted rewards minus the predicted
value for the current policy, taking the form A(st, at) ≈
Rt − V (st). The policy used is in the form of a Gaussian
distribution, such that π(a | st) = N (µa, σ

2
a). Given that an

action at is then sampled and executed, the policy loss is
then calculated as

Lp = log π(a = at|st)A(st, at). (4)

This means that an action which is better than expected will
be made more likely, with a weighting of how likely it was in
the first place. In contrast an action which performed worse
will be made less likely for that state. The full loss for the
RL network then takes the form

LR L = αLv + βLp + εH(π(st)) (5)
where H is the entropy - which is included to encourage
exploration - and α, β, ε are hyper-parameters which control
the strength of each loss term. To ensure that the initial
random value estimate is sensible and does not skew the
policy loss, we train with α = 1, β = 0, ε = 0 for a small
number of iterations.

We use a batch-style off-policy approach by storing up
experience in a replay buffer and sampling from this to
train the RL algorithm. We set a limit to our experience
replay buffer to some value M so that as learning progresses,
the oldest experiences are forgotten and replaced with more
recent ones. The replay buffer is of the form Ω = {e :
|Ω| < M}, where each episode of experiences is of the
form e = {(st, at, Rt) : t = 1, .., j and j ≤ T} where j is
the terminating step for that episode. The probability of at
being selected from the current policy and the value of the
st for the current policy is found at training time.

1) Hindsight Experience Replay: Hindsight Experience
Replay (HER) [14] is a powerful technique which allows us to
learn from unsuccessful episodes in learning, especially where
rewards are sparse and success from random exploration may
be limited. Using HER we can adjust the goal for our system
to a state it achieved in the current episode - meaning we
artificially create successful episodes. For a given episode
s1, ..., sT where a goal g 6= s1, ..., st, we may “replay” this
episode with g = si for some 1 < i < T knowing that
it will achieve the goal. Adding these adapted episodes to
the experience replay, Ω, means the episode buffer then has
more episodes to learn from and has a more balanced ratio
of successful episodes without needing excessive exploration.

2) Gaussian Process Model: In order to reduce the number
of costly agent-environment interactions we use Gaussian
Processes (GPs) to approximate the dynamics of our system
and give uncertainty information. We use a small number of
interactions with the agent and environment to train the GP -
this takes in the current state, st, and the action to be taken,
at. It is then optimized to output a Gaussian distribution
which estimates the next state st+1 with uncertainty.

We represent the dynamics of our system as

st+1 = st +D(st, at) + w, (6)

with w (Gaussian system noise) and D (unknown transition
dynamics). Given that xt = (st, at), the GP is computed as

D̂(xt) ∼ GP(µD̂(xt), kD̂(xt, x
′
t)), (7)

where µD̂ is the mean function and kD̂ is the kernel function.
With a set of observed transitions Y1:t = D(x1), ..., D(xt),
we can query our GP at a new data point x∗ to obtain a
distribution over expected state updates:

p(D̂(x∗) | Y1:t, x∗) = N (µD̂(x∗), σ
2
D̂(x∗)). (8)

Sampling from this Gaussian allows the rapid creation of
more episodes to train the RL system. The same reward
calculations as the normal environment are used so these
episodes can be added directly to Ω as before.

B. Auto-Perceptive Network

The perception part of our system is an auto-encoder. This
allows us to encode a feature space to use as the state space,
S, which is the input to the RL system. The encoder uses
the observations of the agent and environment in the form of
an image, transforming it to the feature space as the function

φenc : O → S, whilst the decoder arm transforms from the
feature space to a reconstructed image φdec : S → O.

The auto-encoder takes the image observation of the system
as an input and compresses it down to the feature space
st = φenc(ot) and the output is a reconstruction of that
image ôt = φdec ◦ φenc(ot). The reconstruction loss is a
pixel-wise loss against the input

Lr = |ot − ôt|. (9)

We denote the space of available information from the
environment, which has a predefined semantic meaning, as
s̄t ∈ S̄. The optional conditioning loss is the absolute
difference between a section of the encoded state space and
the semantically understood state. In the case where S ⊂ Rn
and S̄ ⊂ Rm, with m ≤ n, then the conditioning loss is

Lc = |s1:mt − s̄t|. (10)

The full loss for the visual perception network is
LV P = Lr + ωLc, (11)

where ω is a weighting which determines how strong the
conditioning is. The learnt feature space can be:

1) entirely conditioned to be semantically understood as
the observable state (m = n, ω 6= 0),

2) partially conditioned with some learnt features relating
to the observable state and some auxiliary features with
no predetermined semantic meaning (m < n, ω 6= 0),

3) or not conditioned with learnt features having no prede-
termined semantic meaning (ω = 0).

This network can be trained using data from initial random
exploration and fine-tuned during reinforcement learning.

C. Auto-Perceptive Reinforcement Learning (APRiL)

The RL system and the auto-perception network are
independent networks, which can be trained concurrently with
much of the same data but do not need to be trained end-to-
end as they exploit different types of supervision.

In the case of the encoded feature space being entirely
semantically understood the auto-encoder is trained with data
collected for the initial random exploration - the same data
can be used to train the GP to learn the dynamics. These may
be co-trained in parallel and tested individually before being
integrated. The perception network infers an approximated
state from an observation and then passes this approximate
state to the RL network without the RL needing to see any
images during training. This still provides a system which
does not need access to the robot state at run time and can
predict actions with only visual input, but does not require it
to be trained in an end-to-end manner, allowing RL to benefit
from HER and GP modelled transition dynamics.

When the encoded feature space is partially semantically
understood then the auto-encoder will still be pre-trained on
random data but the encoder arm will be used to get the
encoded state for input to the RL system. Therefore the RL
system only has to interpret the low dimensional feature space
coming from the auto-encoder and does not need to process
the images. This means that the training is more focused on
solving the control problem. Techniques such as HER are

(a) Original (b) Reconstructed (ω = 1)

(c) Original (d) Reconstructed (ω = 0)

Fig. 3: Reconstructions from the auto-perceptive network

TABLE II: Average episode length (actions to complete task)
of system trained on the Fetch Reach env (no obstacle).

Runtime RL Input Average Episode Length

Ground truth S̄ 3.10
Perceived S (ω = 1.0) 12.42
Perceived S (ω = 0.5) 17.06
Perceived S (ω = 0.0) [2] 30.94

still feasible since we have a predetermined understanding
of some of the feature space being used by the RL.

The final case is where there is no semantically understood
state available. This is similar to Lange and Riedmiller’s work
[2] where the encoder feature space had no predetermined
semantic meaning. This case still allows a lower dimensional
state space to be learnt from the visual input even when there
is no semantic state available during training.

I V. E X P E R I M E N T S A N D R E S U LT S

To evaluate APRiL we use the OpenAI [19] framework
with the Mujoco physics simulator [20]. We use a variation of
the Fetch robot reach environment because it has a continuous
action space and has a visually interesting environment to
test the auto-perceptive system. The aim is to direct the end-
effector of the Fetch arm to a goal gx, gy, gz - represented
visually by a red sphere. The action space is defined with
actions (∆x,∆y,∆z) where (x, y, z) is the position of the
end-effector and the maximum episode length is set as T = 50.
We train the networks using Adam optimizers [21] and a Ten-
sorflow [22] implementation of our system will be available at
https://github.com/rebecca-allday/APRiL.

A. Fully Semantic Features

The first experiment uses a fully observed, semantically
understood state s̄t = (xt, yt, zt, gx, gy, gz). Firstly, we use
a random policy to collect an initial experience replay buffer.
This data can be used to train multiple aspects of the
system. Initially we train a GP on the transitions taking
in (xt, yt, zt,∆x,∆y,∆z) and outputting (xt+1, yt+1, zt+1).
This allows us to create extra episodes to train our RL system

as described in Section III-A.2. The advantage actor-critic RL
system is trained with data created from both the GP and from
the agent, including the HER additions to the replay buffer.
The data from the random policy and any episodes collected
using the simulator are used to train the perception network.
In this case the perception network is co-trained such that
s̄t = st = φenc(ot), which is the first case from Section III-B,
when m = n and ω 6= 0. Finally, at test time the networks
can be used together to go directly from vision to actions,
following the data flow shown by the black arrows in Fig. 2.
We compare this to a latent space with no conditioning loss,
where ω = 0, which is similar to [2].

The training of the RL system, using the semantically
understood state space directly, converges with only 15
episodes of random policy interactions with the simulator, the
rest of the data used is collected from our trained GP. It takes
approximately 0.01 seconds per rendered simulation step, but
only 0.0025 seconds to sample a single step from the GP.
This equates to saving 75% of the time that would have been
spent on collecting simulation examples. This is a saving that
would not be possible using a traditional end-to-end visual
RL algorithm.

Table II shows the policy achieves an average episode
length of 3.1 actions when using the ground truth state space
as input. The perception network is trained alongside this.
Examples of the reconstructions from the auto-encoder can
be seen in Fig. 3, along with reconstructions from the auto-
encoder without the semantic conditioning (ω = 0). Even
though we fully constrain the encoded feature space, and do
not enable the system to encode many visual properties, the
decoder arm is still able to learn how to produce realistic
images of the scene from a non-visual intermediate state,
including how to correctly place a fully textured robotic arm.
They are certainly comparable to the reconstructions without
the conditioning loss. However, reconstruction accuracy is
unimportant, the key is the reconstruction loss aids encoding
meaningful information into the latent space for the RL.

At test time we can see the performance of the system
using the visual encoder network to produce the feature space,
which is an approximation of the semantically understood
state space, given to the RL network. The policy achieves an
average episode length of 12.4 actions. This is largely due
to the goal or end point being occluded or out of the field of
view, in which case the arm must move to attempt to gather
more information about its current state. In these situations,
the ground truth algorithm is an unrealistic comparison for
a vision based system which will never have full access to
the state. However, this is still much more effective than the
case when the perceived state, S, is not conditioned on the
semantically understood state, S̄, which is similar to [2].

B. Partially Semantic Features

The next set of experiments introduces an element such
that the state is not be fully observed via a semantically
understood state space. A randomly placed obstacle (box) is
added which can affect exploration and potential solutions
for getting to the goal (red sphere), see Fig. 4. Again we

Fig. 4: Fetch simulation with obstacle (box) and goal (sphere)

TABLE III: Average episode length of system trained on an
environment with a randomly placed obstacle.

Runtime RL Input n m Average Episode Length

Ground Truth S̄ - - 8.45
GT S̄ and Percieved S [4] 6 0 5.44

Perceived S [2] 16 0 37.04
Perceived S 6 6 28.55
Perceived S 8 6 20.83

compare the results in this section to a network trained with
no access to the available semantic state which is similar
to [2]. We also train a system which takes the ground truth
semantic state and a separate latent space (in a similar way
to [4]) to show that if both are available the system has all
the information it needs.

We first train APRiL on the same state that was available
in the previous set-up. This means that the RL system is not
receiving any information about the obstacle. As expected, we
see a reduction in performance compared to the environment
with no obstacle. From 3.10 average actions per episode
with no obstacle to 8.45 with obstacles - this equates to
approximately a 2.5 times increase in the number of actions.
Examples of the reconstructions from the perception network
are seen in Fig. 5b. These reconstructions are comparable to
those in Fig. 3b, with some slight degradation because the
scene is more complex yet we have not given it any additional
degrees of freedom in the latent space. It is interesting to note
that the decoder arm attempts to reconstruct the obstacle even
though it is theoretically not present in the intermediate state.

When testing with the perception to action system we
see that this gives much worse performance with an average
episode length of 28.55 actions (See Table III). It is good
to note that this is in comparison to 12.42 actions with no
obstacles, equating to approximately a 2.5 times increase in
the number of actions which is similar in scale to the decrease
in performance seen without perception. This is likely because
it has no way of knowing about the obstacle in the encoded
state and often mistakes it for the goal, especially if the goal
is occluded by the arm.

Next we allowed the encoded feature space to be only
partially semantically understood. We used a feature space
of size n = 8, with the semantically understood state s̄t
conditioning only the first 6 elements (i.e. m = 6). The rest
were driven purely by the reconstruction loss, allowing it
to learn whatever was relevant to the understanding of the
environment. Example reconstructions from the perception
network can be seen in Fig. 5d. This trained perception
network does a better job of modelling the obstacle and goal
as independent objects, however the robot arm has lost a
significant amount of visual fidelity. This may be because all

(a) Original (b) Reconstructed (n = m = 6)

(c) Original (d) Reconstructed (n = 8,m = 6)

(e) Original (f) Reconstructed (n = 16,m = 0)

Fig. 5: Reconstructions from the auto-perceptive network
for the env with obstacles - top: semantic features, middle:
partially semantic features, bottom: non-semantic features.

systems have been trained for the same number of iterations,
despite this one having more network parameters. Regardless,
a high fidelity image of the robotic arm is not important for
RL, as long as the position is known.

The proposed RL system using our partially semantically
understood feature space as input performs better than the
system using just the semantic state, with an average of 20.83
actions (See Table III). In comparison to the 12.42 actions
in the environment with no obstacles, this is only a 1.68
times increase for what is a more difficult problem. This
is approximately a 30% improvement compared to 28.55
average actions taken when using the semantic feature space.
This shows that when we do not have access to the full
semantically understood state our feature space can encode
the additional auxiliary information necessary to solve the
task better than just with the semantic state based perception.

Finally we give the perception network complete freedom
to encode a state space based purely on the reconstruction loss
in a similar manner to [2]. Fig. 5f shows that this improves
the reconstruction as expected since that is the only feedback
given to the encoder-decoder network. However, as we can
see from Table III the performance of the system with no use
of the semantically understood data available to it at train
time performs much worse than those which do.

V. C O N C L U S I O N

In this paper we have shown that the bio-inspired separation
of percepts and control at training time allows reinforcement
learning to be trained effectively and still gives a system

that can predict actions purely from visual data. We showed
that allowing the perception system to encode additional
properties into the feature space improved the performance
over a system using only the approximate state.

This demonstrates the value in allowing the visual system to
encode additional features into the input of our RL algorithms.
In addition, the splitting of perception and control allows other
techniques to be used, which are typically challenging to im-
plement in the high dimensional image domain, such as HER
and modelling transition dynamics with GPs. Whilst we still
have a system which allows us to go from visual observation
to action - the training does not need to be end-to-end.

R E F E R E N C E S

[1] M. Land and B. Tatler, Looking and acting: vision and eye movements
in natural behaviour. Oxford University Press, 2009.

[2] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in The 2010 International Joint Conference
on Neural Networks (IJCNN), July 2010, pp. 1–8.

[3] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
no. Apr, pp. 503–556, 2005.

[4] C. Finn, X. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep
spatial autoencoders for visuomotor learning,” in ICRA, 2016.

[5] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, 2014, pp. 1071–1079.

[6] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration
in reinforcement learning with deep predictive models,” CoRR, vol.
abs/1507.00814, 2015.

[7] V. Mnih, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, 2015.

[8] D. Kimura, “DAQN: Deep Auto-encoder and Q-Network,” arXiv, vol.
abs/1710.06542, 2018.

[9] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual
reinforcement learning with imagined goals,” in Advances in Neural
Information Processing Systems, 2018, pp. 9209–9220.

[10] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” arXiv:1802.09477, 2018.

[11] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016, pp. 1928–1937.

[12] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially
Observable MDPs,” AAAI, pp. 29–37, 2015.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, pp. 1–14, 2015.

[14] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” CoRR, vol. abs/1707.01495, 2017.

[15] K. I. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades,
and J. Mouret, “Black-box data-efficient policy search for robotics,”
CoRR, vol. abs/1703.07261, 2017.

[16] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science, vol. 313, pp. 504–507, 2006.

[17] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolu-
tional auto-encoders for hierarchical feature extraction,” in International
Conference on Artificial Neural Networks. Springer, 2011, pp. 52–59.

[18] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip
connections,” in Advances in Neural Information Processing Systems
29. Curran Associates, Inc., 2016, pp. 2802–2810.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[20] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[22] M. Abadi, et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.

