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Abstract
This work presents our recent advances in the field of automatic processing of sign language corpora targeting continuous sign language
recognition. We demonstrate how generic annotations at the articulator level, such as HamNoSys, can be exploited to learn subunit
classifiers. Specifically, we explore cross-language-subunits of the hand orientation modality, which are trained on isolated signs
of publicly available lexicon data sets for Swiss German and Danish Sign Language and are applied to continuous sign language
recognition of the challenging RWTH-PHOENIX-Weather corpus featuring German Sign Language. We observe a significant reduction

in word error rate using this method.
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1. Introduction

Traditionally, sign language corpora intended for machine
learning have been annotated at the gloss level as anno-
tation is a time consuming and expensive process. How-
ever, glosses used as basic modelling units do not scale well
with increasing corpus sizes. Furthermore, singleton signs,
which have only a single token for training, make it difficult
to find smooth model distributions reflecting the sign accu-
rately. This problem, often referred to as one-shot learning,
requires a single training instance to generalise over all pos-
sible variations to be encountered in the test data. Shared
subunits across the different types of a corpus reduce the
negative effect of singleton signs, as the composing sub-
units usually occur many times throughout the corpus and
can therefore be robustly estimated.

Nowadays, several lexical corpus collections exist (Braem,
2001; Jette H. Kristoffersen et al., 2008 2016; McKee et
al., 2015; Finish Association of the Deaf, 2015) compris-
ing HamNoSys or other subunit transcriptions. In order to
exploit and combine existing annotation efforts from differ-
ent corpora, we perform automatic alignment on the sub-
unit level. Specifically, this work explores cross-language-
subunits (trained on Swiss German and Danish Sign Lan-
guage) describing the hand orientation articulator. This
modality has so far been mostly unexplored, due to the large
variability attributed to it. In this way, we propose a method
to solve the problem of missing subunit annotations, while
still being able to train linguistically derived subunits. The
subunit alignments may be used to train a deep convolu-
tional neural network which model subunit representations
across different data sets and even sign languages. The
Convolutional Neural Network (CNN) is pre-trained and
22 layers deep. Finally, we apply the learnt models as fea-
ture extractors on our initial gloss annotated machine learn-
ing corpus and perform continuous sign language recogni-
tion of challenging real-life data on the publicly available
RWTH-PHOENIX-Weather corpus (Forster et al., 2014).
We observe a significant reduction in word error rate using
this method.

This paper is organised as follows: after introducing the

related literature in Section 2, we present the employed data
sets in Section 3. We then present the proposed approach
in Section 4 and evaluate it in Section 5. The paper closes
with a conclusion in Section 6.

2. Related Work

There is a large body of research looking at sign subunits
for sign language recognition. There are two broad classes
of approaches: (i) data driven subunits, (ii) linguistically
derived subunits. Both approaches have been compared
to each other, with different outcomes. In Pitsikalis et
al. (2011) phonetically derived subunits outperform data
driven subunits by 7% on average. However, generally
speaking, it is often due to missing subunit-level anno-
tations that researchers opt for the data driven approach.
Data driven approaches usually split the signs up by a seg-
mentation algorithm, which is often based on discontinu-
ities in hand movement velocity, such as in Theodorakis et
al. (2014). In Bauer and Kraiss (2002), a limited num-
ber of signs is arbitrarily segmented which then serves as
seed for either an Expectation Maximization (EM)-like it-
erative refinement of subunits or k-means to find subunit
clusters (Kong and Ranganath, 2014). Other approaches
use sparse coding to generate a sign dictionary (Yin et al.,
2015).

The first sign language recognition system, presented in
Tamura and Kawasaki (1988), employed linguistically de-
rived subunits. Usually, linguistic subunit annotations pro-
vide a way to break whole signs up into constituent parts
and construct a lexicon (Vogler and Metaxas, 1999; Pit-
sikalis et al., 2011). Other approaches use iterative EM to
derive mouth-subunits from pronounced words (Koller et
al., 2014). Similarly, available annotations can be aligned
based on HamNoSys (Pitsikalis et al., 2011) or SignWrit-
ing (Koller et al., 2013; Koller et al., 2016) to the signed
footage. The deployment of the subunit classifiers is han-
dled differently. In Cooper et al. (2012) and Kadir et al.
(2004) subunits classifiers are learnt and then combined
into a second stage sign-level classifier. Systematic com-
parisons between subunit and whole sign modelling exist.



Figure 1: Showing employed data sets for training: Top to
bottom, Danish sign language dictionary (Jette H. Kristof-
fersen et al., 2008 2016) and the Swiss German Sign Lan-
guage dictionary (Braem, 2001).

In Vogler and Metaxas (1999), which is based on the move-
ment and hold model with linguistic subunits, a powerglove
hand tracker helps to perform continuous sign language
recognition (CSLR). The authors conclude that sign level
modelling slightly outperforms subunit modelling on a 22
sign vocab task trained on 400 sentences.

Hand location and movement are the most frequently en-
countered modalities used in subunit modelling schemes,
closely followed by the handshapes. However, in Waldron
and Kim (1995) they have been combined with 11 orienta-
tion subunits to recognise a 14 sign vocabulary.

3. Data Sets

Two different sign language dictionary data sets are em-
ployed for training the hand orientation classifier, which
cover isolated signs. The first represents isolated signs from
Danish Sign Language (Jette H. Kristoffersen et al., 2008
2016) with linguistic annotations, and the second features
Swiss German Sign Language (Braem, 2001) with pro-
vided HamNoSys annotation (Prillwitz et al., 1989). The
Danish data features high quality video footage recorded
with 720 x 576 pixel, with very little motion blur. The
Swiss German data originates from the year 2001 and is
captured at a low resolution, the majority of videos being
320 x 240 pixel. It contains motion blur and the frames are
interlaced. Figure 1 shows data examples of both sources.
Both lexica provide hand orientation labels. The Danish
data follows its own annotation scheme, which seems to
be derived from HamNoSys. From a pattern recognition
point of view annotations from both data sets are ambigu-
ous, noisy and partly inconsistent. The chosen modality in
this work are hand orientations. An isolated signed instance
therefore consists of a finger orientation and a palm orienta-
tion annotation, sometimes sequences of two or more such
annotations. This can be seen in Figure 1, where the top row
depicts a signed instance comprising a single hand orienta-
tion and the bottom row shows an orientation sequence that
transitions from “fingers:up palm:frontleft” to “fingers:up
palm:back”. The signer brings his hands from a neutral
position to the place of sign execution, while transitioning
from a neutral hand orientation to the target hand orienta-
tion. The sign may involve a hand movement, a rotation of
the hand and changes in hand shape. The annotation may
represent any of these hand orientations or an intermedi-
ate configuration that was considered linguistically dom-
inant during the annotation. It is also important to note
that most linguistic annotations are done for the canonical
form, which does not necessarily reflect the exact articu-

Danish Swiss

duration [min] 97 200
# frames 145,720 299,864
L, autom. orient. 32,574 144,432 60,643 /55,005

L autom. garbage 113,146 /101,288 239,221 / 244,859

# signed sequences 2,149 4,730
# signs 2,149 4,730
# signers 6 ~ 22

Table 1: Corpus statistics: Danish (‘Danish’) and Swiss
German (‘Swiss’) Sign Language data sets used for training
the finger and palm orientation classifier. ‘orient.” stands
for orientation. The automatic frame counts are given for
the finger orientation and the palm orientation. Therefore,
two different estimated numbers are presented.

HamNoSys Danish
Finger Palm Finger Palm
v O back right
back

L O downleft

up left
A O

Figure 2: Showing an example mapping from HamNoSys
to the Danish notation. It is apparent that in the HamNoSys
annotation the palm orientation is coded in dependence of
the finger orientation.

lated instance we have access to in the video. Statistics of
the two employed data sets are given in Table 1. Garbage
and hand orientation frame counts are estimated automati-
cally by our algorithm, which is done separately for finger
and palm orientations. Both setups yield slightly differing
numbers, which are both presented in Table 1. Both data
sets jointly feature nearly 100, 000 frames of hand orienta-
tion performed by about 28 different signers.

For the purpose of combining both lexicon data sets in the
scope of this work we needed to create a mapping from
HamNoSys to the Danish annotation. This was done man-
ually and had to accommodate the fact that the Danish data
set provided independent annotations for finger and palm
orientation, whereas in HamNoSys the palm orientation is
coded to be dependent on the finger orientation. This means
that the same annotated palm orientation symbol can refer
to different actual palm orientations depending on the cur-
rent finger orientation. This is depicted in Figure 2.

After joining both annotation schemes, there is a total of 24
finger orientation classes and 26 palm orientation classes.

Finally, we evaluate on the publicly available continu-
ous sign language data set benchmark RWTH-PHOENIX-
Weather 2014 Multisigner corpus (Forster et al., 2014),
which is a challenging real-life continuous sign language
corpus that can be considered to be one of the largest pub-



lished continuous sign language corpora. It covers uncon-
strained sign language of 9 different signers with a vocab-
ulary of 1081 different signs. The data set is presented in
detail in Koller et al. (2015).

4. Approach

This paper builds on our previous work (Koller et al., 2016),
which is extended to the modality of hand orientations and
to cover HamNoSys annotations. In the following subsec-
tions, we briefly explain the developed HamNoSys parsing,
first introduce our weakly supervised learning framework
and then describe how to incorporate the learnt subunit clas-
sifiers into continuous sign language recognition.

4.1. HamNoSys Parsing

The data set annotations are coded in HamNoSys, an estab-
lished annotation scheme primarily developed for linguistic
purposes. It contains sufficient detail to directly animate an
avatar. Each sign described by HamNoSys is composed
of clusters of handshape, orientation, place of articulation
and movement. HamNoSys does not contain explicit seg-
mentation information. Due to the economic writing style,
HamNoSys is very minimalistic, but also needs a parsing
that corrects missing information.

We first convert the HamNoSys annotations to
SIGML (Glauert and Elliott, 2011). In order to be
able to compensate for the palm orientations being de-
pendent on the finger orientations, we need to ensure
that a palm orientation occurs always in the context of a
finger orientation. However, in transitions from a specific
palm orientation to another, HamNoSys dismisses those
modalities that do not change. The parser needs to take
care of adding this missing information back in. After that,
the mapping from HamNoSys to a non-dependant annota-
tion scheme can be easily accomplished. An example of
such a mapping is presented in Figure 2. Finally, finger
orientation and palm orientation annotations are separated
in order to train them as single classifiers.

4.2. Weakly Supervised Subunit Learning

Our weakly supervised CNN training algorithm constitutes
a successful solution to the problem of weakly supervised
learning from noisy sequence labels to correct frame la-
bels. Figure 3 gives an overview of the approach applied
to the learning of hand orientation subunits. The input im-
ages are cropped around the tracked hands, which forms
the input to the weakly supervised CNN training. The it-
erative learning algorithm is initialised with a ‘flat start’,
linearly partitioning the input frames to an available best
guess annotation, usually a single hand orientation class
preceded and followed by instances of the garbage class (as
the orientation subunit is expected to happen in the mid-
dle of the sequence). The algorithm iteratively refines the
temporal class boundaries and trains a CNN that performs
single image hand orientation recognition (being a separate
finger and palm orientation classification). While refining
the boundaries, the algorithm may drop the label sequence
or exchange it for one that better fits the data. The iterative
process is similar to a forced alignment procedure, how-
ever, rather than using Gaussian mixtures as the probabilis-
tic component we use the outputs of the CNN directly.

4.2.1. Problem Formulation

Following Koller et al. (2016), we have a sequence of im-
ages z1 = x1,..., 27 and an ambiguous class label [ for
the whole sequence, we want to jointly find the true label [
for each frame and train a model such that the class symbol
posterior probability p(k|z) over all images and classes is
maximised. We assume that a lexicon 1/ of possible map-
pings from [ — 1 exists, where [ can be interpreted as a
sequence of up to L class symbols k,

Y={l:1F 1€ k... kN, @)} 1)

Optionally, [ may be an empty symbol corresponding to
a garbage class. Each [ can map to multiple symbol se-
quences (which is important as lis ambiguous and a one-
to-one mapping would not be sufficient). In terms of se-
quence constraints, we only require each symbol to span
an arbitrary length of subsequent images as we assume that
symbols (in our application: hand orientation subunits) are
somewhat stationary and do not instantly disappear or ap-
pear.

Due to the promising discriminatory capabilities of CNNss,
we solve the problem in a iterative fashion with the EM
algorithm (Dempster et al., 1977) in a Hidden-Markov-
Model (HMM) setting and use the CNN to model the visual
appearance of hand orientations. EM iteratively updates
the assignment of class labels to images (E-Step) and then
re-estimates the model parameters to adapt to the change
(M-Step). We closely follow Koller et al. (2016) and, in-
spired by the hybrid approach (Bourlard and Morgan, 2012)
known from Automatic Speech Recognition (ASR), we in-
clude the CNN’s posterior output to likelihoods given the
class counts in our data using Bayes’ rule.

4.3. Convolutional Neural Network Architecture

Knowing the weakly supervised characteristics of our prob-
lem, we would like to incorporate as much prior knowledge
as possible to guide the search for the true symbol class
labels. Pre-trained CNN models constitute such a source
of knowledge, which seems reasonable as the pre-trained
convolutional filters in the lower layers may capture sim-
ple edges and corners, applicable to a wide range of image
recognition tasks. We opt for a model previously trained
in a supervised fashion for the ImageNet Large-Scale Vi-
sual Recognition Challenge (ILSVRC) 2014. We choose a
22 layer deep network architecture following (Szegedy et
al., 2014) which achieves a top-1 accuracy of 68.7% and
a top-5 accuracy 88.9% in the ILSVRC. The network in-
volves an inception architecture, which helps to reduce the
numbers of free parameters while allowing for a very deep
structure. Our model has about 6 million free parameters.
All convolutional layers and the last fully connected layer
use rectified linear units as non-linearity. Additionally, a
dropout layer with 70% ratio of dropouts is used to pre-
vent over-fitting. We base our CNN implementation on
Jia et al. (2014), which is an efficient C++ implementa-
tion using the NVIDIA CUDA Deep Neural Network GPU-
accelerated library. We replace the last pre-trained fully
connected layers before the output layers with those match-
ing the number of classes in our problem (plus one garbage
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Figure 3: Overview of weakly supervised learning with HamNoSys subunits.

class), which we initialise with zeros. As a preprocessing
step, we apply a global mean normalisation to the images
prior to fine-tuning the CNN model with Stochastic Gradi-
ent Descent (SGD) and a softmax based cross-entropy clas-
sification loss.

4.4. Sign Language Recognition with Subunit
Classifiers

In the previous subsections, we discussed learning a hand
orientation classifier, based on available sign language lexi-
cons with linguistic annotations. Continuous sign language
recognition is the final task to be accomplished. How-
ever, suitable corpora (for machine learning), such as the
RWTH-PHOENIX-Weather data set, do not provide sub-
unit annotations. Therefore, we cannot apply the learned
subunit classifiers directly, as there is no knowledge on how
to break signs of the given corpus up into subunits.

A viable solution is to use the learned subunit classifiers
as feature extractors and retrain a GMM system. This al-
lows us to make use of the external subunit annotations (of
corpora which are not intended for pattern recognition pur-
pose) to improve the recognition on a given gloss anno-
tated machine learning corpus, such as RWTH-PHOENIX-
Weather.

The procedure is as follows: The hand orientation classi-
fiers are trained to classify single images. During training,
no sample from our target machine learning corpus was
part of the training set. However, due to the CNN’s abil-
ity to generalise, the unseen images forwarded through the
trained network still provide good features for CSLR. With
this work’s experiments we will investigate if the classifica-
tion results of the final softmax layer, the output scores of
the last fully connected layer or the preceding last convolu-
tional layers constitute the best features. We further evalu-
ate how to preprocess these extracted features prior to mod-
elling them in a standard HMM-GMM gloss-based CSLR
system (Rybach et al., 2011). We compare no preprocess-
ing to variance normalisation and dimensionality reduction
by principal components analysis (PCA).

5. Experimental Results

We present the experimental evaluation in this section. In
the first subsection, we focus on weakly supervised learn-

ing, whereas in the later subsection we apply the learnt sub-
unit extractor to a state-of-the-art CSLR pipeline.

5.1. Weakly Supervised Subunit Learning

As described in the previous section, the task is to jointly
estimate a good alignment for the noisy subunit labels and
to model the given subunits robustly. The algorithm con-
verges after a couple of iterations. For this work, we run it
for 9 iterations. Figure 4 shows exemplar alignments of the
palm orientation subunits in the initialising condition and
after the last iteration. Looking at the initial alignments in
the first and third line in Figure 4, we see that the major-
ity of labels are already correctly aligned. However, at the
positions where labels change, there are some alignment er-
rors. After the convergence of the algorithm (row 2 and 4 in
Figure 4), we see that all labels have been correctly aligned.
Figures 5 and 6 show the distribution of the aligned sub-
unit classes across the nine iterations of weakly supervised
learning for palm orientations and finger orientations re-
spectively. We see that after a couple of iterations the palm
orientations stabilise to four main orientation subunits (be-
ing ‘left’, ‘front’, ‘down’, ‘back’). The training distribu-
tion of finger orientation subunits in Figure 6 look differ-
ent. Here, the ‘up’ subunit dominates the others in terms
of occurrence. Besides that, nine other finger orientations
(‘upleft’, ‘left’, ‘frontup’, ‘frontupleft’, ‘front’, ‘frontleft’,
‘down’, ‘downleft’, ‘backup’) are less frequent in the data.
This suggests that finger orientations are less stable than
palm orientations. ‘Stable’ may refer to the production of
sign language, to the annotation quality or to the modelling
itself.

Within one iteration of weakly supervised learning, we con-
tinuously finetune the CNN model and measure the model’s
accuracy on a held out set (being 10% of the training data).
We decide when to stop the CNN learning based on this
accuracy. Figure 7 shows the correlation between the ac-
curacy and the word error rate (WER). It has to be noted,
however, that the WER is measured on a different data set
and is therefore not directly comparable. We see a clear
trend of increasing top-1 accuracy during the first training
epoch (steps 1 to 8), from then onward the accuracy seems
to oscillate a bit. The red WER on dev curve oscillates from
the beginning, there is no clear trend visible. However, the
green WER on test curve (lower is better) seems to con-



Figure 4: Palm orientation alignment visualisation. First and third rows show the sample alignments at the initialisation
of the algorithm. Second and last rows show it after 9 iterations of the weakly supervised learning. It is visible how the
learning helps to find a good frame alignment between the palm orientation subunits and the video footage. ‘si’ refers to

the garbage class. Every fourth frame is shown.
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Figure 5: Figure shows unique training samples per palm
orientation class as distribution across 9 iterations of the
weakly supervised learning.
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Figure 6: Figure shows unique training samples per finger
orientation class as distribution across 9 iterations of the
weakly supervised learning.

tinuously decrease with increasing epochs. Thus, it seems
that the CSLR retraining and parameter tuning using ex-
tracted features on the development set allows us to fit the
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Figure 7: Correlation between WER measured on RWTH-
PHOENIX-Weather test set (finger orientation + 1-Mio-
Hands features) and accuracy 8 times per epoch of the
weakly supervised finger orientation learning on 10% of
the training data throughout the last iteration of the learn-
ing algorithm.

HMM-GMM model equally well to a worse subunit clas-
sifier. However, this then does not generalise to an unseen
test set. It is good to see that with increasing CNN train-
ing this generalisation continuously improves (test WER is
going down).

5.2. Continuous Sign Language Recognition

In this section we evaluate the trained hand orientation sub-
unit classifiers integrated into a state-of-the-art continuous
sign language recognition pipeline that predicts unseen se-
quences of RWTH-PHOENIX-Weather 2014 Multisigner.
We employ the classifiers after 9 iterations of weakly su-
pervised learning. As previously described, they have been
trained solely with out-of-task (Danish and Swiss German)
data. In the recognition pipeline, we use them as feature
extractors, with a single input image from PHOENIX be-
ing forwarded through the CNN, which is composed of the
different layers as mentioned in Section 4.3. The forward
pass can be stopped at any of them and the output consti-
tutes the extracted features. Table 2 compares the perfor-
mance of using features originating from different layers
of the trained subunit CNN. Not being trained on the task
data directly (as no subunit annotations are available for
PHOENIX), we expect the final classification output to be
quite noisy. This assumption seems to hold, as the soft-
max features (lines 1-3 in Table 2) are all largely outper-
formed by the other layers. The last fully connected output
(denoted as ‘last FC’ in Table 2) performs marginally bet-
ter (when being variance normalised across the whole data
set) than the PCA reduced output of the last convolutional
layer (actually, the output of the last pooling layer, which
has 1024 dimensions). For subsequent experiments, we
perform recognition always with features originating from
the last fully connected layer, which are then variance nor-
malised.

We further analyse which CNN model initialisation scheme
we should follow. Table 3 compares two different pre-
training schemes, which either rely on the imagenet data
set (over one million hand labelled objects from 1, 000 cat-

Extraction Layer WER
Softmax Last FC Last Conv|Var Norm Dim |Dev Test

1| X no 26 (65.0 63.7
2l X yes 26 (63.9 63.4
3] X yes  26pca|52.1 51.3
4 X yes  26pca|51.9 50.3
5 X no 26 (50.449.4
6 X yes  50pca|50.4 48.2
7 X yes 26 (50.148.3

Table 2: Comparing different feature extractor layers. All
experiments represent the palm orientation in feature com-
bination (stacking) with the 1-Mio-Hands classifier (Koller
et al.,, 2016). ‘Dim’ stands for dimension, ‘var norm’
for variance normalisation, ‘fc’ for fully connected layer,
‘conv’ for convolutional layer. WER in [%].

egories, very diverse in size, appearance and capture con-
ditions) or on the 1-Mio-Hands model, which was trained
to distinguish handshapes orientation independently using
more than one million hand images from the Danish, New
Zealand and German Sign Language (see (Koller et al.,
2016) for details.) We denote that the 1-Mio-Hands model
helps to learn a better stand-alone subunit classifier. How-
ever, when combined with the original initialisation model
and applied to the CSLR task, it lacks complementary infor-
mation. We therefore use Imagenet to pre-train our CNNs
in all subsequent experiments.

Initialisation WER [%]

Imagenet 1-Mio-Hands|Dev Test

1-Mio-Hands alone X 51.6 50.2
Subunit alone X 53.1 53.0
Subunit alone X 72.9 72.4
Subunit + 1-Mio-Hands X 50.2 50.3
Subunit + 1-Mio-Hands X 50.8 49.6

Table 3: Impact of initialisation. An initialisation from a
better model trained on the same data yields a better stand-
alone classifier, but lacks complementary information in
combination with the original initialisation model. Results
on RWTH-PHOENIX-Weather 2014 Multisigner. 1-Mio-
Hands have been presented in Koller et al. (2016). ‘+’
denotes feature stacking prior to GMM-HMM training.

3

Table 4 compares the finger and the palm orientation clas-
sifiers and their combination. We see that the palm orien-
tation outperforms the finger orientation and as expected
both contain complementary information with respect to
each other, as their fusion is clearly better than each clas-
sifier alone. Moreover, both orientation subunit classifiers
add complementary information to the strong 1-Mio-Hand
handshape baseline, which improves from 51.6% — 49.6%
on dev and from 50.2% — 48.2% on test.

Table 5 shows how much complementary information the
hand orientation classifiers add to a strong multi-modal
baseline consisting of jointly modelled (stacked) features
from Koller et al. (2015) (being HoG3D, right to left hand
distance, movement/trajectory of dominant hand, place of



Dev Test
del/ins WER del/ins WER

HoG-3D
1-Mio-Hands

25.8/4.2 60.9 23.2/4.1 58.1
19.1/4.1 51.6 17.5/4.5 50.2

33.0/3.1 72.9 31.3/3.1 72.4
25.4/4.1 68.7 24.4/4.5 66.9
26.3/3.3 63.8 24.3/3.3 62.3
Finger + 1-Mio-Hands 16.3/5.3 50.8 15.0/5.6 49.6
Palm + 1-Mio-Hands 17.5/4.6 50.1 16.0/4.6 48.3
Finger+Palm+1-Mio-Hands|17.5/4.7 49.6 15.9/4.6 48.2

Finger orientation
Palm orientation
Finger + Palm

Table 4: Hand-only continuous sign language recognition
results on RWTH-PHOENIX-Weather 2014 Multisigner.
1-Mio-Hands have been presented in Koller et al. (2016).
‘+” denotes feature stacking prior to GMM-HMM training.
WER in [%].

articulation normalised by the nose and facial features)
and the 1-Mio-Hand handshape features from Koller et al.
(2016). We note, that the orientation subunits can improve
the result on the dev set, but the improvement does not
carry over to the test set. Most likely, more data would
be required to achieve a better generalisation. Including
RWTH-PHOENIX-Weather into the subunit training stage
may also boost results (cf. (Koller et al., 2016)).

Dev Test
del/ins WER del/ins WER
1|(Koller et al., 2015) cmllIr|21.8/3.9 55.0 20.3/4.5 53.0
2|(Koller et al., 2015) 23.6/4.0 57.3 23.1/4.4 55.6
3| + 1-Mio-Hands 16.3/4.6 47.1 15.2/4.6 45.1
4 + Finger + Palm 18.0/4.5 46.6 16.5/4.8 45.5

Table 5: Multi-modal continuous sign language recognition
results on RWTH-PHOENIX-Weather 2014 Multisigner.
1-Mio-Hands have been presented in Koller et al. (2016).
‘+’ denotes feature stacking prior to GMM-HMM training.
WER in [%].

6. Conclusion

In this work, we presented our recent advances in the field
of subunit modelling for continuous sign language recogni-
tion. We demonstrated how generic annotations at the artic-
ulator level, such as HamNoSys, can be exploited to learn
subunit classifiers. We explored cross-language-subunits,
which were trained on isolated signs of publicly available
lexicon data sets for Swiss German and Danish Sign Lan-
guage. We therefore employed a weakly supervised learn-
ing framework that helped to jointly find those subunits that
occur in the data and to model them robustly.

We analysed the alignment of the weakly supervised learn-
ing, finding that palm orientations seem to be more sta-
ble than finger orientations. Furthermore, we systemati-
cally determine the best extraction scheme to include the
learnt CNN as feature extractors in a GMM-HMM system.
Finally, we evaluated palm orientation and finger orienta-
tion subunits to perform CSLR on the publicly available
RWTH-PHOENIX-Weather corpus (Forster et al., 2014).

We find that the modalities improve a handshape only sys-
tem by 2% absolute WER, while still improving a multi-
modal baseline (manual and non-manual features) by 0.5%.
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