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Abstract
Sign Language Recognition (SLR) has been an active

research field for the last two decades. However, most
research to date has considered SLR as a naive gesture
recognition problem. SLR seeks to recognize a sequence of
continuous signs but neglects the underlying rich grammat-
ical and linguistic structures of sign language that differ
from spoken language. In contrast, we introduce the Sign
Language Translation (SLT) problem. Here, the objective
is to generate spoken language translations from sign
language videos, taking into account the different word
orders and grammar.

We formalize SLT in the framework of Neural Machine
Translation (NMT) for both end-to-end and pretrained
settings (using expert knowledge). This allows us to jointly
learn the spatial representations, the underlying language
model, and the mapping between sign and spoken language.

To evaluate the performance of Neural SLT, we collected
the first publicly available Continuous SLT dataset, RWTH-
PHOENIX-Weather 2014T1. It provides spoken language
translations and gloss level annotations for German Sign
Language videos of weather broadcasts. Our dataset con-
tains over .95M frames with >67K signs from a sign vocab-
ulary of >1K and >99K words from a German vocabulary
of >2.8K. We report quantitative and qualitative results for
various SLT setups to underpin future research in this newly
established field. The upper bound for translation perfor-
mance is calculated at 19.26 BLEU-4, while our end-to-end
frame-level and gloss-level tokenization networks were able
to achieve 9.58 and 18.13 respectively.

1. Introduction
Sign Languages are the primary language of the deaf

community. Despite common misconceptions, sign lan-
guages have their own specific linguistic rules [55] and do
not translate the spoken languages word by word. There-
fore, the numerous advances in SLR [15] and even the move
to the challenging Continuous SLR (CSLR) [33, 36] prob-
lem, do not allow us to provide meaningful interpretations

1https://www-i6.informatik.rwth-aachen.de/

˜koller/RWTH-PHOENIX-2014-T/

Figure 1. Difference between CSLR and SLT.

of what a signer is saying. This translation task is illus-
trated in Figure 1, where the sign language glosses give the
meaning and the order of signs in the video, but the spoken
language equivalent (which is what is actually desired) has
both a different length and ordering.

Most of the research that has been conducted in SLR
to date has approached the task as a basic gesture recogni-
tion problem, ignoring the linguistic properties of the sign
language and assuming that there is a one-to-one mapping
of sign to spoken words. Contrary to SLR, we propose to
approach the full translation problem as a NMT task. We
use state-of-the-art sequence-to-sequence (seq2seq) based
deep learning methods to learn: the spatio-temporal repre-
sentation of the signs, the relation between these signs (in
other words the language model) and how these signs map
to the spoken or written language. To achieve this we in-
troduce new vision methods, which mirror the tokenization
and embedding steps of standard NMT. We also present the
first continuous SLT dataset, RWTH-PHOENIX-Weather
2014T, to allow future research to be conducted towards
sign to spoken language translation. The contributions of
this paper can be summarized as:
• The first exploration of the video to text SLT problem.
• The first publicly available continuous SLT dataset,

PHOENIX14T, which contains video segments, gloss
annotations and spoken language translations.
• A broad range of baseline results on the new corpus in-

cluding a range of different tokenization and attention
schemes in addition to parameter recommendations.

The rest of this paper is organized as follows: In Section 2
we survey the fields of sign language recognition, seq2seq
learning and neural machine translation. In Section 3 we
formalize the SLT task in the framework of neural ma-
chine translation and describe our pipeline. We then intro-
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duce RWTH-PHOENIX-Weather 2014T, the first continu-
ous SLT dataset, in Section 4. We share our quantitative
and qualitative experimental results in Sections 5 and 6, re-
spectively. Finally, we conclude our paper in Section 7 by
discussing our findings and the future of the field.

2. Related Work
There are various factors that have hindered progress to-

wards SLT. Although there have been studies such as [9],
which recognized isolated signs to construct sentences, to
the best of our knowledge no dataset or study exists that
achieved SLT directly from videos, until now. In addition,
existing linguistic work on SLT has solely dealt with text to
text translation. Despite only including textual information,
these have been very limited in size (averaging 3000 total
words) [46, 54, 52]. The first important factor is that col-
lection and annotation of continuous sign language data is
a laborious task. Although there are datasets available from
linguistic sources [51, 28] and sign language interpretations
from broadcasts [14], they are weakly annotated and lack
the human pose information which legacy sign language
recognition methods heavily relied on. This has resulted in
many researchers collecting isolated sign language datasets
[63, 7] in controlled environments with limited vocabulary,
thus inhibiting the end goal of SLT. The lack of a baseline
dataset for SLR has rendered most research incomparable,
robbing the field of competitive progress.

With the development of algorithms that were capa-
ble of learning from weakly annotated data [5, 50, 14]
and the improvements in the field of human pose estima-
tion [10, 59, 8], working on linguistic data and sign lan-
guage interpretations from broadcasts became a feasible op-
tion. Following these developments, Forster et al. released
RWTH-PHOENIX-Weather 2012 [20] and its extended ver-
sion RWTH-PHOENIX-Weather 2014 [21], which was cap-
tured from sign language interpretations of weather fore-
casts. The PHOENIX datasets were created for CSLR
and they provide sequence level gloss annotations. These
datasets quickly became a baseline for CSLR.

Concurrently, Deep Learning (DL) [39] has gained pop-
ularity and achieved state-of-the-art performance in various
fields such as Computer Vision [38], Speech Recognition
[2] and more recently in the field of Machine Translation
[47]. Until recently SLR methods have mainly used hand-
crafted intermediate representations [33, 16] and the tem-
poral changes in these features have been modelled using
classical graph based approaches, such as Hidden Markov
Models (HMMs) [58], Conditional Random Fields [62]
or template based methods [5, 48]. However, with the
emergence of DL, SLR researchers have quickly adopted
Convolutional Neural Networks (CNNs) [40] for manual
[35, 37] and non-manual [34] feature representation, and
Recurrent Neural Networks (RNNs) for temporal modelling
[6, 36, 17].

One of the most important breakthroughs in DL was the
development of seq2seq learning approaches. Strong anno-
tations are hard to obtain for seq2seq tasks, in which the
objective is to learn a mapping between two sequences. To
be able to train from weakly annotated data in an end-to-
end manner, Graves et al. proposed Connectionist Temporal
Classification (CTC) Loss [25], which considers all possi-
ble alignments between two sequences while calculating the
error. CTC quickly became a popular loss layer for many
seq2seq applications. It has obtained state-of-the-art per-
formance on several tasks in speech recognition [27, 2] and
clearly dominates hand writing recognition [26]. Computer
vision researchers adopted CTC and applied it to weakly la-
beled visual problems, such as lip reading [3], action recog-
nition [30], hand shape recognition [6] and CSLR [6, 17].

Another common seq2seq task is machine translation,
which aims to develop methods that can learn the mapping
between two languages. Although CTC is popular, it is not
suitable for machine translation as it assumes source and
target sequences share the same order. Furthermore, CTC
assumes conditional independence within target sequences,
which doesn’t allow networks to learn an implicit language
model. This led to the development of Encoder-Decoder
Network architectures [31] and the emergence of the
NMT field [47]. The main idea behind Encoder-Decoder
Networks is to use an intermediary latent space to map
two sequences, much like the latent space in auto-encoders
[24], but applied to temporal sequences. This is done by
first encoding source sequences to a fixed sized vector
and then decoding target sequences from this. The first
architecture proposed by Kalchbrenner and Blunsom [31]
used a single RNN for both encoding and decoding tasks.
Later Sutskever et al. [56] and Cho et al. [11] proposed
delegating encoding and decoding to two separate RNNs.

Although encoder-decoder networks improved machine
translation performance, there is still the issue of an infor-
mation bottleneck caused by encoding the source sequence
into a fixed sized vector and the long term dependencies be-
tween source and target sequence. To address these issues,
Bahdanau et al. [4] proposed passing additional information
to the decoder using an attention mechanism. Given en-
coder outputs, their attention function calculates the align-
ment between source and target sequences. Luong et al.
[44] further improved this approach by introducing addi-
tional types of attention score calculation and the input-
feeding approach. Since then, various attention based archi-
tectures have been proposed for NMT, such as GNMT [60]
that combines bi-directional and uni-directional encoders in
a deep architecture and [22] which introduced a convolution
based seq2seq learning approach. Similar attention based
approaches have been applied to various Computer Vision
tasks, such as image captioning [61], lip reading [13] and
action recognition [19].



Figure 2. An overview of our SLT approach that generates spoken language translations of sign language videos.

3. Neural Sign Language Translation
Translating sign videos to spoken language is a seq2seq

learning problem by nature. Our objective is to learn the
conditional probability p(y|x) of generating a spoken lan-
guage sentence y = (y1, y2, ..., yU ) with U number of
words given a sign video x = (x1, x2, ..., xT ) with T
number of frames. This is not a straight forward task as
the number of frames in a sign video is much higher than
the number of words in its spoken language translation
(i.e. T � U ). Furthermore, the alignment between sign and
spoken language sequences are usually unknown and non-
monotonic. In addition, unlike other translation tasks that
work on text, our source sequences are videos. This renders
the use of classic sequence modeling architectures such as
the RNN difficult. Instead, we propose combining CNNs
with attention-based encoder-decoders to model the condi-
tional probability p(y|x). We experiment with training our
approach in an end-to-end manner to jointly learn the align-
ment and the translation of sign language videos to spoken
language sentences. An overview of our approach can be
seen in Figure 2. In the remainder of this section, we will
describe each component of our architecture in detail.

3.1. Spatial and Word Embeddings:
Neural machine translation methods start with tokeniza-

tion of source and target sequences and projecting them to
a continuous space by using word embeddings [45]. The
main idea behind using word embeddings is to transform
the sparse one-hot vector representations, where each word
is equidistant from each other, into a denser form, where
words with similar meanings are closer. These embed-
dings are either learned from scratch or pretrained on larger
datasets and fine-tuned during training. However, contrary
to text, signs are visual. Therefore, in addition to using word
embeddings for our target sequences (spoken language sen-

tences), we need to learn spatial embeddings to represent
sign videos. To achieve this we utilize 2D CNNs. Given
a sign video x, our CNN learns to extract non-linear frame
level spatial representations as:

ft = SpatialEmbedding(xt) (1)

where ft corresponds to the feature vector produced by
propagating a video frame xt through our CNN.

For word embedding, we use a fully connected layer that
learns a linear projection from one-hot vectors of spoken
language words to a denser space as:

gu = WordEmbedding(yu) (2)

where gu is the embedded version of the spoken word yu.

3.2. Tokenization Layer:
In NMT the input and output sequences can be tokenized

at many different levels of complexity: characters, words,
N-grams or phrases. Low level tokenization schemes, such
as the character level, allow smaller vocabularies to be used,
but greatly increase the complexity of the sequence model-
ing problem, and require long term relationships to be main-
tained. High level tokenization makes the recognition prob-
lem far more difficult due to vastly increased vocabularies,
but the language modeling generally only needs to consider
a small number of neighboring tokens.

As there has been no previous research on SLT, it is not
clear what tokenization schemes are most appropriate for
this problem. This is exacerbated by the fact that, unlike
NMT research, there is no simple equivalence between the
tokenizations of the input sign video and the output text.
The framework developed in this paper is generic and can
use various tokenization schemes on the spatial embeddings
sequence f1:T

z1:N = Tokenization(f1:T ) (3)



In the experiments we explore both “frame level” and
“gloss level” input tokenization, with the latter exploiting
an RNN-HMM forced alignment approach [36]. The output
tokenization is at the word level (as in most modern NMT
research) but could be an interesting avenue for the future.

3.3. Attention-based Encoder-Decoder Networks:
To be able to generate the target sentence y from to-

kenized embeddings z1:N of a sign video x, we need to
learn a mapping function B(z1:N ) → y which will maxi-
mize the probability p(y|x). We propose modelling B us-
ing an attention-based encoder-decoder network, which is
composed of two specialized deep RNNs. By using these
RNNs we break down the task into two phases. In the en-
coding phase, a sign videos’ features are projected into a la-
tent space in the form of a fixed size vector, later to be used
in the decoding phase for generating spoken sentences.

During the encoding phase, the encoder network, reads
in the feature vectors one by one. Given a sequence of repre-
sentations z1:N , we first reverse its order in the temporal do-
main, as suggested by [56], to shorten the long term depen-
dencies between the beginning of sign videos and spoken
language sentences. We then feed the reversed sequence
zN :1 to the Encoder which models the temporal changes in
video frames and compresses their cumulative representa-
tion in its hidden states as:

on = Encoder(zn, on+1) (4)

where on is the hidden state produced by recurrent unit n,
oN+1 is a zero vector and the final encoder output o1 corre-
sponds to the latent embedding of the sequence hsign which
is passed to the decoder.

The decoding phase starts by initializing hidden states of
the decoder network using the latent vector hsign. In the
classic encoder-decoder architecture [56], this latent rep-
resentation is the only information source of the decoding
phase. By taking its previous hidden state (hu−1) and the
word embedding (gu−1) of the previously predicted word
(yu−1) as inputs, the decoder learns to generate the next
word in the sequence (yu) and update its hidden state (hu):

yu, hu = Decoder(gu−1, hu−1) (5)

where h0 = hsign is the spatio-temporal representation of
sign language video learned by the Encoder and y0 is the
special token < bos > indicating the beginning of a sen-
tence. This procedure continues until another special to-
ken < eos >, which indicates the end of a sentence, is pre-
dicted. By generating sentences word by word, the Decoder
decomposes the conditional probability p(y|x) into ordered
conditional probabilities:

p(y|x) =
U∏

u=1

p(yu|y1:u−1, hsign) (6)

which is used to calculate the errors by applying cross en-
tropy loss for each word. For the end-to-end experiments,

these errors are back propagated through the encoder-
decoder network to the CNN and word embeddings, thus
updating all of the network parameters.

Attention Mechanisms:
A major drawback of using a classic encoder-decoder archi-
tecture is the information bottleneck caused by representing
a whole sign language video with a fixed sized vector. Fur-
thermore, due to large number of frames, our networks suf-
fer from long term dependencies and vanishing gradients.
To overcome these issues, we utilize attention mechanisms
to provide additional information to the decoding phase. By
using attention mechanisms our networks are able to learn
where to focus while generating each word, thus provid-
ing the alignment of sign videos and spoken language sen-
tences. We employ the most prominent attention approach
proposed by Bahdanau et al. [4] and later improved by Lu-
ong et al. [44].

The main idea behind attention mechanisms is to create
a weighted summary of the source sequence to aid the de-
coding phase. This summary is commonly known as the
context vector and it will be notated as cu in this paper. For
each decoding step u, a new context vector cu is calculated
by taking a weighted sum of encoder outputs o1:N as:

cu =

N∑
n=1

γunon (7)

where γun represent the attention weights, which can be in-
terpreted as the relevance of an encoder input zn to gen-
erating the word yu. When visualized, attention weights
also help to display the alignments between sign videos and
spoken language sentences learned by the encoder-decoder
network. These weights are calculated by comparing the
decoder hidden state hu against each output ot as:

γun =
exp(score(hu, on))∑N

n′=1 exp(score(hu, on′)
(8)

where the scoring function depends on the attention mecha-
nism that is being used. In this work we examine two scor-
ing functions. The first one is a multiplication based ap-
proach proposed by Luong et al. [44] and the second is a
concatenation based function proposed by Bahdanau et al.
[4]. These functions are as follows:

score(hu, on)=

{
h>uWon [Multiplication]
V >tanh(W [hu; on]) [Concatenation] (9)

where W and V are learned parameters. The context vector
cu is then combined with the hidden state hu to calculate
the attention vector au as:

au = tanh(Wc[cu;hu]) (10)
Finally, we feed the au to a fully connected layer to model
the ordered conditional probability in Equation 6. Further-
more au is fed to the next decoding step u+1 thus changing
Equation 5 to:

yu, hu = Decoder(gu−1, hu−1, au−1) (11)



4. Sign Language Translation Dataset
As discussed in Section 2, there are no suitable datasets

available to support research towards SLT. Due to the cost
of annotation, existing linguistic datasets are too small to
support deep learning.

In this work we present “RWTH-PHOENIX-Weather
2014T”, a large vocabulary, continuous SLT corpus.
PHOENIX14T is an extension of the PHOENIX14 corpus,
which has become the primary benchmark for SLR in recent
years. PHOENIX14T constitutes a parallel corpus includ-
ing sign language videos, sign-gloss annotations and also
German translations (spoken by the news anchor), which
are all segmented into parallel sentences. Due to differ-
ent sentence segmentation between spoken language and
sign language, it was not sufficient to simply add a spoken
language tier to PHOENIX14. Instead, the segmentation
boundaries also had to be redefined. Wherever the addition
of a translation layer necessitated new sentence boundaries,
we used the forced alignment approach of [35] to compute
the new boundaries.

In addition to changes in boundaries, RWTH-
PHOENIX-Weather 2014T has a marginally decreased
vocabulary due to some improvements in the normalization
schemes. This means performance on PHOENIX14 and
PHOENIX14T will be similar, but not exactly compa-
rable. However, care has been taken to assure that the
dev/test sets of PHOENIX14 do not overlap with the
new PHOENIX14T training set and also that none of the
new dev/test sets from PHOENIX14T overlap with the
PHOENIX14 training set.

This corpus is publicly available to the research commu-
nity for facilitating the future growth of SLT research. The
detailed statistics of the dataset can be seen in Table 1. OOV
stands for Out-Of-Vocabulary, e.g. words that occur in test,
but not in training. Singletons occur only once in the train-
ing set. The corpus covers unconstrained sign language of
9 different signers with a vocabulary of 1066 different signs
and translations into German spoken language with a vo-
cabulary of 2887 different words. The corpus features pro-
fessional sign language interpreters and has been annotated
using sign glosses by deaf specialists. The spoken German
translation originates from the news speaker. It has been au-
tomatically transcribed, manually verified and normalized.

Table 1. Key statistics of the new dataset.
Sign Gloss German

Train Dev Test Train Dev Test
segments 7,096 519 642 ←−−−−−−−− same

frames 827,354 55,775 64,627 ←−−−−−−−− same
vocab. 1,066 393 411 2,887 951 1,001

tot. words 67,781 3,745 4,257 99,081 6,820 7,816
tot. OOVs - 19 22 - 57 60
singletons 337 - - 1,077 - -

5. Quantitative Experiments
Using our new PHOENIX14T dataset, we conduct sev-

eral sets of experiments to create a baseline for SLT. We
categorize our experiments under three groups:

1. Gloss2Text (G2T), in which we simulate having a per-
fect SLR system as an intermediate tokenization.

2. Sign2Text (S2T) which covers the end-to-end pipeline
translating directly from frame level sign language
video into spoken language.

3. Sign2Gloss2Text (S2G2T) which uses a SLR system
as tokenization layer to add intermediate supervision.

All of our encoder-decoder networks were built using
four stacked layers of residual recurrent units with sepa-
rate parameters. Each recurrent layer contains 1000 hidden
units. In our S2T experiments we use AlexNet without its
final layer (fc8) as our Spatial Embedding Layer and ini-
tialize it using weights that were trained on ImageNet [18].
For our S2G2T experiments we use the CNN-RNN-HMM
network proposed by Koller et al. [36] as our Tokeniza-
tion Layer, which is the state-of-the-art CSLR. It achieves a
gloss recognition performance of 25.7%/26.6% word error
rate on the dev/test sets of the PHOENIX14T. All remain-
ing parts of our networks are initialized using Xavier [23]
initialization. We use Adam [32] optimization method with
a learning rate of 10−5 and its default parameters. We also
use gradient clipping with a threshold of 5 and dropout con-
nections with a drop probability of 0.2.

All of our networks are trained until the training perplex-
ity is converged, which took ∼30 epochs on average. We
evaluate our models on dev/test sets every half-epoch, and
report results for each setup using the model that performed
the best on the dev set. In the decoding phase we generate
spoken language sentences using beam search with a beam
width of three, which we empirically shows to be the opti-
mal beam size.

To measure our translation performance we utilize
BLEU [49] and ROGUE [42] scores, which are commonly
used metrics for machine translation. As ROUGE score we
use ROUGE-L F1-Score, while as BLEU score we report
BLEU-1,2,3,4 to give a better perspective of the translation
performance on different phrase levels.

We implemented our networks using TensorFlow [1].
Our code, which is based on Luong et al.’s NMT library
[43], is made publicly available2.

5.1. G2T: Simulating Perfect Recognition
Our SLT framework supports various input tokeniza-

tions. In our first set of experiments we simulate using an
idealized SLR system as an intermediate tokenizer. NMT
networks are trained to generate spoken language transla-
tions from ground truth sign glosses. We refer to this as
G2T.

2https://github.com/neccam/nslt
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Table 2. G2T: Effects of using different recurrent units on translation performance.
DEV SET TEST SET

Unit Type: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
LSTM 41.69 41.54 27.90 20.66 16.40 41.92 41.22 28.03 20.77 16.58
GRU 43.85 43.71 30.49 23.15 18.78 43.73 43.43 30.73 23.36 18.75

Table 3. G2T: Attention Mechanism Experiments.
DEV SET TEST SET

Attention: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
None 40.32 40.45 27.19 20.28 16.29 40.71 40.66 27.48 20.40 16.34

Bahdanau 42.93 42.93 29.71 22.43 17.99 42.61 42.76 29.55 22.00 17.40
Luong 43.85 43.71 30.49 23.15 18.78 43.73 43.43 30.73 23.36 18.75

Table 4. G2T: Batch Size Experiments.
DEV SET TEST SET

BS: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
128 43.85 43.71 30.49 23.15 18.78 43.73 43.43 30.73 23.36 18.75

64 43.78 43.52 30.56 23.36 18.95 44.36 44.33 31.34 23.74 19.06
32 44.63 44.67 31.44 24.08 19.58 44.52 44.51 31.29 23.76 19.14
16 44.87 44.10 31.16 23.89 19.52 44.37 43.96 31.11 23.66 19.01

1 46.02 44.40 31.83 24.61 20.16 45.45 44.13 31.47 23.89 19.26

There are two main objectives of the G2T experiments.
First to create an upper bound for end-to-end SLT. Second
to examine different encoder-decoder network architectures
and hyper-parameters, and evaluate their effects on sign to
spoken language translation performance. As training S2T
networks is an order of magnitude slower than G2T, we use
the best setup from our G2T experiments when training our
S2T networks.

Note that we should expect the translation performance’s
upper bound to be significantly lower than 100%. As in all
natural language problems, there are many ways to say the
same thing, and thus many equally valid translations. Un-
fortunately, this is impossible to quantify using any existing
evaluation measure.

5.1.1 Recurrent Units: GRUs vs LSTMs
Various types of recurrent units have been used for neu-
ral machine translation. The first encoder-decoder network
proposed by Kalchbrenner and Blunsom [31] was build us-
ing a single RNN with vanilla recurrent units. Later ap-
proaches employed shallow [56, 44] and deep architectures
[60] of Long Short-Term Memory (LSTM) units [29] and
Gated Recurrent Units (GRUs) [12]. To choose which re-
current unit to use, our first experiment trained two G2T
networks using LSTMs and GRUs. Both networks were
trained using a batch size of 128 and Luong attention mech-
anism as described in Section 3.

As it can be seen in Table 2, GRUs outperformed LSTM
units in both BLEU and ROUGE scores. This may be due
to over-fitting caused by the additional parameters in LSTM
units and the limited number of training sequences. Com-
pared to LSTMs, GRUs have fewer parameters (two vs.
three gates) which makes them faster to train and less prone
to over-fitting. We therefore use Gated Recurrent Units for
the rest of our experiments.

5.1.2 Attention Mechanisms: Luong vs. Bahdanau
Next we evaluated the effects of different attention mech-
anisms for the G2T translation task. We used Luong and

Bahdanau attention which were described in detail in Sec-
tion 3. We also trained a network which did not use any
attention mechanisms. All of our networks were trained us-
ing Gated Recurrent Units and a batch size of 128.

Our first observation from this experiment was that hav-
ing an attention mechanism improved the translation per-
formance drastically as shown in Table 3. When attention
mechanisms are compared, Luong attention outperformed
Bahdanau attention and generalized better to the test set.
We believe this is due to Luong attention’s use of the de-
coder network’s hidden state at time u while generating the
target wordu. We train our remaining G2T networks using
Luong attention.

5.1.3 What Batch Size to use?
There have been several studies on the effects of batch sizes
while using Stochastic Gradient Descent (SGD) [41]. Al-
though larger batch sizes have the advantage of providing
smoother gradients, they decrease the rate of convergence.
Furthermore, recent studies on the information theory be-
hind deep learning suggests the noise provided by smaller
batch size helps the networks to represent the data more
efficiently [57, 53]. In addition, training and evaluation
set distributions of seq2seq datasets are distinct by nature.
When early stopping is employed during training, having
additional noise provided by smaller batch sizes gives the
optimization the opportunity to step closer to the target dis-
tribution. This suggests there is an optimal batch size given
a network setup. Therefore, in our third set of experiments
we evaluate the effects of the batch size on the translation.
We train five G2T networks using different batch sizes that
are 128, 64, 32, 16 and 1. All of our networks were trained
using GRUs and Luong attention.

One interesting observation from this experiment was
that, the networks trained using smaller batch sizes con-
verged faster but to a higher training perplexity than one.
We believe this is due to high variance between gradients.
To deal with this we decrease the learning rate to 10−6



Table 5. S2T: Attention Mechanism Experiments.
DEV SET TEST SET

Attention: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
None 31.00 28.10 16.81 11.82 9.12 29.70 27.10 15.61 10.82 8.35

Bahdanau 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
Luong 32.6 31.58 18.98 13.22 10.00 30.70 29.86 17.52 11.96 9.00

Table 6. Effects of different tokenization schemes for sign to text translation.
DEV SET TEST SET

Approach: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
G2T 46.02 44.40 31.83 24.61 20.16 45.45 44.13 31.47 23.89 19.26
S2T 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58

S2G→G2T 43.76 41.08 29.10 22.16 17.86 43.45 41.54 29.52 22.24 17.79
S2G2T 44.14 42.88 30.30 23.02 18.40 43.80 43.29 30.39 22.82 18.13

when the training perplexity plateau, and continue training
for 100,000 iterations. Results show that having a smaller
batch size helps the translation performance. As reported in
Table 4, the G2T network with batch size one outperformed
networks that were trained using larger batch sizes. Consid-
ering these results, the remainder of our experiments use a
batch size of one.

5.1.4 Effects of Beam Width
The most straight forward decoding approach for Encoder-
Decoder networks is to use a greedy search, in which the
word with highest probability is considered the prediction
and fed to the next time step of the decoder. However,
this greedy approach is prone to errors, given that the pre-
dictions can have low confidence. To address this, we
use a simple left-to-right Beam Search during the decod-
ing phase, in which a number of candidate sequences, also
known as beam width, are stored and propagated through
the decoder. However, larger beam width does not nec-
essarily mean better translation performance and increases
decoding duration and memory requirements. Therefore,
to find the optimal value, we use our best performing
G2T network to do a parameter search over possible beam
widths and report development and test set translation per-
formances in the form of a BLEU-4 score.
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Figure 3. Effects of Beam Width on G2T performance.

As shown in Figure 3, a beam width of two or three was
optimal for our G2T network. Although beam width two
yielded the highest translation performance on the develop-
ment set, beam width three generalized better to the test set.
In addition, as beam width increased, the BLEU-4 scores
plateau and then start to decline. Taking these results into
consideration, we continue using beam width three for the
rest of our experiments.

5.2. S2T: From Sign Video To Spoken Text
In our second set of experiment we evaluate our S2T net-

works which learns to generate spoken language from sign
videos without any intermediate representation in an end-
to-end manner. In this setup our tokenization layer is an
Identity function, feeding the spatial embeddings directly to
the encoder-decoder network. Using the hyper-parameters
from our G2T experiments, we train three S2T networks
with different attention choices.

As with the G2T task, utilizing attention mechanisms in-
creases the translation performance of our S2T networks
(See Table 5). However, when compared against G2T, the
translation performance is lower. We believe this might due
to several reasons. As the number of frames in a sign video
is much higher than the number of its gloss level repre-
sentations, our S2T networks suffer from long term depen-
dencies and vanishing gradients. In addition, the dataset
we are using might be too small to allow our S2T net-
work to generalize considering the number of parameters
(CNN+EncoderDecoder+Attention). Furthermore, expect-
ing our networks to recognize visual sign languages and
translate them to spoken languages with single supervision
might be too much to ask from them. Therefore in our next
set of experiments, which we call S2G2T, we introduce the
gloss level supervision to aid the task of full translation from
sign language videos.

5.3. S2G2T: Gloss Level Supervision
In our final experiment we propose using glosses as an

intermediate representation while going from sign videos
to spoken language translations. To achieve this, we
use the CNN-RNN-HMM hybrid proposed in [36] as our
spatial embedding and tokenization layers. We evaluate
two setups. In the first setup: Sign2Gloss→Gloss2Text
(S2G→G2T), we use our best performing G2T network
without any retraining to generate sentences from the es-
timated gloss token embeddings. In the second setup:
S2G2T, we train a network from scratch to learn to translate
from the predicted gloss.

The S2G→G2T network performs surprisingly well con-
sidering there was no additional training. This shows us that



our G2T network has already learned some robustness to
noisy inputs, despite being trained on perfect glosses, this
may be due to the dropout regularization employed during
training. Our second approach S2G2T surpasses these re-
sults and obtains scores close to the idealized performance
of the G2T network. This is likely because the translation
system is able to correct the failure modes in the tokenizer.
As can be seen in Table 6, compared to the S2T network
S2G2T was able to surpass its performance by a large mar-
gin, indicating the importance of intermediary expert gloss
level supervision to simplify the training process.

6. Qualitative Experiments
In this section we share our qualitative results. One of

the most obvious ways of qualifying translation is to exam-
ine the resultant translations. To give a better understanding
to the reader, in Table 7 we share translation samples gen-
erated from our G2T, S2T and S2G2T networks accompa-
nied by the ground truth German and word to word English
translations.

Table 7. Translations from our networks. (GT: Ground Truth)
GT: und nun die wettervorhersage für morgen samstag den zweiten april .

( and now the weatherforecast for tomorrow saturday the second april . )
G2T: und nun die wettervorhersage für morgen samstag den elften april .

( and now the weatherforecast for tomorrow saturday the eleventh april . )
S2T: und nun die wettervorhersage für morgen freitag den sechsundzwanzigsten märz .

( and now the weatherforecast for tomorrow friday the twentysixth march . )
S2G2T: und nun die wettervorhersage für morgen samstag den siebzehnten april .

( and now the weatherforecast for tomorrow saturday the seventeenth april . )
GT: die neue woche beginnt wechselhaft und kühler .

( the new week starts unpredictable and cooler . )
G2T: die neue woche beginnt wechselhaft und wieder kühler .

( the new week starts unpredictable and again cooler . )
S2T: am montag überall wechselhaft und kühler .

( on monday everywhere unpredictable and cooler . )
S2G2T: die neue woche beginnt wechselhaft und wechselhaft .

( the new week starts unpredictable and unpredictable . )
GT: im süden und südwesten gebietsweise regen sonst recht freundlich .

( in the south and southwest locally rain otherwise quite friendly . )
G2T: in der südwesthälfte regnet es zeitweise sonst ist es recht freundlich .

( in the southwestpart it rains temporarely otherwise it is quite friendly . )
S2T: von der südhälfte beginnt es vielerorts .

( from the southpart it starts in many places . )
S2G2T: am freundlichsten wird es im süden .

( the friendliest it will be in the south . )
GT: am sonntag breiten sich teilweise kräftige schauer und gewitter .

( on sunday spreads partly heavy shower and thunderstorm . )
G2T: am sonntag teilweise kräftige schauer und gewitter .

( on sunday partly heavy sower and thunderstorm . )
S2T: am sonntag sonne und wolken und gewitter .

( on sunday sun and clouds and thunderstorm . )
S2G2T: am sonntag ab und an regenschauer teilweise auch gewitter .

( on sunday time to time rainshower partly also thunderstorm . )

We can see that the most common error mode is the mis-
translation of dates, places and numbers. Although this does
not effect the overall structure of the translated sentence, it
tells us the embedding learned for these infrequent words
could use some improvement.

In Figure 4 example attention maps can be seen for both
the S2T and S2G2T systems. These maps show how de-
pendent each output token (the horizontal axis) is on each
input token (the vertical axis). The S2T network’s focus is
concentrated primarily at the start of the video, but attention
does jump to the end during the final words of the transla-

Figure 4. Attention maps from our S2T (left) & S2G2T (right)
networks.

tion. In contrast the S2G2T attention figure shows a much
cleaner dependency of inputs to outputs. This is partly due
to the intermediate tokenization removing the asynchronic-
ity between different sign channels. It should be noted that
we still observe many-to-one mappings in both cases, due
to the fact that many of the spoken words are not explicitly
signed but have to be interpreted via context.

7. Conclusion
In this paper, we introduced the challenging task of Sign

Language Translation and proposed the first end-to-end so-
lution. In contrast to previous research, we took a machine
translation perspective; treating sign language as a fully in-
dependent language and proposing SLT rather than SLR as
the true route to facilitate communication with the deaf. To
achieve NMT from sign videos, we employed CNN based
spatial embedding, various tokenization methods includ-
ing state-of-the-art RNN-HMM hybrids [36] and attention-
based encoder-decoder networks, to jointly learn to align,
recognize and translate sign videos to spoken text.

To evaluate our approach we collected the first con-
tinuous sign language translation dataset, PHOENIX14T,
which is publicly available. We conducted extensive exper-
iments, making a number of recommendations to underpin
future research.

As future work, it would be interesting to extend the at-
tention mechanisms to the spatial domain to align building
blocks of signs, also known as subunits, with their spoken
language translations. It may also be possible to use an ap-
proach similar to SubUNets [6] to inject specialist interme-
diate subunit knowledge, bridging the gap between S2T and
S2G2T.
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