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Abstract— In this paper we present an approach to hand
pose estimation that combines both discriminative and model-
based methods to overcome the limitations of each technique
in isolation. A Randomised Decision Forests (RDF) is used to
provide an initial estimate of the regions of the hand. This initial
segmentation provides constraints to which a 3D model is fitted
using Rigid Body Dynamics. Model fitting is guided using point
to surface constraints which bind a kinematic model of the hand
to the depth cloud using the segmentation of the discriminative
approach. This combines the advantages of both techniques,
reducing the training requirements for discriminative classi-
fication and simplifying the optimization process involved in
model fitting by incorporating physical constraints from the
segmentation. Our experiments on two challenging sequences
show that this combined method outperforms the current state-
of-the-art approach.

I. INTRODUCTION

Estimation of hand pose has wide ranging applications
covering areas such as gesture and sign language recognition,
digital advertising, sterile computer use in operating theatres
or home entertainment. The hands pose can be represented as
a class of previously seen hand shapes or as the configuration
of the hand, specified by joint positions and/or angles.

In the recent work of Tang [1] and Keskin [2], comparisons
have been drawn between the challenge of hand pose and
that of body pose estimation. This is because there are
similar requirements for real time performance and accuracy
in determining the configuration of an articulated object.
However, due to limitations in the resolution and the small
area of the finger tips, there are increased challenges in
applying the methods of body pose estimation directly to
hands.

Increased Variation. The large range of possible arm
motion, results in a greater variety of global hand poses.
The hand can be observed from a larger range of global
rotations than bodies, which are typically limited to “feet on
the floor” scenarios, as shown in figure 1. This additional
Degree of Freedom (DoF) causes large variation in depth
appearance, for similar joint configurations. Thus, extensive
datasets (50,000+ images) are required to capture the huge
variability of the hand.

Complex joint dependencies and range. The hand is
comprised of a complex chain of kinematic relationships that
can cause large scale occlusion and deformation, both of
which create ambiguity when determining the hands pose.
This range of flexibility also varies between users.
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Fig. 1: Examples of typical hand shapes captured in depth
showing noise and large amounts of global rotation. Body
poses exhibit less global rotation and more depth detail.

Noisy hand data. Hands captured using depth can exhibit
large amounts of contour noise and missing depth data. This
noise is challenging to reproduce in synthetic data [3], and
recover when using real data [4]. It is also challenging to
obtain large quantities of accurate labelled ground truth data
for machine learning approaches.

In solving hand pose estimation several criteria must be
considered.
Preconditions to successful hand pose estimation

1) Kinematic limitations – manoeuvrability defined by the
anatomical structure of the hand.

2) Invalid self-intersection – part of the hand entering the
volume of another part constitutes an invalid pose.

3) Temporal cohesion – the understanding that in an im-
age sequence the hand and its parts will transition from
one location to another over the course of multiple
frames.

4) Depth observation – Joints must reside within the
observation of the hand unless part of the observation
is missing.

This paper investigates a combined approach using both
a global approximation and local optimisation, combining
both discriminative and model based approaches. The global
approximation provides a robust, coarse estimate, while the
local optimisation refines a parametric model to fit the hands
appearance. The global search is performed using a Ran-
domised Decision Forest (RDF) trained using labelled depth



data. The local optimisation uses Rigid Body Dynamics and
data driven constraints to efficiently model the hand. As the
model is posed in a physics driven framework, tracking is
handled implicitly by the simulation.

We discuss the benefit of using this combined optimisation
method, and its application to hand pose estimation. Our
evaluation shows that the use of a global estimator in
combination with local refinement, improves on state of the
art for estimation of hand joints in the dataset of Tang [1].

This paper is divided into the following sections. Section II
discusses the field of hand pose estimation. Section III
discusses our approach to solving hand pose. Evaluation
is then performed against state of the art in Section III-B.
Section V then provides our conclusions and discusses future
work.

II. RELATED WORK

In general, work to determine the pose of the hand can
categorised as either model based, discriminative or shape
analysis:

A. Model Inference

Model based methods attempt to determine the hand
configuration using a generative model of the hand. This is
commonly achieved with estimated pose parameters typically
derived from the previous frames pose using an optimisation
framework in an attempt to establish the model parameters
through iterative refinement. Searching for a solution where
the observed hand and rendered model converge in appear-
ance provides a new estimate of the pose. Many approaches
aim to reduce the computation, by reducing either the search
space or parameter space. Using local encoding of the states
of the finger joints, Sudderth [5] models kinematic and
structural constraints, but do not account for loss of tracking.
A probabilistic framework proposed by Stenger [6] aims to
alleviate this by re-initialising after failure of tracking. A
tree structure is used to carve the search space to avoid
unlikely poses. Hamer [7] models the hand by parts which
allows partial matching of the pose for heavily occluded
hands grasping objects. To remove ambiguity due to edge or
silhouette information, DeLaGorce [8] models the lighting
and texture of the hand in a constrained fashion which
is shown to improve accuracy. Furthermore, depth based
approaches have been proposed as these are not effected by
illumination changes. One such approach is that of Oikono-
midis [9] who utilises particle swarms to optimise a rendered
model. However, this is computationally intensive, requiring
a GPU implementation. Ballan [10] uses multiple cameras to
reduce ambiguity and occlusion, performing motion capture
of both hands slowly interacting with an object. Using Rigid
Body Dynamics and several heuristic driven simulations,
Melax [11] determines the best model match from a subset
of approximate poses. Local minimum were then resolved
though asynchronous state exploration, impacting the rate of
convergence. Melax also demonstrates that rigid body dy-
namics, when constrained using depth, can operate similarly
to iterative closest point, and is effective in traversing to the

basin of local minima. Over time, model based approaches
can suffer from drift due to their dependency on the previous
estimations. Therefore augmentation can be used to acquire
a labelling of the hand. Chua [12] uses coloured markers to
aid in reducing the number of degrees of freedom, optimising
model fitting, while Aristidou [13] uses optical markers and
compute the remaining joints using inverse kinematics.

B. Discriminative Modelling

Discriminative based methods model the transformation
from visual features in either depth or appearance to deter-
mine an unobserved prediction. This can be both in terms
of classifying region labels or regressing joint positions,
allowing real-time performance using a RDF. Shotton [14]
used depth based features as a means of segmenting the
regions of a persons body into discrete joint based regions.
Keskin [2] then applied this approach for determining re-
gions, to the hand. Keskin [15] later extended this hierar-
chically by specialising multiple RDFs into cluster based
experts. These discriminative methods however require large
amounts of labelled training data, which has previously been
synthetically generated. While synthetic data can provide the
vast amount of training examples required, the quality of said
data is heavily dependent on both the physiological accuracy
of the model and how closely the data reflects the charac-
teristics of the capture device. To promote realism, Xu [3]
incorporates the traits of shadowing and missing depth to the
training images, indicative of structured light based depth.
While Tang [1] explores introducing real data into training
using 1200 manually labelled images. Tang acknowledges
that “manually labelled realistic data is extremely costly to
obtain” and so combines real and synthetic data using semi
supervised learning.

C. Shape and Structure

There are also approaches that use prior understanding
in the structure of the hand. Hackenberg [16] built a part
based detector that searches for tube and tip structures and
combines them to form finger detections. Krejov [17] also
uses the structure of the hand to find geodesic extrema as
an efficient means of tracking finger tips. Athitsos [18] uses
probabilistic line matching and a large synthetic dataset, to
learn viable edge configurations. An in-depth review of the
literature on hand pose can be found in [19]

Each category of approach have a number of advan-
tages and disadvantages: Model based optimisation has been
shown to be more computational expensive than discrimina-
tive methods, however it is capable of modelling temporal
coherence between successive frames. This property is de-
sirable but can lead to drift if not corrected. Models are also
capable of fitting directly to the observation, whereas dis-
criminative approaches optimise over the data they have seen
previously. The discriminative approaches aim to directly
resolve the global minimum of pose. However it is extremely
challenging for existing methods to generalise to unseen data
due to the complexity of the hand. Vast datasets are required
to cover the pose range at the expense of an increased cost



Fig. 2: System overview showing the use of an RDF to create a joint based segmentation (a). In this case the segmentation
is of the full hand for clarity. This segmentation is used as a binding between the depth and the closest point on the
corresponding bone (b). These constraints drive our model optimisation, resolving the final pose (c).

of computation. Approaches using shape and structure while
fast, have difficulty in determining joint labelling, as fingers
are visually similar.

Our proposed method uses a combination of approaches
where discriminative methods approximate a global search,
which initialises a model based local optimisation that de-
scends to the basin of the global minimum. The global search
is performed using a RDF, which allows for a fast coarse
detection of hand regions. A local optimisation method using
data driven Rigid Body Dynamics is then employed as an
efficient means of modelling the hand, which implicitly
handles kinematic constraints, prevents self-intersection and
satisfies temporal coherence. These processes are also very
efficient at run time and as such allow for real time perfor-
mance of over 30 fps.

III. COMBINED DESCENT METHOD

This section discusses our combined descent method
which unifies discriminative and model based approaches.

Hand pose estimation can be considered a non-linear op-
timisation problem where the hand’s appearance and model
form a cost surface in parametric space. To find the hand
pose, a search for the global minimum is performed. We
use RDFs to provide an estimate of hand regions that
guides optimisation. RDFs were first used for hand pose by
Keskin [2]. Subsequent methods have shown that they are
not able to fully capture the hands variation, smoothing the
cost surface and inducing errors for unseen examples as can
be seen in figure 3b & 3d. Our proposed method overcomes
these issues through local optimisation.

If local optimisation is performed in an unconstrained
fashion, with only the prior frame as an initial estimate, the
model may become trapped in local minima, resulting in
an incorrect estimate of pose. A guided search for the best
global optimal can be performed in the model space [9] using
Particle Swarm Optimisation, but this is computationally

expensive. Rather than search multiple states as did Melax,
our aim is to optimise only a single model, greatly reducing
run time expense. We instead guide the search closer to the
global optimal using the RDF.

This method consists of using labelled depth images
to train a RDF to provide a sparse region segmentation,
serving as an estimate of the hands configuration. This
estimate binds the hand model to the observed depth using
point to surface constraints to create surface based inverse
kinematic relations. The constraints act similarly to springs,
such that the pose from the prior frame is pulled towards
the classifiers current segmentation. Rigid body dynamics are
derived from Newton’s laws of motion, utilising the relations
between force, mass and acceleration. This means that each
rigid body has velocity and acceleration attributes computed
intrinsically in accordance with temporal cohesion. In the
case of erroneous segmentation (constraints) the models prior
velocity can overcome the associated incorrect force they
apply. The model is refined with a fixed time step for each
frame, simultaneously resolving collisions. A stable solution
results that satisfies the model and the segmentation driven
constraints. The final hand configuration can be represented
as the centroids of each rigid body belonging to the hand
model.

A. Global Estimate of Pose

To train the RDF, depth images of the hands were labelled
using 17 points, each located at the centre of the bones
that comprise the hand’s palm and fingers. We extend the
labelling to include the addition of the lower portion of the
forearm. This allows for separation between the wrist and
the palm of the hand. These points can be seen in figure 2c.
Each depth pixel is associated with a region label, this allows
the forest to partition the depth based on the regions of the
hand. A three dimensional nearest neighbour assignment is
used to assign each of the depth pixels to its nearest labelled



Fig. 3: The images (a) & (c) show the result of model convergence based on the classification output in the images (b) &
(d) respectively. The classification of the first pose shows confusion in labelling the index finger, which without the use of
our second stage refinement would be incorrectly determined. The same issue can be seen in the index and middle finger
in image (d)

point to provide the region segmentation. This labelling is
shown in figure 2a.

Using the nearest neighbour depth segmentation, a RDF is
trained to perform pixel classification on unseen hand poses.
We use a depth comparison feature which comprises of two
random offset vectors u,v whose lengths are normalised
using the depth of the training sample x, making them depth
invariant. The depth at these offsets are subtracted, providing
a difference in depth measure as in Equation 1.

Fu,v (I,x) = I

(
x+

u

I (x)

)
− I

(
x+

v

I (x)

)
(1)

where I is the training image.
The length of these offset vectors are also bounded by a

maximal radius, allowing adjustment of how much of the
hand the features can evaluate. As these features are not
rotationally invariant, to account for large scale rotation,
the dataset consists of rotated duplicates of the depth and
segmentation. This feature was derived by Shotton [14] and
has shown to be efficient to compute.

The RDF F is an ensemble of random decision trees, t
each providing the probability of the point p belonging to
the class l. The use of multiple trees improves classification
accuracy over individual decision trees as trees within a
forest optimise over varied subsets of the data, improving
generalisation. During training, the root node of each random
decision tree learns to partition the depth samples into left
and right subsets to produce purer label distributions. The
left and right subset are then propagated to subsequent
nodes repeating this process until either the node has a pure
distribution or a maximum depth is reached. The node learns
to partition the data by selecting the feature that produces
the greatest decrease in entropy. This entropy is calculated
using the Shannon entropy for a random subset of features
computed at training time. Each tree is trained using a
fixed size subset of hand pixels from each image, to allow
generalisation to the variety of poses.

During the evaluation stage, an input depth image I is
mapped into a point cloud P using the camera intrinsic

parameters. This point cloud is then filtered and subsampled
to remove noisy outliers and to reduce the cloud to a
sparse representation Pf that is more efficient for subsequent
processing. Filtering uses a voxel grid subsampling where
points in each voxel are represented using their centroid. The
sub-sampled point cloud is then classified into appropriate
regions provide the label l of each voxel in the hand using
the RDF Eq. (2 & 3). This provides sub sampled labelling
of the depth which serves as our initial estimate of pose.

P (l|I,p) = 1

|F|
∑
t∈F

Pt(l|I,p) (2)

L(p)
def
= argmax

l∈1..n
(P (l|I,p)) (3)

where L(p) is the function used to label a depth sample.

B. Hand Model Convergence

Rigid Body Dynamics simulations are a common tool in
both the games and film industry [20]. The interaction of
solid bodies is simulated in a 3-D environment calculat-
ing the collision between moving objects, and preventing
intersection. The simulation is also capable of simulating
constraints that bind objects together, for example the joints
between two finger bones. We utilise a rigid body simulation
to perform an efficient fitting between the hand model and
classified depth.

A mean kinematic hand model H was constructed using
proportions from several reference images of independent
users, using the in-depth study of Segmentos [21]. The hand
model is comprised of n = 17 convex rigid bodies H = b1∪
b2∪ ... bn (which includes the lower portion of the forearm).
These convex shapes (bones) have a low polygon count to
allow fast computation of the subsequent steps while still
being representative of the hand. The bones are connected
using rotational constraints which have a limited range of
rotation to reflect the kinematic limitations of the hand [22].
The mass of each component was estimated using the size
of each convex shape.
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(a) Sequence one using autonomous ground truth
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(b) Sequence two using autonomous ground truth

Fig. 4: Evaluation using autonomously labelled ground truth comparing the per frame mean joint error, and it’s cumulative
moving average
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(a) Performance against the manually corrected ground
truth of sequence one
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(b) Worst-case accuracy of the manually labelled se-
quence also showing an improvement over state of the
art

Fig. 5: Evaluation using corrected ground truth from sequence 1 showing improved performance.

The binding between the depth and model is achieved
using point to surface constraints. Each constraint comprises
of a sample point p ∈ Pf taken from the filtered point cloud,
and corresponding rigid body bi which is determined by
the RDF’s classification output. These two components form
constraints for the closest point on the surface p′ (Eq. 4).

p′ = argmin
pb∈bi

(||p− pb||),where i = L(p) (4)

This closest point is found using a derived Gilbert-
Johnson-Keerthi (GJK) [23] distance algorithm. GJK is an
efficient means of finding the closest points between two
polygonal objects.

Once the hand is bound using constraints to the depth,
the simulation is iterated for a fixed duration allowing the

model to converge on the depth appearance. This simulation
comprises of a broad and narrow pass for handling object col-
lisions, which prevents the fingers from intersecting, satisfy-
ing the precondition of no self-intersection using a constraint
solver. The constraint solver optimises the impulse forces to
satisfy the point to surface constraints. This completes one
iteration of the simulation. The constraints are then updated
to reflect the new closest surface point pb and the process
repeated until convergence.

As the constraints bind the hands surface to the depth, the
model converges to reside within the hand’s depth contour,
satisfying the depth observation.
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Fig. 6: Graph showing labelling error in ground truth of test
data. Measured using joints outside of the hand contour in
seq 1 and seq 2. This error is due to the test sequence having
been labelled using automatic means.

(a) GT points that reside outside
of the hands contour

(b) GT points at are inside of
the contour but have a consis-
tent offset in error

Fig. 7: The coloured markers show the ground truth provided
with the sequence. Yellow circles represent the result from
our combined approach.

IV. EVALUATION

A. Comparison with state of the art

In the following experiments, we use an RDF that was
trained using optimised parameters against a validation set
with the objective of classification accuracy. The resulting
forest of 3 trees was trained using 20,000 images to a depth
of 20, using 2000 randomised offsets and a offset radius of
20 pixels. 100 threshold selections were made at each node
and samples were acquired using a random sampling of 1000
pixels per image.

B. Evaluation using Autonomously Labelled data

We compare our result using the test sequences and result-
ing joint positions provided by Tang [1]. Tang has shown a
significant improvement in accuracy over the use of RDFs
alone [2] and Real Time Model optimisation [11]. Each

sequence consists of approximately 700 frames that have
been automatically labelled using the approach of Melax [11]
and manually corrected in failure cases. We found that there
are large inaccuracies in the resulting labelling which can be
expected as obtaining a ground truth of high accuracy is very
challenging. In figures 4a & 4b we show our performance
against that of Tangs using the mean error between the
joints and their corresponding ground truth, on a per frame
basis. We also demonstrate performance using the cumulative
moving average of this error, which is the normalised mean
error of all previous frames (lower is better)

When using the erroneous automatically obtained ground
truth. It can been seen that there is a persistent error between
our performance and theirs. When looking at the failure
cases of the autonomously generated labels 7a it can be
seen that a number of joints reside outside of the contour
of the hand which constitutes as an invalid joint position.
We also demonstrate this in figure 6 where we quantify
this with a naive measure by calculating the number of
joints that are positioned outside of hand’s contour on a
per frame basis. There is also error observed for labelled
points inside the contour as shown in figure 7a Therefore, to
perform a fair evaluation, we corrected the ground truth of
sequence 1 with manual annotation which we make available
at personal.ee.surrey.ac.uk/Personal/P.Krejov/.

C. Evaluation using Manually Corrected data

When using the manually annotated ground truth, figure 5a
shows that our approach provides a more accurate joint local-
isation. This improvement is due to our approach converging
successfully with the depth and is confirmed in the examples
shown in figure 8. We also compute the worst case accuracy
in joint estimation finding that 68% of joints are within 40
mm of the ground truth. This is a 3% increase over state-of-
the-art as seen in figure 5b.

These results show that the combined method can ac-
curately determine the joint positions within the centre of
the finger. The direct regression method proposed by Tang
however, exhibits the noise characteristics associated with
the automatic labelling used in training.

Convergence rate also shows significant improvement
when compared against that of Melax’s approach. Melax
demonstrates model convergence for fast moving poses as
taking 15 to 30 frames, while the combined method con-
verges within 3 to 5 frames.

V. CONCLUSIONS

In this paper we presented a method for real-time hand
pose estimation. The approach utilised a RDF to provide a
initial estimate, which is then employed in a local optimisa-
tion strategy with the depth using a Rigid Body Dynamics
simulation. This combines the benefits of both approaches to
perform successful hand pose estimation and demonstrates
state-of-the-art performance. As future work, we aim to
investigate fine-grained adaptation of the hand model to
specific users over the course of interaction.



Fig. 8: This figure show qualitative results the combined method. Showing the raw depth, forest segmentation and converged
hand model.
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