
1

Introduction to Programming
and Computer Architecture

Revision Lectures

Review of Pointers

There is no new material in this lecture, but it covers the use 
of pointers in the various contexts we have seen

There is no new material in this lecture, but it covers the use 
of pointers in the various contexts we have seen

Pointers and Variables

• C’s variables have a data type, e.g. int or double
– This tells the compiler how much memory to put aside

for it, and the rules for manipulating it
– Remember we don’t know the size of types at compile

time
– Some systems may use 2 bytes (16 bits) for an int

some 4 bytes
– But the function of operations remains the same %,* etc
– We can use the sizeof([type]) to get this

information at run time

Pointers and Variables
• E.g. the declaration

unsigned int x=18;

– reserves 2 bytes (say) of memory, maybe 1FA5 and 1FA6hex

– It is filled with a pattern of 0 and 1’s meaning 18 (0012hex)

– By convention, the address of x is the address of its first
(lowest) byte. We can access this using the address of
operator, &. So &x is 1FA5hex in this case

….              00 12             

   low memory 1FA3  1FA4 1FA5 1FA6  1FA7  1FA8    high memory 

….  

Pointers and Variables
• We can also declare a variable of type pointer-to-int (int*)

int* p;

• Suppose this takes up two bytes also, starting at address
2C91hex

• Then if we do p=&x;
• p will contain 1FA5hex

• We say that “p is pointing to x”.
• We can refer to the same memory call (1FA5, 1FA6) as

either x or *p

….          1F A5         

 2C90 2C91 2C92  2C93 

….  

Arrays
• An array is several similar data objects located

next to each other in memory.

• E.g. int y[3];

• Note that y[0], y[1] and y[2] are all ints
• However, y itself is a pointer-to-int
• In fact the subscript notation y[n] actually

means *(y+n) its just a convenient shorthand
for programmers

….                                  ….  
y[0] y[1] y[2]

Arrays
• y+n means the base address of the array plus n

times the object size.
– The compiler keeps track of this, we don’t need to bother

• Two dimensional arrays are more complicated,
because a 2D structure must be represented in 1D
memory

• This is done by slicing it into rows and putting them
end-to-end

z[2]

z[1]

z[0]

 3    3  9  7  

  2   6  12 14 

  1    5   6  3  

  1    5   6  3   2   6  12 14  3    3  9  7  

int z[3][4]={{1,5,7,3},
{2,6,12,14},
{3,3,9,7}};



2

Arrays

• The first four ints as a group are called
z[0], the second four z[1] and the third
four z[2]

• The first int is called z[0][0], the last one
z[2][3]

• Now, z[2][3] is an int, so z[2] must be a
pointer-to-int (its an array), so z must be a
pointer-to-pointer-to-int (its an array of
arrays)

• So z[2][3] is a shorthand for *(*z+2)+3)

Strings
• A string is a null-terminated array of chars

– Here null means the null character ‘\0’ which
has an ASCII code of zero

• char s[]=“word”;

• So s is a pointer-to-char.
– *s is ‘w’
– *(s+1) is ‘o’
– Note that an extra “invisible” character is added

as a “sentinel” to mark the end of the string

….      ‘w’ ‘o’    ‘r’  ‘d’ ‘\0’     ….  

Pointers and functions
• A pointer is a variable that holds an address
• The important thing is that it is a variable, like

any other so can be passed to a function
• We often see function prototypes like

char* head(char* str, int n);

• This means “head is a function that takes as
arguments a pointer-to-char and an int”

• It returns a pointer-to-char

Pointers and functions

• An important use of pointers with functions is
call-by-reference

• Here the address of a variable is passed to
the function not the value of the variable

• This allows the function full access to the
original variable

• Any changes made therefore change the
original variable

Pointers and Structures

• A struct is simply a user defined data
type

• Variables of can be created which are of
type struct

• pointers-to-the-struct-type can be
used e.g. for arrays or passing-by-
reference

Pointers and Files

• There is a special struct type called
FILE which must be used with pointers-
to-FILE (streams) for file operations

• eg
FILE *pf;

pf=fopen(“hello.c”,”r”);

a stream
a function a string (read only)

a string (filename)



3

In summary
• A pointer is a variable that holds an address
• It can be the address of an int, float, etc …. or struct
• The name of an array is a pointer and the subscript notation

is a shorthand for a “pointee”
• The name of a 2D array is a pointer-to-a-pointer-to ……
• Strings are just arrays of char, so a string name is a pointer-

to-char
• Pointer variables can be passed to and returned from

functions just like other variables
• This is used in call-by-reference
• We can have pointers-to-struct-types
• These are used (as pointers-to-FILE, or streams) in file

operations.


