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Abstract This manuscript introduces the end-to-end em-
bedding of a CNN into a HMM, while interpreting the out-
puts of the CNN in a Bayesian framework. The hybrid CNN-
HMM combines the strong discriminative abilities of CNNs
with the sequence modelling capabilities of HMMs. Most
current approaches in the field of gesture and sign language
recognition disregard the necessity of dealing with sequence
data both for training and evaluation. With our presented
end-to-end embedding we are able to improve over the state-
of-the-art on three challenging benchmark continuous sign
language recognition tasks by between 15% and 38% rela-
tive reduction in word error rate and up to 20% absolute. We
analyse the effect of the CNN structure, network pretraining
and number of hidden states. We compare the hybrid mod-
elling to a tandem approach and evaluate the gain of model
combination.

Keywords Sign Language Recognition - Hybrid Ap-
proach - CNN-HMM - Statistical Approach - Sequence
Modelling

1 Introduction

Face-to-face communication is often the preferred choice,
when either important matters need to be discussed or
informal links between individuals are established. Gesture
is a key part in such human-to-human communication. It

O. Koller, S. Zargaran, H. Ney

Human Language Technology and Pattern Recognition
RWTH Aachen University

Aachen, Germany

E-mail: koller @cs.rwth-aachen.de

R. Bowden

Centre for Vision Speech and Signal Processing
University of Surrey

Guildford, UK

Hermann Ney - Richard Bowden

helps us to better understand the other party. However, the
role of visual cues in spoken language is not well defined.
As such, the task of gesture recognition is also not
accurately defined. This renders comparison of algorithms
and approaches difficult. Sign language on the other hand
provides a clear framework with a defined inventory and
grammatical rules that govern joint expression by hand
(movement, shape, orientation, place of articulation) and by
face (eye gaze, eye brows, mouth, head orientation). This
makes sign languages, the natural languages of the deaf, a
perfect test bed for computer vision and human language
modelling algorithms targeting human computer interaction
and gesture recognition. The rules governing the interaction
of hands and body, referred to as the manual and
non-manual parts - are well defined by sign language
theory. Videos represent a time series of dynamic images
and the recognition of sign language therefore needs to be
able to cope with variable input sequences and execution
speed. Different schemes are followed to achieve this
ranging from sliding window approaches (Ong et al 2014)
to temporal normalisations (Molchanov et al 2015) or
dynamic time warping (Krishnan and Sarkar 2015). While
the field of automatic speech recognition is dominated by
Hidden-Markov-Models (HMMs), they remain rather
unpopular in computer vision related tasks. For instance
CVPR, by many regarded as the top conference of
computer vision, had only three out of a total of over 700
submissions in the year 2017 that were using
HMMs (Koller et al 2017; Richard et al 2017; Schober et al
2017). This may be related to the comparatively poor image
modelling capabilities of Gaussian Mixture Models
(GMMs), which had been traditionally used to model the
observation probabilities within such a framework. More
recently, deep Convolutional Neural Networks (CNNs)
have outperformed other approaches in all computer vision
tasks. In this work, we focus on integrating CNNs in a
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HMM framework, extending an interesting line of
work (Koller et al 2015b; Le et al 2015; Wu and Shao 2014,
Koller et al 2016a), which we will discuss more closely in
Section 2.

This manuscript presents the extended version of our
previous work (Koller et al 2016b), where we first presented
a powerful embedding of a deep CNN in a HMM frame-
work in the context of sign language and gesture recogni-
tion, while treating the outputs of the CNN as true Bayesian
posteriors and training the system as a hybrid CNN-HMM
in an end-to-end fashion. With this method we are able to
achieve a large relative improvement of over 15% compared
to the state-of-the-art on three challenging standard bench-
mark continuous sign language recognition data sets. In the
scope of this extended manuscript, we make several addi-
tional contributions and have completely reran all experi-
mental evaluation to allow us to provide more extensive re-
sults and deeper insights:

1. We significantly add to the theoretical explanation of the
hybrid approach, with the aim of making its idea more
accessible to newcomers to the field.

2. We analyse the effect of both CNN- and HMM-structure
on the hybrid approach.

3. We investigate the effect of using out-of-domain data
to train the network prior to finetuning using in-domain
data.

4. We show that different training iterations provide
complementary classifiers, which are able to further
boost recognition when employed as ensembles of
hybrid CNN-HMMs.

The rest of this manuscript is organised as follows: Sec-
tion 2 discusses the related literature in depth. In Section 3
we introduce the theoretical basis of the presented hybrid ap-
proach. Differences w.r.t. the tandem approach are also de-
scribed. The employed data sets are discussed in Section 4.
Section 5 gives details on the implementation in order to
ensure reproducibility, which is followed by the actual ex-
perimental evaluation in Section 6. Finally, we conclude the
work in Section 7.

2 Related Work

After the recent success of CNNs (LeCun et al 1998) in
many computer vision fields, they have also shown large
improvements in gesture and sign language recognition
(Neverova et al 2014; Huang et al 2015; Koller et al
2015b). However, in most previous CNN-based approaches
the temporal domain of video data is not elegantly taken
into consideration. Most approaches simply use a sliding
window or circumvent the sequence properties by
evaluating the output in terms of per-frame overlap with the
ground truth, e.g. in Pigou et al (2018). Moreover, CNNs

are usually trained on the frame-level. A few artificial data
sets such as the Montalbano gesture data set (Escalera et al
2014) provide frame labels. However, this is usually not the
case, especially for sign language footage or other real-life
data sets. Available annotation usually consists of
sequences of signs without explicit frame-level
information. As such, the focus of the field needs to move
towards approaches that deal with variable length inputs
and outputs that do not require explicit frame labelling. The
difficulty in accurately labelling single frames for
evaluation further supports the need for such change.
Graphical models such as HMMs lend themselves well to
tasks with inputs of variable length. As will be shown in
this work, we are able to combine the best of different
worlds when integrating HMMs and CNNs. A few works
have joined neural networks and HMMs before in the scope
of gesture and sign language recognition. Wu and Shao
(2014) use 3D CNNs to model the observation probabilities
in a HMM. However, they interpret the CNN outputs as
likelihoods p(x|k) for an image x and a given class k.
Conversely, Richard and Lippmann (1991) showed that
neural network outputs are better interpreted as posterior
probabilities p(k|x) in a Bayesian framework. In the field of
speech recognition, Bayesian hybrid neural network HMMs
were first proposed by Bourlard and Wellekens (1989) and
became the approach of choice, particularly after the recent
rise of deep learning. Le et al (2015) followed this line of
thought for gesture recognition, but only employed a
shallow legacy neural network that was trained to
distinguish twelve artificial actions. Koller et al (2013) and
Koller et al (2014) achieved important results using
GMM-HMMs for weakly supervised learning in the
domain of sign language. However, hybrid models strongly
outperformed the results (Koller et al 2016a), which
constituted first and preliminary work in this direction.
CNNs were employed in a hybrid Bayesian framework to
perform weakly supervised training with the purpose of
learning hand shape classifiers that generalise across data
sets. The main differences with respect to this manuscript
are that we learn the CNN top down using nothing more
than the annotated sign-words (which are modelled by a
fixed number of hidden states), whereas Koller et al
(2016a) models signs bottom up with additional knowledge
of the decomposition of sign-words into different hand
shapes which form the building blocks for signs. Moreover,
in this work, we learn the CNN-HMM in an end-to-end
fashion from video input to gloss output, whereas in the
previous work, the intermediate hand shape-CNN serves as
feature extractor for an additional GMM-HMM sign model
(similar to the tandem approach introduced in Section 3.3).
In this so-called tandem modelling (refer to Section 3.3),
the GMM-HMM needs to be completely retrained, which
adds significant computational overhead. In the proposed
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hybrid approach, no GMM-retraining is necessary and in
the experimental evaluation of this manuscript we will
show that our approach clearly outperforms Koller et al
(2016a). Wu et al (2016) published a paper that is also
closely related to this work, but they do not interprete the
CNN outputs in a Bayesian way, they use different inputs to
the CNN (full body RGB and depth, as opposed to using a
cropped hand patch) and different inputs to the HMM.
Later, Granger and el Yacoubi (2017) provided a
comparison between a hybrid neural network HMMs and a
recurrent neural network (RNN) on a gesture task, finding
that both perform comparably, while the state-based
representation of the HMM allows better insights in the
internals of the model for potential error analysis. Recently,
Connectionist Temporal Classification (CTC) by Graves
and Schmidhuber (2005) has received attention by the
computer vision community in general (Assael et al 2016;
Cui et al 2017; Rao et al 2017). CTC is a training criterion
for recurrent neural networks and very related to HMMs.
CTC has been shown to be a special case of the hybrid
full-sum HMM alignment with a specific HMM
architecture. As such CTCs are related to this work.
However, we do not use recurrent or long short term
memory (LSTM) networks in this work. The interested
reader may consult Bluche et al (2015) for details on the
comparison of CTC and HMMs.

Finally, this manuscript represents a more thorough ver-
sion of Koller et al (2016b), with much more extensive ex-
periments. In addition, this manuscript analyses the effect
of both CNN- and HMM-structure on the hybrid approach.
It also investigates the effect of using out-of-domain data to
pretrain the network prior to finetuning using in-domain data
and the use of ensembles of CNN-HMMs in model combi-
nation to further boost performance. Koller et al (2017) even
drop the dependence on a hand tracking system and take the
re-alignment of hybrid models for sign recognition further.

Another related approach has been introduced by Bengio
and Frasconi (1996), where a RNN is used to extract tempo-
rally local information whereas a HMM integrates long-term
constraints. The so-called input output HMM has been used
by Marcel et al (2000) in a basic gesture system that distin-
guishes between two gesture classes, deictic and symbolic.

3 Continuous Sign Language Recognition

The problem to be solved is a sequence learning task, which
means we want to predict a sequence of output symbols w?
in our case sign words (so-called “glosses”, representing the
semantics of the described word). Given an input video as
a sequence of full images X! = Xj,...,Xr and the result-
ing preprocessed (e.g. tracked and mean-normalised) images
xlT =xp,...,XT, automatic continuous sign language recog-
nition tries to find an unknown sequence of sign-words w’l\’

for which x best fit the learned models. We assume that im-
ages and sign-words occur in an ordered fashion. It has to be
noted that this requirement clearly distinguishes the problem
of sign language recognition from the problem of translating
from sign language to spoken language where re-orderings
are necessary and monotonicity cannot be assumed.

3.1 Legacy GMM-HMM Approach

To find the best fitting sequence, we follow the statistical
paradigm (Bahl et al 1983) using the maximum-a-posteriori
simplification of Bayes’ decision rule, which has been suc-
cessfully applied to Automatic Speech Recognition (ASR),
hand writing recognition and statistical machine translation
since the early 1970s. Given a loss function £ [w}, )] be-
tween the true output sequence wllv and the hypothesised
output sequence W’l\' , Bayes’ Decision Rule minimises the
expected loss:

xp = W]

= argmin
opt N

{WXN:PV(Wl ) - £ [wh 7W1]} (D

1 1

Often Bayes Decision Rule is simplified to the
maximum-a-posteriori (MAP) rule, which is known to be
equivalent for the case of the simple 0-1-loss.

xp = W] opt = argrLlax{Pr (w11V|x1T)} (2)

i

In sign language recognition the 0-1-loss corresponds to
a minimisation of the expected sentence error rate, which
counts an output sentence as wrong if a single recognised
sign-word is wrong. However, for longer sentences, the sen-
tence error rate does not correlate with the word error rate
(WER) which is also known as edit distance and what we
seek to minimise. As shown by Schliiter et al (2012), the
MAP rule is equivalent to the Bayes Rule for the WER as a
loss function if

mW%x{Pr (A1)} > 05 3)

1

Therefore, we follow the MAP rule as the optimisation
criterion and maximise the class posterior probability dis-
tribution Pr(wY |x]) over the whole utterance, as given in
Equation 2.

Decision theory allows us to split up the class posterior
probability into the class prior Pr(w)) and the
class-conditional probability Pr(x] |wl'), which can then be
modelled by different information sources. The first term
can be interpreted as word sequence knowledge which can
be approximated by a n-gram language model estimating
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p(wY). The second term represents the actual visual

knowledge, which historically used to be modelled by
generative GMMs.

[w/]v] :argmax{p (w[lv)p(xﬂw[]\])} “4)

opt
W

Expressing the class-conditional probability in terms of
a HMM adds the hidden variable s7:

p(xfwi) = ZP L sTwh) (5)
‘1
T
=Y TIp (oot si ™t wh) ©6)
o 1=1
T
=Y [1p (el ostowd) - p (sl osi ™t owd) %)
SIT 1=1
T
:ZHP (xt\s,,wllv) -p(s,|s,_1,wllv) (8)

where the sum in Equation 5 expresses all viable paths
that lead to the same output sequence w’lV . Equation 6 and
7 constitute reformulations with help of the chain rule. As-
suming s to be non-observable and a first order Markov pro-
cess leads to Equation 8. After applying the viterbi approxi-
mation, which considers only the most likely path and sub-
stituting everything into Equation 4, we get:

o = T 2
argwl‘;]lax{p (Wllv) 'H}?X{J;IIP (xt‘7stawllv) P (St|st—1 ,Wllv) }}

where in the legacy Gaussian mixture model (GMM)-hidden
Markov model (HMM) approach for sign language recogni-
tion p (x[ [, s, w’lV ) has typically been modelled as

M
x,| Sf,Wl Z

m=1

N (X, s E) (10)

1 1)

Cm
1

M=

where ./ (x, i1, X) is a multi-variate Gaussian with mean u,
covariance matrix X and M is the number of mixture compo-
nents (can differ between states of the same word). Legacy
systems typically employed a globally pooled covariance
matrix X to cope with the low amount of training samples

per state and word. The expectation maximization (EM) al-
gorithm is used to estimate the sufficient statistics of the
GMMs. The number of EM iterations is usually optimised
on held out data during the training phase of the system.
D(s¢|si— l,wl) (referring to Eq. 9) represents the state
transition model, which is empirically known as part of the
model having limited impact on the final result and can
therefore be pooled across all HMM states. In log-domain
we often refer to it as the Time Distortion Penalties (TDPs).
The dependency on the sequence of words WIIV may be
dropped, since the temporal sequence of states s7 is defined
to be a sequence of HMM states corresponding to a specific
path through the word sequence wllv , which we implement
as concatenation of automatons for W]1V (using the
word-to-state decomposition defined by the pronunciation
lexicon and the word sequence annotations of the corpus).

3.2 Hybrid CNN-HMM Approach

Up to this point, we have deduced the standard HMM
formula for recognition using a generative model for the
emission probability. However, in the scope of the
presented work we model the emission probability of the
HMM p(x;|s;,w}) by an embedded CNN, which is known
to possess much more powerful image modelling
capabilities than generative models such as GMMs.
However, as pointed out by Richard and Lippmann (1991)
and Bourlard and Morgan (1993), the CNN is a
discriminative model whose outputs are estimates of the
posterior probability and therefore cannot directly be
inserted in the optimisation formula. Inspired by the hybrid
approach known from ASR (Bourlard and Morgan 1993),
we use Bayes’ rule to convert the posterior probability of
the CNN to a likelihood. For easier understanding we
introduce the sub-word label o := s,wllv , representing the
state s belonging to the word sequence w’l\' . The CNN will
hence be trained to model p(c|x;). We apply Bayesian
inference, converting the posteriors to class-conditional
likelihoods following Bayes’ rule:

p(ohx)

p(x|a) :P(xr)'m (12)

where the prior probability p(ct) can be approximated by the
relative state label frequencies in the frame-state-alignment
used to train the CNN.

For practical usage, we add several hyper-parameters to
the implementation. These allow us to control the effect of
the language model () and the CNN label prior (3). Ne-
glecting the constant frame prior p (x;), we finally optimise
the following equation to find the best output sequence:
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Fig. 1 Overview of the proposed CNN-HMM hybrid approach for
continuous sign language recognition.
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Fig. 2 Showing the employed resources (in light boxes on the left) to
train the models for the hybrid CNN-HMM approach. The frame-state-
alignment has been generated from the sign-word (gloss-) annotations
using a GMM-HMM system from Koller et al (2016a).

W] o = (13)

Lop(alx)
argfvnax{p (w/ﬂv)yrr:?x{gm p (S;|Sz71,wllv)}}

A general overview of the proposed hybrid CNN-HMM
algorithm for recognition can be found in Figure 1. The hy-
brid approach has the positive property that during train-
ing only the CNN and the language model (LM) need to
be retrained, while the HMM requires no training. For test-
ing, the best hyper parameter values for v, 8 and the pooled
state transition model p(s;|s,—1,w}’) are found using a grid
search.

Figure 2 summarises the resources we need to
successfully apply the hybrid approach: a dual corpus of
sign videos (sentence-wise segmented) and corresponding
sign-word annotations. In this work, we further employ the
HMM frame-state-alignment coming from a HMM-GMM
system as frame labelling, which can be replaced by an
appropriate re-alignment scheme as shown in Koller et al
(2017).

3.3 Tandem Approach

An intermediate step between GMM-HMM and the hybrid
CNN-HMM systems is the so-called tandem approach. It is
very similar to the hybrid approach in the sense that it uses
both a CNN and HMM. However, the CNN is not used as
a classifier, but rather as a feature extractor. In the so-called
tandem approach (Hermansky et al 2000) the activations of a

Table 1 Key statistics of the employed data sets. OOV stands for Out-
Of-Vocabulary, e.g. words that occur in test, but not in train. Dev refers
to the development set.

PHOENIX 2012 PHOENIX 2014 SIGNUM
Train Test Train Dev Test Train  Test
# signers 1 1 9 9 9 1 1

hours 0.51 0.07 8.88 0.84 099 3.86 1.06

frames 46282 6751799006 75186 89472 416620 114230

~still frames - - 20% - - 38% -

running words 3309 487 65227 5540 6504 11127 2805
& frames/word  14.0 - 9.8 - - 232

vocabulary 266 - 1080 - - 465 -

OOVs running - 8 - 28 35 - 9

OO0OVs [%] - 1.6 - 05 05 - 0.3

fully connected layer or the feature maps of a convolutional
layer are dumped, post-processed (Koller et al 2016a) and
then modelled in a GMM-HMM framework. This creates a
significantly higher computational cost than the hybrid ap-
proach for extracting features and retraining a GMM sys-
tem. Golik et al (2013) found that in speech and handwrit-
ing recognition the hybrid approach shows equal or superior
performance compared to the tandem approach. We will ver-
ify this statement for sign language recognition in Section
6.3. As discussed in Section 2, in the gesture and sign lan-
guage recognition literature to date, most other works either
use the CNN outputs not in a Bayesian interpretation (Wu
et al 2016) or employ the CNN as feature extractor compa-
rable to the tandem approach. Figure 3 shows the tandem
and the hybrid approach side by side. We denote that the
only difference is the visual model.

4 Data Sets

The experiments are carried out on three state-of-the-art
continuous sign language data sets that have been used
extensively to compare recent methods for continuous sign
language recognition: RWTH-PHOENIX-Weather 2012,
RWTH-PHOENIX-Weather 2014 and SIGNUM. Here, we
provide an essential summary and some additional statistics
on the word-class distributions. However, for further details
on the data sets, the interested reader is directed to Koller
et al (2015a).

Single images of the corpora are depicted in Figure 4.
Brief statistics on the three data sets can be found in Table 1.
Both RWTH-PHOENIX-Weather corpora (2012 and 2014)
were first introduced by Forster et al (2012) and Forster
et al (2014) and represent direct recordings of the broadcast
news, being limited to the weather forecast domain. As such,
the data can be regarded as challenging real-life footage cov-
ering most difficulties you would expect from natural data
(motion blur, transmission artifacts, fast signing, incomplete
sentences, mis-signed words, interpretation errors, different
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Fig. 3 Illustrating the difference between CNN-HMM tandem and hybrid approach. The former uses the CNN only as a feature extractor to train
a subsequent GMM, while the later directly uses the CNN’s normalised posteriors probabilities for a label a given input x.
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Fig. 4 Example images showing the data sets employed in this work.
RWTH-PHOENIX-Weather on the left and SIGNUM on the right.

clothing, etc.). RWTH-PHOENIX-Weather 2012 features a
single signer interpreting the news into sign language, while
RWTH-PHOENIX-Weather 2014 contains nine individuals
covering varying amounts of the recorded programs.
SIGNUM was first introduced by von Agris et al
(2008b) and was recorded in a laboratory environment
while carefully controlling the signing and recording
conditions. However, deviations from word counts in
Table 1 w.r.t. previous work are errata, while the underlying
data has not changed. All data sets feature user-dependent
setups as all individuals occur both in the training and in
the test/development (dev) partitions. The
RWTH-PHOENIX-Weather is freely available!. It has to be
noted that the actual annotation of PHOENIX 2014 and

I'It can be obtained at http://www-i6.informatik.
rwth—aachen.de/~koller/RWTH-PHOENIX/

SIGNUM cover a larger variety of words than what the
actual testing regime foresees. Therefore both data sets
provide some mapping in order to join certain classes. This
mainly arises due to the difficulty of the gloss annotation
and manifests itself partly in inflected forms of the same
words and in different words that are visually identical or
very close. All referenced publications that report results on
the data sets have been applying this simplification scheme,
which is distributed with the data. The final number of
classes that are distinguished in evaluation (see row
‘vocabulary’ in Table 1) is 266, 1080 and 465 for
PHOENIX 2012, PHOENIX 2014 and SIGNUM
respectively. On SIGNUM the vocabulary is 10 words
larger than the reported vocabulary by the authors (von
Agris et al 2008a). It is unclear what the cause for this is.
Unfortunately the original authors cannot be reached
anymore. The still frames in Table 1 refer to frames that
have been automatically labelled as background during the
HMM alignment.

Figures 5, 6 and 7 show the distribution of word counts
on PHOENIX 2012, PHOENIX 2014 and SIGNUM respec-
tively. It can be seen that both PHOENIX 2012 and 2014
contain a large number of words with only a single occur-
rence during training (so-called singletons), while SIGNUM
statistics are different. On SIGNUM even the least frequent
words occur at least 3 times, while most of them can be
found at least 10 times in the training data. This is good for
training and demonstrates SIGNUM’’s artificial characteris-
tic which (among other reasons) manifests itself in very low
WERSs.

5 Implementation Details
In this section, we describe the details to allow exact re-

producibility of our experiments. Note, that we input single
(still) frames to the CNN and the HMM covers the temporal
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Fig. 5 Showing the distribution of words (and their counts) on the
train and test partition of the RWTH-PHOENIX-Weather 2012 corpus.
It can be seen that there are less than 100 sign-words occurring just a
single time (singletons) imposing difficulties on the task.
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Fig. 6 Showing the distribution of words (and their counts) on the
train, dev and test partition of the RWTH-PHOENIX-Weather 2014
corpus. It can be seen that there are more than 300 sign-words occur-
ring just a single time (singletons) while few other classes occur more
than 1000 times imposing difficulties on the task. Dev refers to the
development set.

modeling. Input frames are cropped hand images. The sys-
tem has no explicit information on the location other than
from the background of the cropped images.

Image preprocessing. To track the right hand across
all sequences of images we use a dynamic programming
based approach (Dreuw et al 2006). In all data sets the right
hand corresponds to the signer’s dominant hand, which is
the hand that plays the principle role in signing. On the
RWTH-PHOENIX-Weather corpora, we crop a rectangle of
92x132 pixel around the centre of the hand. The original
images suffer a constant distortion due to the broadcast na-

7
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|- | =— SIGNUM Train i
]7000 - SIGNUM Test =
£ i
3
3 |
@)
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S r
- N
& [
g i l
=
5
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Sign-Words (Ordered By Running Word Counts)

Fig. 7 Showing the distribution of words (and their counts) on the
train, dev and test partition of the SIGNUM single signer corpus. In
large contrast to the RWTH-PHOENIX-Weather corpora, it can be seen
that hardly any sign-words occur just a single time (singletons). This
shows the artificial nature of the data set and explains its comparative
easiness.

ture of the videos, which corresponds to a scaling of the im-
age width by a factor of 0.7. To compensate for this dis-
tortion we enlarge the cropped rectangles to the square size
of 256x256. On SIGNUM we directly crop a square patch
of size 100x100 pixel and scale it up to 256x256. There-
after the pixel-wise mean of all images in the training set is
subtracted from each image. Finally, for data augmentation
we follow an online cropping scheme, which randomly crop
out a 224x224 (GoogLeNet) or a 227x227 pixel (LeNet and
AlexNet) rectangle to match the size of images in our model
which was pre-trained on ImageNet. The input to the CNNs
consists of single cropped hand patches.

Convolutional Neural Network Training. We base our
CNN implementation on Jia et al (2014), which uses the
NVIDIA CUDA Deep Neural Network GPU-accelerated li-
brary. If not stated otherwise in the respective experiments,
we opted for the GoogLeNet Szegedy et al (2015) 22 lay-
ers deep CNN architecture with around 15 million parame-
ters (for exact parameters refer to Table 3). GoogLeNet has
shown many times in the past, most notably in the ImageNet
2014 (JILSVRC) Challenge, that it can be quite effective in
combining impressive performance with minimal computa-
tional resources. Much of the improvements in this architec-
ture compared to others’ stems from the inception module
which combines filters of different sizes after applying di-
mensionality reduction through a 1x1 Convolutional layer.
The employed CNN architecture includes 3 classifying lay-
ers, meaning that besides the final classifier the network also
includes two intermediary auxiliary classifiers. Those en-
courage discrimination in earlier layers of the network. The
loss of these auxiliary classifiers is added to the total loss
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with a weight of 0.3. All non-linearities are rectified linear
units and each classifier layer is preceded by a dropout layer.
We use a dropout rate of 0.7 for the auxiliary layers and 0.4
before the final classifier.

As mentioned in Section 3, the CNN training scheme
requires an initial frame-state-alignment. This originates
from a GMM-HMM recognition system that is trained to
re-aligning the frame-to-state mapping (frame-level
alignment). This is illustrated in Figure 8. If not stated

1. Train (legacy) GMM-HMM 2. Train CNN-HMM

Gloss Sentence Gloss Sentence

WEATHER WARM WEATHER WARM

o HMM ~ |Frame-State HMM )

E -

i

€ GMM CNN

7

£

£ Engineered Features of Cropped Input Image
Input Image Sequence Sequence (Hands)

Fig. 8 Illustration of Training Scheme.

otherwise in the respective experiments, we use alignments
from GMM-HMM systems reproducing the best published
results on our chosen corpora. For SIGNUM and
RWTH-PHOENIX-Weather 2014 we use the best results
published in Koller et al (2016a) as alignment, whereas for
RWTH-PHOENIX-Weather 2012 we use Koller et al
(2015a). We split the frame-level alignment into a training
(~ 90% of the data) and a validation set (~ 10% of the
data) in order to be able to evaluate the per-frame accuracy
of the CNN and stop the training when the validation
accuracy deteriorates. However, we noticed that this seldom
happened and in these experiments we always chose the
last training iteration. We first train the network on the
ImageNet data set with 1.2 million high-resolution images
in 1000 classes and then exchange the final classification
layers (on all three classifiers) and finetune the network on
the sign language data for 80000 iterations with a
mini-batch size of 32 images. We use stochastic gradient
descent with an initial learning rate A9 = 0.01 for CNN
networks. We employ a polynomial scheme to decrease the
learning rate A; for iteration i as the training advances while
reaching A; = 0 for the maximum number of iterations
imax = 80k in our experiments for 4 epochs on PHOENIX
(2012 and 2014) and SIGNUM. Only the experiment in
Subsection 6.4 that analyses the effect of the HMM
structure does not use the training and validation splitting.
Instead it uses all available training data for training the
CNN. Therefore we train for 100k iterations here.

Umax

( i )0.5
A=A | 1—— (14)

CNN inference. Once the CNN training is finished, we
consider all three classifiers (the main one and the two aux-
iliary ones) for estimating the best performing iteration. For
the proposed hybrid CNN-HMM approach we add a soft-
max and use the resulting posteriors in our HMM as obser-
vation probabilities.

In the tandem CNN-HMM approach we employ the ac-
tivations from the last layer before the softmax that yields
the highest accuracy on the validation data. With RWTH-
PHOENIX-Weather 2012, this is a fully connected layer of
the first auxiliary classifier, possibly because the data set
does not provide enough data for training an earlier soft-
max. For RWTH-PHOENIX-Weather 2014 and SIGNUM
the pooling layer before the main classifier yields 1024 val-
ues. The tandem system requires feature extraction for both
training and test sets, since a GMM-HMM system is re-
trained with them. After a global variance normalisation, we
apply PCA to reduce the feature dimension to 200.

Continuous Sign Language Recognition. We base the
HMM part of this work on the freely available
state-of-the-art open source speech recognition system
RASR Rybach et al (2011). Following the hybrid approach
we use the posterior probabilities from the CNN, as well as
the corresponding class priors. In the following
experiments the prior-scaling-factor 8 is set to 0.3 if not
stated otherwise. The LM is estimated as n-gram using the
SRILM toolkit by Stolcke (2002). The HMM is employed
in bakis structure (Bakis 1976). This is a standard
left-to-right structure with forwards, loops and skips across
at most one state. Additionally, two subsequent states share
the same class probabilities. The transition model
p(se|si—1,wY) is pooled across all sign-words. As we
actually perform the search in log space we call the
transition model TDPs. The TDPs define the transition
penalties that account for state changes in the HMM. The
garbage class is modelled as an ergodic state with separate
transition penalties to add flexibility, such that it can always
be inserted between sequences of sign-words. As for
RWTH-PHOENIX-Weather 2014 and SIGNUM, we model
each sign-word with three hidden states. However, in
RWTH-PHOENIX-Weather 2012 we employ a length
modelling scheme where sign-words are represented by
more or fewer states depending on their average alignment
length. For details on the employed length modelling
consult Koller et al (2015a). In agreement to most sign
language recognition literature, we measure the system
performance in WER. WER is based on the Levenshtein
alignment between reference and hypothesis sentence and it
measures the required numbers of deletion, insertion and
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Table 2 Showing the pruning values for each of the data sets. No prun-
ing is necessary with PHOENIX 2012.

Type of pruning  PHOENIX 2012 PHOENIX 2014 SIGNUM

visual threshold none 2000 2000
visual histogram none 20000 20000
LM threshold none 4000 4000
LM histogram none 10000 10000

substitution operations to transform the
hypothesis into the reference sequence.

recognised

#deletions + #insertions + #substitutions
WER = + +#substitut (15)
#reference observations

For recognition, we perform a grid search over possible
hyper parameters for y, § and the TDPs. As such, the
forward, loop, skip and exit transition penalties are
optimised on the dev set (or if not available on the test set)
in order to minimise the WER. RASR provides an efficient
implementation of the word conditioned tree search which
is based on the concepts described in Ney and Ortmanns
(2000), which is used for this work. In brief, for each time
step the search expands all possible state hypotheses and

maintains them in memory. The current score of a
p(Xr\Of))

pla)P

and the transition penalty —log(p(s/|s;—1)). Whenever a

sign-word ends (which manifests itself in leaving the last
state of the HMM), the language model score —log(p(w)?)
and the exit penalty are also added (refer to Section 3,
specifically Equation 13 for the exact composition of the
search formula). The maximum-approximation (c.f.
Section 3) allows recombination of state hypotheses that
have reached the same state at the same time with the same
sign-word  history. This significantly limits the
combinatorial explosion of the number of search
hypotheses. Furthermore, the search space is pruned in
order to boost performance and reduce memory
consumption. We perform histogram and threshold
pruning. The latter acts like a beam search. At each time
step, only sign-word hypotheses with scores relatively close
to the best hypothesis are allowed. All others are
discontinued and therefore removed from memory. This
maximum distance from the best hypothesis is represented
by the visual threshold pruning value (in log domain). After
adding the language model score at the word end the LM
threshold pruning is applied in the same way. The
histogram pruning uses a histogram to limit the amount of
hypotheses to the given value. The visual histogram
pruning is applied at every state, whereas the LM histogram
pruning is only applied after the language model score has
been added to each hypothesis at sign-word end states.
Table 2 summarises the respective pruning settings for each
of the data sets. The exact hyper parameter values for the

hypothesis is composed of the visual score —log(

transition probabilities are given for each experimental
description, as they vary from experiment to experiment.

Computational requirements. Using a GeForce GTX
980 GPU with 4GB memory, training on the PHOENIX
2012 data set is done at the speed of ~ 150 frames per sec-
ond (fps) and inference at a rate of ~ 450 fps. Using the
same hardware on PHOENIX 2014 data set yields ~ 35 fps
for training and ~ 350 fps for inference. SIGNUM runs at
~ 10 fps during training and ~ 56 fps for inference. HMM
recognition is done at ~ 2 fps for PHOENIX 2012 and due
to the tighter pruning ~ 25 fps for PHOENIX 2014, while
SIGNUM runs at ~ 8. The HMM parameter optimisation
took a total of ~ 38 hours for PHOENIX 2012, ~ 130 hours
for PHOENIX 2014 and ~ 65 hours for SIGNUM using a
single core machine with 2GB RAM.

The training and recognition pipelines have not been op-
timised for speed. We load individual image files from a file
server, which acts as a significant bottleneck. We have ex-
perimented with a leveldb database, which is able to double
the speed roughly.

6 Experiments

In this section we present experimental evaluation to help
estimate key factors influencing the performance of a CNN-
HMM hybrid system on the task of sign language recogni-
tion. In the next subsection we first analyse the effect of the
CNN structure on the final recognition performance. Then,
in Subsection 6.2 we evaluate the effect of additional out-of-
domain training data. In Subsection 6.3 we compare the hy-
brid and the tandem approach, before we analyse the effect
of the HMM structure in Subsection 6.4. In Subsection 6.6
we provide a general overview comparison against the state-
of-the-art, while in Subsection 6.5 we assess model ensem-
bles.

6.1 Effect of CNN Structure

A crucial research question is to estimate the effect of the
CNN architecture on a specific task. This subsection aims
to provide an answer to this question by applying different
CNN structures to the task of sign language recognition,
while all remaining hyper parameters are fixed (we adjust
the transition probabilities for each experiment). As such,
we compare three well-known CNN architectures. All three
have, at some point in time, received much attention by the
community for outperforming the state-of-the-art largely on
different classification tasks. LeNet (full name is LeNet-5),
introduced by LeCun et al (1998), was the first successful
CNN having 4 non-linear layers. Its application was
character recognition of the MNIST digits (LeCun et al
1998) with a size of 32x32 pixel. In this work, we employ a
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version which deviates from the original implementation by
the number and kind of non-linearities. For simplicity we
chose the version distributed jointly with the caffe
framework (Jia et al 2014). The other two popular
architectures analysed in the scope of this work were
winners of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012 an 2014. AlexNet by
Krizhevsky et al (2012) was the first deeper CNN with 8
layers (5 convolutional and 3 fully connected layers). It
won the object classification competition with a top-5 error
of 15.4% across the targeted 1000 classes. Two years later
Szegedy et al (2015) won the competition with GoogLeNet.
A 22-layer deep CNN that achieved a top-5 error of 6.67%
on the task. In order to facilitate the comparison of the three
mentioned architectures, we have compiled their key
characteristics in Table 3. Note that the number of
parameters for GooglLeNet includes the parameters used for
the two additional auxiliary softmax classifiers. Table 3
shows the input size, the number of non-linear layers and
the number of parameters of the whole network (whose last
output layers have been adjusted to each of the three data
sets analysed in this work). It also shows the number of
parameters of the last fully connected classification layer,
which often makes up the largest part in the network and
varies from task to task. The last layer’s size is due to the
large amount of sign-labels o (c.f. Section 3 for details). o
represents the labels belonging to the three hidden states
that model each of the sign classes (over 1000) from our
vocabulary (for PHOENIX 2014).

Discussion of results: Table 4 summarises the experi-
mental results comparing the different CNN architectures.
We see that GoogleNet clearly outperforms the other archi-
tectures on both tasks with at least 4% relative improvement
in WER. We further see that it is clearly not just the number
of parameters that determines the model quality but rather
the number of non-linear layers.

6.2 Effect of Finetuning

In this experiment we want to evaluate the effect of using
out-of-domain data to train the networks prior to finetun-
ing them on the actual in-domain task using specific but
quite limited training data. We therefore make use of the
1.2 million labelled images from the ILSVRC to train the
networks. After that we exchange the final fully-connected
classification layer and fine-tune the network. In case of the
GoogleNet architecture we exchange the layers of both aux-
iliary classifiers as well. We perform the experiment with the
AlexNet and the GoogLeNet architectures.

Discussion of results: Table 5 and Table 6 report the
results for the AlexNet and GoogleNet architecture,
respectively. For both architectures out-of-domain training
and subsequent finetuning yields clear gains. With AlexNet

39.9
40 + 38.3 ’l B hybrid ¥ § tandem k

WER [%]
[\ (O8]
[e] (]

10 - 7.4 -
i | -
PHOENIX 2012 PHOENIX 2014 SIGNUM

Fig. 9 The hybrid and the tandem approach side-by-side on all three
data sets. Results in WER [%]: the lower the better.

we see 30% relative improvement on PHOENIX 2012, 8%
on PHOENIX 2014 and 20% on SIGNUM, while with
GoogLeNet we see 13% relative improvement on
PHOENIX 2012, over 10% on PHOENIX 2014 and again
20% on SIGNUM. We conclude that strongly supervised
out-of-domain data has a consistently positive influence on
learning hybrid sign language models - at least if the
out-of-domain data is as diverse as ImageNet.

6.3 Hybrid Compared to Tandem Modelling

In this subsection we want to explore the question of
whether it is better to use the CNN’s outputs as features and
train a subsequent GMM-HMM system in the so-called
tandem approach (Section 3.3) or to directly use the
posteriors as observation probabilities as in the presented
hybrid approach.

Discussion of results: Figure 9 compares the hybrid
CNN-HMM modelling against the tandem modelling. We
can see that the hybrid approach slightly outperforms the
tandem approach on all three data sets. This is consistent
with the literature as found by Golik et al (2013) in speech
and handwriting recognition. However, especially in terms
of training complexity, the hybrid approach is clearly
favourable as the subsequent GMM training is not
necessary.

6.4 Effect of Hidden States

Until this point, we have seen experiments estimating the
effect of several components on the overall sign recogni-
tion pipeline. However, the question remains, how much the
HMM impacts the final WER. It is clear that the HMM is the
key element to allow the mapping from an input sequence of
specific length to an output sequence of different length. But
does the hidden state topology influence the final result in a
similar way as the CNN structure or the CNN training?

In this subsection we analyse the effect of the HMM
structure. More specifically, we want to know if multiple
hidden states help the deep CNN to perform better or if
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Table 3 Showing number of parameters (weights+biases) in millions of different CNN structures adapted to our tasks: PHOENIX 2012:1443

outputs PHOENIX 2014: 3694 outputs SIGNUM: 1366 outputs.

PHOENIX 2012 PHOENIX 2014 SIGNUM
NN-structure  Input size #layers #params (last fc) #params (last fc) #params (last fc)
[px] [10°] [10°] [10°]
LeNet 227x227 4 73.6 (0.7) 747 (1.8) 73.6  (0.6)
AlexNet  227x227 8 627 (5.9 72.0 (15.1) 62.4 (5.5)
GoogleNet  224x224 22 147 (14) 21.6 (3.7 145 (1.4

Table 4 Comparing different CNN structures. Results in WER [%]:
the lower the better.

PHOENIX 2012 PHOENIX 2014 SIGNUM

CNN Structure Test Dev Test Test

LeNet (227x227 input) 47.8 69.5 68.4 17.9
AlexNet 51.5 45.5 44.5 10.6

GoogLeNet 34.1 43.1 42.7 8.9

Table 5 Comparing the effect of pretraining CNN structures on out-of-
task data: ILSVRC 2014. The first line represents training from scratch
using the AlexNet structure, whereas the second corresponds to fine-
tuning weights learnt on Imagenet. Results in WER [%]: the lower the
better.

AlexNet PHOENIX 2012 PHOENIX 2014 SIGNUM

Test Dev Test Test
Randomly initialised 51.5 45.5 44.5 10.6
Fine-tuned 39.2 42.2 41.1 8.7

Table 6 Comparing the effect of pretraining CNN structures on out-of-
task data: ILSVRC 2014. The first line represents training from scratch
using the GoogLeNet structure, whereas the second corresponds to
finetuning weights learnt on Imagenet. Results in WER [%]: the lower
the better.

GoogLeNet PHOENIX 2012 PHOENIX 2014 SIGNUM

Test Dev Test Test
Randomly initialised 34.1 43.1 42.7 8.9
Fine-tuned 30.0 38.3 38.8 7.4

they are a relic of the GMM-HMM architecture that strong
CNNs make redundant. Therefore, we perform experiments
on the PHOENIX 2014 data set altering the HMM topology
w.r.t. the number of hidden states. The baseline system cor-
responds to a HMM architecture that models each sign-word
with 3 hidden states which are each repeated twice (shar-
ing the same probabilities). Thus, this topology has 6 states,
but only 3 probability distributions need to be estimated by
the CNN. This standard bakis topology ensures that we can
compensate for variation in signing speed by skipping states.
By definition, we can skip at most one state. The repetitions
therefore ensure that all emission probabilities have to be
visited at least a single time. In order to allow for valid con-
clusions, we need to make sure that all systems have the
chance to find a good alignment w.r.t. their HMM architec-

. w0 b7 B uDev B0 Test 404402
40 = =
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Fig. 10 Showing the best achieved WERs in [%] (the lower the better)
on PHOENIX 2014 for different numbers of states and repetitions.

ture. In opposition to all other experiments presented in the
scope of this work, we therefore perform multiple iterations
of re-alignment, where we re-estimate the viterbi path. We
start from a flat segmentation, where the available frames
are equally distributed across all states of a sentence. The
re-alignment then iteritively updates the frame labelling and
therefore affects the subsequent CNN training. Thus, after
each re-alignment we perform a fine-tuning of the previous
iteration’s model for 100k iterations (~ 4 epochs). Each iter-
ation takes about 6 hours for CNN training and 20 minutes
for viterbi alignment. We perform 10 re-alignment iterations
for all different HMM topologies and report the best result
among all iterations.

Discussion of results: Figure 10 shows the results in
terms of WER on the PHOENIX 2014 dev and test parti-
tion. We first vary the amount of states per sign-word from
1 to 8, maintaining the 2 state repetitions. In this setting,
the baseline of 3 states and 2 repetitions clearly outperforms
topologies with less states. However, we see the best perfor-
mance further increasing the numbers of states to 7. We note
a WER difference between the weakest (1 x 2 states) and
the strongest topology (7 x 2 states) of 8.5% absolute and
over 20% relative. The 7 state architecture achieves 33.4%
WER on the dev set and 34.4 on the test set. One could argue
that it is the implied HMM length and not the division into
hidden states that produces the improvements with longer
HMMs. Therefore, we further perform an experiment with 1
state and 6 repetitions, which has the same length behaviour
as the baseline. However, this model performs much worse
than the baseline. As such, we can conclude that the HMM
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Table 7 Showing how the HMM structure in terms of HMM states
and repetitions affects the total number of HMM states and the neural
network parameters (weights+biases) in millions.

HMM Structure PHOENIX 2014
States x Repetitions Total Parameters
States  [10%]
1x2 1232 14.1
2x2 2463 17.9
3x2 3694 21.7
4x2 4925 254
5x2 6156 29.2
6x2 7387 33.0
7x2 8618 36.8
8x2 9849 40.6

architecture has a strong influence on the recognition perfor-
mance. Nevertheless, in Table 7 we can see how the number
of HMM states affects the overall model size. This signifi-
cantly impacts runtime.

6.5 Effortless Ensemble of Models

Finally, we want to show that a log-linear combination of
multiple CNN models can further improve performance. We
therefore define the probability by the visual model to be the
combined product of each single model i scaled by a factor
§; as in

T (o) 5

(16)

In the scope of this work we combine / = 2 models. The
fact that model ensembles increase performance is well
known. However, typically the building of models that are
sufficiently complementary to yield any improvements
constitutes a large computational overhead. In this Section,
we show that the process of re-aligning the models already
adds sufficient discriminative information. Even models
from successive re-alignment iterations yield strong gains
when deployed as ensemble. This is remarkable as it means
that with the proposed algorithm we get such models free
of additional effort.

We choose two successive iterations of the best HMM
architecture using 7 states and 2 repetitions, namely the 10™
iteration yielding 33.6 / 34.6 and the 9" iteration yielding
33.8 / 34.6 on the development set and on the test set re-
spectively. The log-linear combination with 6; = 0.87 and
& =0.13 yields a WER of 31.6% and 32.5% for dev and
test respectively on PHOENIX 2014. This corresponds to a
relative gain of around 6% compared to the single models.

40.540.2 B uDev B0 Test
§4o - e (392 |
e I 354
B 35 34.4 3. 34 339344 —
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Fig. 11 Showing the best achieved WERs in [%] (the lower the better)
on PHOENIX 2014 for log-linear model combination of the two best
alignment iterations (while keeping the HMM architecture fixed).

6.6 General Comparison to State-of-the-art

Table 8 shows a detailed comparison to the state-of-the art
on the three employed benchmark corpora. Besides
performance measures, it reports the method of choice by
the respective publications. Note that the proposed hybrid
approach currently exploits only a single cropped hand of
the signer and yet achieves state-of-the-art performance.
Sign language is highly multimodal and makes heavy use
of manual components (hand shape, orientation, place of
articulation, movement) and also non-manual components
(facial expression, eyebrow height, mouth, head orientation,
upper body orientation). Most of the competing approaches
use these additional modalities in recognition, which is why
we expect additional gain when including them in the
proposed approach. The previously best hand only result
mentioned in Koller et al (2016a) also relied on CNN
models, but did not employ the hybrid approach end-to-end
in recognition, loosing some performance due to this. It set
the benchmark on PHOENIX 2014 Multisigner to 51.6%
WER. However, our proposed CNN-HMM achieves a
strong result of 33.6% and 34.6% on dev and test
respectively with a single model and 31.6%/32.5% with
model combination. This corresponds to about 20%
absolute WER or over 38% relative improvement. On the
single signer corpus RWTH-PHOENIX-Weather 2012 the
proposed approach improved the best baseline from 35.5%
to 30.0%, still being a relative improvement of over 15%.
On SIGNUM we improve the best known word error rates
from from 12.0% to 7.4%. As can be seen in Table 8, our
hand-only hybrid CNN-HMM even outperforms
multimodal approaches.

Nevertheless, the need to include more modalities than
just the right hand is revealed by looking at the recognition
errors. Qualitative examination of the top confusions on
PHOENIX 2014 made by the hybrid approach highlight
confused pairs such as “SNOW” with “RAIN” or
“SHOWER” with “RAIN”. However, these signs share the
same hand configurations, whereas only the mouth shape
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Table 8 Comparison with state-of-the-art. Results in WER [%]: the lower the better. Best results of the proposed approach are single models.
Model combination further improves the error on PHOENIX 2014 down to 34.4%.

PHOENIX 2012 PHOENIX 2014 SIGNUM

Method Test Dev Test Test
von Agris et al (2008a) GMM-HMM - - - 12.7
Gweth et al (2012) GMM-HMM (MLP feat.) - - - 11.9
Forster et al (2013b) GMM-HMM 419 - - 10.7
Forster et al (2013a) GMM-HMM 38.6 - - 10.7
Koller et al (2015a) GMM-HMM 343 57.3 55.6 10.0
Koller et al (2015a) GMM-HMM (CMLLR) - 55.0 53.0 -
Koller et al (2016a) GMM-HMM (CNN feat.) 31.2 47.1 45.1 7.6
Koller et al (2016b) tandem CNN-HMM 31.0 39.9 38.8 10.0
Camgoz et al (2017) CNN-LSTM with CTC - 40.8 40.7 -
Cui et al (2017) CNN-LSTM with CTC - 394 38.7 -
Proposed approach: hybrid CNN-HMM 30.0 31.6 325 74

changes. Given the classification relies purely on the right
hand, it is understandable that it cannot distinguish between
these signs. The top 30 confusions all relate to this type of
eITOr.

7 Conclusion and Future Work

In this work, we introduced an end-to-end embedding of a
CNN into a HMM, while interpreting the outputs of the
CNN in a truly Bayesian framework and training the
system as a hybrid CNN-HMM in an end-to-end fashion
Most state-of-the-art approaches in gesture and sign
language modelling use a sliding window approach or
simply evaluate the output in terms of overlap with the
ground truth. While this is sufficient for data sets that
provide such training and evaluation characteristics, it is
unsuitable for real world use. For the field to move forward
more realistic scenarios, such as those imposed by
challenging real-life sign language corpora, are required.

In this manuscript, we presented a hybrid CNN-HMM
framework that combines the strong discriminative abilities
of CNNs with the sequence modelling capabilities of
HMMs, while abiding to Bayesian principles. This work
represents the extended version of our previous
work (Koller et al 2016b), where we were the first to
present such an embedding in the context of sign language
and gesture recognition. With the hybrid method we were
able to achieve a large relative improvement of over 15%
compared to the previous state-of-the-art on three
challenging benchmark continuous sign language
recognition data sets. On the two single signer data sets
RWTH-PHOENIX-Weather 2012 and SIGNUM we
improve the best known word error rates from 35.5% to
30.0% and from 12.0% to 7.4% respectively, while only
employing basic hand-patches as input. On the difficult 9
signer > 1000 vocab RWTH-PHOENIX-Weather 2014

Multisigner, we lower the error rates from 51.6% / 50.2%
to 31.6% / 32.5% on dev / test.

In the scope of this extended manuscript, we signifi-
cantly added to the theoretical explanation of the hybrid ap-
proach, with the aim of making its idea more accessible
to newcomers to the field and presented much more exten-
sive experiments: We analysed the effect of both CNN- and
HMM-structure on the hybrid approach. We investigated the
effect of using out-of-domain data to train the network prior
to finetuning using in-domain data. Finally, we showed that
the use of ensembles of hybrid CNN-HMMs is able to fur-
ther boost performance.

In terms of future work, we would like to extend our
approach to cover all relevant modalities. Moreover, tech-
niques to overcome the necessary initial alignment, such as
end-to-end training will also be investigated.
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