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Abstract— We propose a method to generate linguistically
meaningful subunits in a fully automated fashion for sign
language corpora. The ability to automate the process of subunit
annotation has profound effects on the data available for
training sign language recognition systems. The approach is
based on the idea that subunits are shared among different
signs. With sufficient data and knowledge of possible signing
variants, accurate automatic subunit sequences are produced,
matching the specific characteristics of given sign language data.

Specifically we demonstrate how an iterative forced align-
ment algorithm can be used to transfer the knowledge of a user-
edited open sign language dictionary to the task of annotating
a challenging, large vocabulary, multi-signer corpus recorded
from public TV. Existing approaches focus on labour intensive
manual subunit annotations or on data-driven approaches. Our
method yields an average precision and recall of 15% under
the maximum achievable accuracy with little user intervention
beyond providing a simple word gloss.

I. INTRODUCTION

Automatic Sign Language Recognition (ASLR) is a con-

tinuously emerging research field. It has the goal to facili-

tate exchange between people communicating in a different

medium and constitutes, at the same time, a perfect test

bed for assessing gesture recognition techniques in a well

defined environment. However, it is a challenging research

topic, as sign language conveys meaning through several

parallel information streams, each belonging to a different

modality. Hand shape, hand position, orientation, movement,

mouthing, eye gaze, facial expression and upper body posture

all contain relevant information. Large intra- and inter-

signer-variability and often view-point-variability have to be

tackled. In real life settings, fast signing is captured with

recording techniques offering low temporal and spatial reso-

lution, yielding strong motion blur effects. Finally, annotated

sign language data is a scarce resource and no standardised

writing scheme is available to transcribe it. To cope with

that, gloss notations are often used to transcribe signed data.

Glosses use words borrowed from the related national spoken

language, that semantically overlap to a large extent with the

sign to be described. Annotations on the gloss-level are less

time consuming to produce than more detailed descriptions

of the actual motion. However, due to the purely semantic

overlap between gloss and sign, annotation inconsistencies

constitute a big problem in using this type of transcription

in ASLR.

Subunits are defined to be the smallest contrastive units

in a language. Similar to phonemes in speech, they can

be found in visual languages and support ASLR systems

modelling variation better with less data. The goal of this

paper is to generate sequences of meaningful subunits that

match a given signing corpus with gloss annotations and

gloss time boundaries. Besides replacing the problematic

gloss annotation, the main improvement lies in the fact that

the number of subunits can be much smaller than the number

of glosses in the data. A limited number of concatenated

subunits is able to represent an infinite number of signs.

This increases data efficiency, decreases the search space and

improves decoding time. Moreover, linguistically meaningful

subunits constitute the key to understanding and interpreting

patterns and their connection to sign language semantics.

So far subunits have either been generated with expen-

sive and time consuming manual annotation [18] or with

automatic clustering approaches [17], [2], [6], [20]. Within

this work the former are referred to as linguistical subunits,

whereas the latter will be named data-driven. Data-driven

subunits usually do not permit any semantical interpretation

of the results or even the deduction of new linguistic evi-

dences about sign languages, that could be transfered to other

areas. Furthermore, they do not allow to add new signs to

the system without retraining it, similar to how it is done in

speech recognition. In addition, there is an increasing body

of research reporting superior results using linguistically

motivated subunits [10], [1], [13]. This work combines both

worlds, as it leverages from an existing linguistic source.

In Section II the state-of-the-art is reviewed, in Section

III data sources are described. Section IV gives details about

the proposed approach, Section V clarifies evaluation metrics

and Section VI presents results. Finally, conclusions are

drawn in Section VII.

II. RELATED WORK

Perceptually distinct units of sign languages that distin-

guish one sign from another were first proposed by Stokoe

in the 1960’s [15]. He identified three parallel parameters:

location, hand shape and movement. Waldron and Kim

[19] adopted the idea for ASLR and tested these linguistic

subunits on a small set of isolated glosses using man-

ual transcriptions and a neural network classifier. In the



late 80’s Liddel and Johnson [12] argued against Stokoe’s

uniquely parallel understanding of sign language phonemes

and determined the sequential contrast of American Sign

Language (ASL) as the phonological basis. Subsequently,

their movement and hold model has been employed in ASLR.

Vogler and Metaxas [18] used a small 22 vocabulary data

set and manual annotations to distinguish 42 units. Recently,

an extended sequential Posture-Detention-Transition-Steady

Shift model has been published [9] which fixes some of

its predecessor’s shortcomings on movements with attached

location information. Pitsikalis et al. [13] employ this sys-

tem to improve sign language recognition using subunits

generated on a forced alignment of previously annotated

hamnosys transcriptions. They work with data of a single

signer containing five iterations of 961 isolated signs. The

subunit models achieve a 7% better recognition rate than

data-driven subunits.

To avoid the need for manual transcription, data-driven

subunits employ automatic clustering techniques, which may

be based either on generative [3] or discriminative ap-

proaches [20]. Han et al. [8] perform a segmentation of data

based on linguistic rules, such as change of hand motion and

discontinuities surrounding the subunit boundary.

Quite similarly, Kong and Ranganath [11] perform a

segmentation of data provided by a Polhemus tracker. A

Naive Bayes classifier, trained with manual annotation, is

used to find false boundary points.

III. CORPORA

This work makes use of two different corpora. The pub-

licly available RWTH-PHOENIX-Weather corpus [7] and the

free, collaboratively edited, multilingual sign language dic-

tionary1 based on SignWriting [16]. Both corpora are fused

to provide a complete sign corpus with subunit annotation.

A. SignWriting Dictionary

SignWriting is a universal notation for sign languages

developed by Valery Sutton in 1974. It uses the Interna-

tional SignWriting Alphabet 2010, which represents manual

and non-manual parts of signs by a set of visual symbols

classified in a hierarchical system comprising a total of

652 icon bases. Each base has several degrees of freedom

when used in writing a sign: It can be rotated, mirrored

and put in context with other parts of the sign (i.e. a right

hand). SignWriting bears, due to its stylised nature, little

resemblance to continuous signing, but has been used for 3D

avatar animation [4]. Furthermore, SignWriting is redundant.

The same signs can be written in a variety of ways.

The SignWriting dictionary is user-edited, published under

Creative Commons license and can be freely downloaded in

XML format. Each dictionary entry is encoded as a Formal

and Regular SignWriting (FSW) code and contains the

symbols and their position used to write specific signs. The

dictionary is available for over 80 different sign languages,

but within the context of this work only the German Sign

1http://www.signbank.org/signpuddle2.0, accessed: 4th August 2012

Fig. 1. A SignWriting entry describing the sign RAIN in DGS.

Language database is considered. Fig. 1 shows the entry of

a signing variant of RAIN.

The database consists of more than 18000 entries, how-

ever for this work only those entries matching the RWTH-

PHOENIX-Weather corpus are considered, as this is the

dataset we wish to annotate. Please refer to Table I for quan-

titative details on the dictionary. For simplicity, hand shapes

and non-manual features, i.e. facial expressions, are not

addressed by this paper. Thus, only the movement modality

is reported in the table. In SignWriting there are 199 different

base symbols related to this modality. However, most of them

do not refer to movements in the two-dimensional front-view

plane and are thus discarded for this work based on 2D

tracking. After applying the parsing described in Section IV-

A, there are five base symbols left, shown in Fig. 2. Each of

them has several degrees of freedom, resulting in 64 possible

different movements. The SignWriting subunit nomenclature

consists of a starting “S” and five following digits. The first

three digits specify the base symbol, whereas the last two

represent its degree of rotation and its state of being mirrored

or not.

B. RWTH-PHOENIX-Weather Corpus

The RWTH-PHOENIX-Weather corpus consists of

weather forecasts recorded between 2009 and 2010 from

a German public broadcasts news channel. Each broadcast

contains one of seven hearing sign language interpreters,

who translates the content to German Sign Language (DGS).

Manual gloss annotations and time boundaries exist and

were made publicly available by [7]. The corpus is regarded

as real life data, as it is less controlled than lab-data in

many aspects. The lighting is not strictly controlled. Signers

have different distances and rotation angles towards the

camera. A large inter- and intra-signer variation is present

and signers or their hands partly leave the camera window.
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Fig. 2. Shown are all five SignWriting base symbols describing movements
in the front-view plane. From right to left they correspond to circular
movements, rotations, curves, wrist flexes and straight movements. Each
of them can be rotated in 45 degrees steps, as done for the left symbols
(straight arrows). Furthermore, the right three symbols may get mirrored as
well, resulting in 64 different movements in this plane.



Fig. 3. An example from RWTH-PHOENIX-Weather corpus showing a
sign with the gloss annotation RAIN.

TV transmission artefacts can be found and it is recorded

with a low spatial, as well as temporal resolution with

210 × 260 pixels and 25 frames per second respectively,

yielding strong motion blur effects. Fig. 3 shows an example

from the corpus.

C. Matching Both Corpora

The full signing corpus comprises over 20000 gloss tran-

scriptions, however for this work only those glosses can be

used that have a corresponding entry in the SignWriting

dictionary. This reduces the corpus to around 15000 glosses,

with 412 different vocabulary entries. See Table II for details.

For this vocabulary the SignWriting dictionary provides 949

signing variants composed out of 252 unique movement

subunits. Due to the parsing described in Section IV-A the

number of different movement subunits reduces to 98. All

subunits corresponding to movements not in the 2D front-

view plane (i.e. a movement towards the camera) are not

reflected by the employed 2D features (compare Section IV-

C) and are removed manually for demonstration purposes.

IV. APPROACH

The overall goal of this paper is to generate sequences of

meaningful subunits that match a given signing corpus with

TABLE I

STATISTICS ON THE PUBLICLY AVAILABLE SIGNWRITING DATABASE

FOR GERMAN SIGN LANGUAGE (GIVEN THE FULL DATABASE AND THE

OVERLAP WITH THE RWTH-PHOENIX-WEATHER CORPUS).

SignWriting DGS Database
Total Match RWTH Corpus

vocabulary 11677 421
total signing variants 18117 886

total movement subunits 32162 1316
unique movement subunits 300 98

TABLE II

RWTH-PHOENIX-WEATHER SIGNING CORPUS STATISTICS (GIVEN

FOR THE FULL CORPUS AND FOR THE OVERLAP WITH THE

SIGNWRITING DATABASE).

RWTH-Weather-Forecast Corpus
Total Match SignWriting

signers 7 7
shows 190 190

vocabulary 540 421
running glosses 20948 15142

1: function PARSE(fswCode)

2: if movement in fswCode then

3: s← GET RIGHT HAND MOV(fswCode)
4: s← MAP DIFFERENT MOV SIZE TO ONE(s)
5: s← SPLIT UP IN BASIC MOV(s)
6: else

7: s← NonMovement

8: end if

9: return s

10: end function

Fig. 4. Parsing SignWriting. Input is FSW SignWriting code. Output is a
sequence of subunits.

gloss annotations and gloss time boundaries.

A. Parse SignWriting

The first contribution of this work is a parsing scheme for

the SignWriting database. Subunits of the chosen modality

are extracted from FSW sequential codes, each describing

a signing variant. In an automated way by a simple modi-

fication of the symbol numbers, the parsed subunits related

to the right hand are normalised by size, standardised and

split up in basic building units, i.e. a single unit describing

a double up movement becomes two single up subunits.

These generalisation steps are important, as SignWriting

does not impose any normalisation when users add entries

to the dictionary. Additionally, non-movement postures are

generated and added where applicable. For each available

gloss transcription from the signing corpus, one or more

corresponding SignWriting subunit sequences are found.

These sequences can be considered as signing variants and

are stored in a lexicon for later use. See Fig. 4 for details on

the algorithm.

B. Tracking System

A tracking system [5] based on dynamic programming,

is employed to get the dominant hand’s position. It uses

techniques that are successfully applied in automatic speech

recognition for linear time alignment.

For an image sequence XT
1 = X1, . . . , XT and cor-

responding annotated object positions uT
1 = u1, . . . , uT ,

the Tracking Error Rate (TER) of tracked positions ûT
1 is

defined as the relative number of frames where the Euclidean

distance between the tracked and the annotated position is

larger than or equal to a TER tolerance τ :

TER =
1

T

T
∑

t=1

δτ (ut, ût),

with δτ (u, v) :=

{

0 ‖u− v‖ < τ

1 otherwise

(1)

Following this definition for τ = 20 the TER is 11.68 on the

data set.

C. Features

Within the scope of this paper, the movement modality

has been chosen for experiments as it represents one of



the manual parameters transmitting semantic information

of sign languages [15], which generalises well between all

seven signers in the corpus. Motion is understood as a main

direction and a shape. Given the hand position ut = (x, y)
at a time t, the velocity vector mt = ut−ut−δ points in the

direction of the movement. However, a more robust method

is used in this work. It is based on the estimation of the

covariance matrix within a time window 2δ+1 around time

t, as shown in (2),

Σt =
1

2δ + 1

t+δ
∑

t′=t−δ

(ut′ − µt)(ut′ − µt)
T (2)

with µt =
1

2δ+1

∑t+δ

t′=t−δ ut′ .

Σt · vt,i = λt,i · vt,i, i ∈ 1, 2 (3)

The eigenvector vt,i with the larger corresponding eigenvalue

points towards the direction of highest variance. The eigen-

values λt,i characterise the motion. If both values are similar,

it is a curved motion, otherwise a line. In order to capture

temporal variation on different levels, the feature vectors

are composed of the eigenvalues and main eigenvectors,

calculated over the tracked trajectory points of three different

temporal windows with δ ∈ {4, 5, 6}.

D. Modelling the Data

Let r = 1, ..., R enumerate the utterances in the signing

corpus (X ,G) = {(Xr, Gr)r=1,...,R}, each consisting of

a sequence of observation vectors Xr = xr,1, ..., xr,T to-

gether with the corresponding gloss annotation Gr. The main

challenge is to identify the best matching subunit sequence

wr = wr,1, ..., wr,N , given a lexicon using m = 1, ...,M
unique subunits wm.

The publicly available open source speech recognition sys-

tem RASR [14] is used to solve this problem. The subunits

are modelled by Hidden Markov Models (HMMs), which

constitute a stochastic finite state automaton, representing

each subunit by six states si = s1, ..., s6 in Bakis structure.

Every consecutive two states share the same Gaussian Distri-

bution. Single densities, a globally pooled covariance matrix

and global state transition penalties are employed.

The fact that the subunits are shared among different signs

is exploited to find the overall best matching state alignment.

The EM-Algorithm with Viterbi Approximation and ML

criterion is employed to assign each xr,t to a precise state

label si,m, belonging to a specific subunit wm.

Pruning is applied to restrict the competing alignment

hypotheses. A movement epenthesis model with one state

is used.

1) Re-Alignment Process: To initialise the models, each

Xr gets linearly assigned to the states of all appropriate

subunit sequences wr, as defined by the lexicon, whereas the

starting and ending 1% are attributed to the epenthesis model.

After population of the models with all available data, they

are used to find the best matching alignments. The frame-

state assignment, changes w.r.t. the linear segmentation and

is re-accumulated in the models.

After this initialisation, a new alignment is generated based

on the previous models, which are now expected to reflect

the correct subunits. This time, each Xr gets aligned to the

most likely subunit sequence wr, by help of the Viterbi based

alignment algorithm.

To refine the Gaussian Distributions we iteratively re-

estimate the emission model parameters and re-align all

feature vectors until this process converges to a best matching

alignment.

After several iterations of the EM algorithm some subunits

stop being aligned to any part of the data, as other signing

variants achieve a higher likelihood. In such cases, all

dictionary entries containing these subunits are removed from

the lexicon and the whole process is repeated.

V. EVALUATION

To serve as ground-truth for evaluation, 1832 signs have

been manually labelled on the subunit level. It is interesting

to know how many subunits are identified correctly and

how many are missed. Thus, the task is evaluated as a

classification problem. Precision and recall are calculated as

defined in Equations 4 and 5,

Precision =
tp

tp+ fp
(4)

Recall =
tp

tp+ fn
(5)

where tp is a true positive, fp a false positive and fn a

false negative result. The average classification performance

is calculated based on the accumulated tp, fp and fn counts

over all subunit classes. The evaluation of coarticulation

modelling is out of scope of this paper, thus alignments to

the movement epenthesis model are not considered in this

error measure.

An overall upper bound is estimated, i.e. the best achiev-

able result considering the mismatch, due to signing vari-

ability, between the SignWriting dictionary and the ground-

truth annotations. Furthermore, indicative numbers for the

subunit level have been estimated that lead to the overall

upper bound. These numbers provide an estimate whether

each single subunit classifier performs in the top range of

precision and recall.

VI. EXPERIMENTAL RESULTS

The whole set of motion subunits in the 2D front-

view plane comprises 32 unique movements. An average

precision of 68.5% and an average recall of 66.7% have

been achieved. The upper bound, corresponding to the best

possible oracle-results with the chosen corpus combination,

is 82.2% precision and 82.3 % recall. Table IV gives de-

tails on each subunit’s classification performance. It shows

precision (’prec.’) and recall, an indicative number for each

classifier’s performance (’top range’) and true positive (’tp’),

false positive (’fp’) and false negative (’fn’) absolute counts.

It further shows the total number of alignments of a subunit

within the overall corpus and the number of different glosses

these corpus segments correspond to.



Fig. 5. Showing up to ten random samples of trajectories assigned to each
of the subunits. Starting positions have been normalized, indicated by a red
cross. From left to right: S22a04, S28803, S28805, S2e30d.

TABLE III

CORRELATION BETWEEN MIN. TRAINING SAMPLE OCCURENCE PER

SUBUNIT AND OVERALL CLASSIFICATION RESULT.

min. occurrence 0x 5x 10x 15x 20x 25x

precision [%] 67.6 68.1 69.4 69.9 71.4 71.5
recall [%] 66.7 67.0 66.9 67.2 67.6 67.5

No classification result has been attributed to subunits

S22a01, S22e07 and S2e301. They occur too infrequently

in the overall corpus and in the ground-truth in order to

deduce any conclusions. However, their results are kept for

the sake of completeness and their decision counts are taken

into consideration when calculating the overall performance.

The overall results, as well as the subunit-based results

in Table IV show that the approach presented in this paper

performs well and produces meaningful subunit sequences

that can be used in ASLR. Most of the straight move-

ments (S22a00, S22a02, S22a04, S22a06), about half of

the curves (S28803, S28805, S28806, S2880b) and the

rotations (S2a200, S2a208) achieve a good precision. Those

subunits that achieve at least 90% of the indicated top range

account for over 72% of the correct classifications. Subunits

achieving 30% precision or less, originate on average from

not more than 3.5 different glosses in the corpus, whereas

those with over 70% precision are shared among more than

ten times as many glosses. This is further enforced by Fig. 5,

which shows randomly sampled trajectories assigned to four

different subunit classes. Besides a small number of outliers,

the captured movements correspond to what is expected. The

main idea of the proposed approach is to exploit the fact,

that subunits are shared between multiple signs. Sufficient

data is needed to ensure that this is given. Table III shows

the effect of more data samples per subunit. The average

precision increases from 67.6% to 71.5%, as the samples

per subunit increase.

Even though, the choice of subunits has been restricted

to those visible in the 2D front-view plane, wrist flex

movements (S22e00 to S22e07) are not well reflected by

our trajectory features. Fig. 6 shows that corresponding

wrist flex and normal straight movements get confused,
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Fig. 6. Confusion matrix. Colours indicate relative counts normalized w.r.t.
the references (what is each subunit ground-truth segment classified as). The
axe labels refer to SignWriting subunits, where the last two digits describe
the orientation and the first three correspond to the subunit base.

in particular the straight down movement S22a04 and the

straight down wrist flex S22e04. It also has to be noted,

that adjacent numbers of the last three digits of a subunit’s

name, correspond to a 45 degrees rotation. Their movements

are, thus, closely related and more easily confused. This

occurs partially between subunits S2880a and S28809 and

between S22a04 and S22a05. Few examples per subunit

and a low number of shared glosses among different signs

remain a problem. Subunits S2880c to S2880e and most

circle movements suffer from this problem.

VII. CONCLUSIONS AND FUTURE WORKS

An approach to generate linguistically meaningful subunits

in a fully automated fashion for a sign language corpus has

been presented. The procedure has been shown to achieve

accurate results on a large multi-signer real life database

with gloss transcriptions and gloss time boundaries. Using

an open source, user-edited sign language dictionary, 32

unique movement subunits were generated through an itera-

tive forced alignment algorithm yielding an average precision

and recall of 68.5% and 66.7%, respectively. The results are

around 15% absolute under the oracle results, representing

the upper bound for the chosen combination of corpora.

The ability to automate the process of annotation, will have

a strong impact on the data available for training ASLR

systems and will improve recognition.

The presented approach is based on the idea, that subunits

are shared among different signs. With sufficient data and the

knowledge of how signs are signed by deaf people, accurate

automatic generation of subunit sequences matching specific

sign language data has been shown to be feasible. However,

an analysis of the results showed, that more effort needs

to be spent on how to deal with subunits that are poorly

represented in the data or that occur in particular within a



TABLE IV

CLASSIFICATION RESULTS AND TOP RANGE INDICATION FOR EACH MOTION SUBUNIT. AVERAGE PRECISION 68.5%, AVERAGE RECALL: 66.7 %
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occur. x10 172 120 <1 52 89 378 13 183 12 10 1 104 <1 13 49 7 4 8 27 54 <1 9 6 4 9 23 7 2 2 6 <1 <1
diff. glosses 105 34 2 30 15 90 6 72 7 4 2 16 1 8 4 4 4 5 5 16 1 7 2 1 6 6 5 1 4 2 1 2

small number of signs. Finally, this work also showed, that

better features may unveil much more knowledge present in

open sign language dictionaries. Future work might include

how to better deal with signing variants not present in

the dictionary. Word stemming of the glosses, or simple

outlier detection algorithms could be a promising track. The

ability of automatically annotating excluded segments with

pretrained systems, would be a useful application. This paper

focused on movement subunits. However, the approach could

easily be extended to any other modality present in the

dictionary, such as: hand shapes, location or mouthing.
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