Introduction

Binary Representation
Herdware and Software
HighLevel Languages
Standard input and output

Lecture 15

Page 81 of notes Operatars, expression andstatenents

Meking Decisions

© ® N @ o & w N o=

' .
10 Basics of pointers

12, Basics of funcions
13, More about functions
14. Files

15, Deta Structures

16 Case study: lotery nurber generator

Data Structures

» One use of functions is that of procedural abstraction

— Breaking a complicated program into smaller manageable
pieces

— This is knows as structured programming

» Programs consist of both algorithms and data and
structures

+ C provides a way of structuring complicated data into
neat units too - the data structure

Data Structures

» A simple example is a complex number

» Complex numbers consist of
— areal part
— an imaginary part

* We could represent this using an array of size 2
— double array[2]

» Or we can declare a data structure

struct cplx{
-
double imag; structure members

“ag”

Data Structures

struct cplx({
double real;
double imag;

i
» This creates a new structured data type
called struct cplx which we can use in
a similar way to other data types (int,
char etc)

* e.g. we can declare and initialise variables
of this type:

struct cplx a, b={1.0, -5.3}, c;

Data Structures

+ Actually the “tag” is optional (but useful) so if
we want to declare a single structured
variable we can omit it.

* We can also combine this with the
initialisation
struct {
double real;

no ‘tag” double imag;

} p={57,9.2}, a;
* However, we now cant use this structure to
define further variables of the same type.

Structure Members

* The structure members can be a mixture of
different data types, including simple types
(int, long, double, etc) arrays, pointers,
strings and other structs

* We can then refer to members using a dot

notation e.g.
p.thing=17; g.other=p.other/3.2;
(an int) (@float) (afloat)

Structure Members

/* Example: using structures to represent complex numbers */

#include <stdio.h>

void maintvoie complex1.c
struct cplx { Pg 81

double real; /* real part */
double imag; /* imaginary part */

)i

struct cplx x = {2.5, 5.0}, y = {3.2, -1.7), z;

z.real = x.real + y.real; /* add real parts */
z.imag = x.imag + y.imag; /* add imaginary parts */

printf ("z = %4.2f + %4.2f j\n", z.real, z.imag);

return;

(z = 5.70 + 3.30 j|

Operations on Structures

» The only legal operations on a structure are
— accessing its members (see last slide)
— copying or assigning to it
— taking its address
* In the previous example we could have written g=p; then g
is an individual copy of p
— we don’t have to copy the members of the structure individually the
compiler will do this for us
* Remember that
— calling a function by value includes copying its arguments
— returning a value also includes a copy process
+ Structures are therefore a very convenient way of passing
information into and out of functions

/* Example: structures as function arguments and return values */ I

#include <stdio.h>

struct cplx { complex2.c
double real; /* real part */ 82
double imag; /* imaginary part */
. P9

struct cplx add(struct cplx a, struct cplx b); /* function prototype */

void main(void)
struct cplx x = {2.5, 5.0}, y = {3.2, -1.7}, z;
z = add(x, y);
printf("z = $4.2f + %4.2f j\n", z.real, z.imag);
return;

)

struct cplx add(struct cplx a, struct cplx b)
struct cplx c = a; /* can initialise an auto struct variable */
c.real += b.real;

c.imag += b.imag;
return c; /* can return a struct value */

! z:5.70+3.30jl

Scope of Structures

» The scope rules for struct are similar to
those for variables

* A struct declared within a block (including
function body) is visible only within that block

* A struct declared at the start of a program,
outside any block is visible throughout the
program i.e. it is global
— This is useful where a struct is to be passed to

functions

Pointers to Structures

* A pointer to a struct can be created and
initialised with the & (address of operator) just
as with any other type

* e.g. using the struct cplx previously
declared

struct cplx x={1.0, -2.1}, y;
struct cplx* px;

PX=&X;

y=*px;

(*px) .real=33.5;

Pointers to Structures

(*px) .real=33.5;
» Note that the parentheses () are necessary
» This is such a common operation that there is
a special notation for it
(*px) .real = px->real
» which means take the thing px points to and
access its member
Pointers allow us to use call-by-reference

— useful because it can avoid a lot of copying if
structures are large, this can slow down your
program

Arrays of Structures

» As with other data types we can have

arrays which are very useful

e.g. struct cplx arr[35];

Structures containing Structures

If structure1 contains structure2 which has a
structurel.structure2.x

world data records step by step
member x we can access it using

contain another
* This allows us to build up complicated real-

* There is no reason why one structure cant

} Cplx;

x
o Qo
T o
®©
S 9 5E
172
- 5 o ©
o o o
o g I
© = > Uum
et wn + =
® 55 S o
@ S50
()] ¢ < s
— &0 @ O
© 2c<|g.o0 3 5
— © O 8 o> — © ©
c |50 = 0 E
=] gelits) 0w Q@ oy ow
B 5|52 ET8 S0
S gebfsZ2s Lga
S $2Ii3g_ "33
-+ W o O W T T
n 8 Twmm@
© ew:entege
S S5E B Lo &
®© O 3 o = 5
(@] @ OOD.
c W% E L -
= oo oo
< . 0 o
= o E 5 2Q8E
S8 g £ 25
% E c F2c
. .

/* Example: pointers to structures */

o
x o
@ oo
o o
e o
© * @ .
] 5
P .- g
= H PO ¢ b
5 H S =
2 H RS
g & & oHR o
FR
% o x &% S5
k| 8 X oaE g g
a k] e~ 88
g & 38 L5
gg %7 8
o . Bz . BE 203
~ B 8w 8 44
3 g 5% S oo BE »
g - HE -k B
L B =~ 5§ I B
R SR & 5
<3 D 8w sr oo 8
TR 5 PURSNECE
PR) 5o) 25
FR] & 88 e
3E i x 39 Es 4
I o g X §f &8 4
4% 2§ a 85 H
32 8 & g 1oy 8
8 s LR 8 83 aw -
8 % 8 44 TE &
.] . s PR OFE 8
L1 F . R7 § oL o8& 8
B =] R
8 S nw 5 s+ 1108
= bo E
S50 w 39 . oo 8308
cl- - EiN s T8 g
§E B .03 g 5t
s 2 iox g RE . g
N -
v o N PR |
R a8 Ty X o33 0% &8
s 33 @ -5 . 88 % 3
4 5% B - 5
HCE S Lo
s 88 o - x &% » s 2
g - 8 3 8 w3 &
3o~ =8 % o« o s 3
2 Eo0% 4 s P oo 8w
B ox B2 A B -
@ % 8z & ¥ 5 $f o o
PR PR v E R B -1
g k1 4 8 39 gy s
38 ° O F gid c R ° g 2
] 9 o B ¥LD o £& . 3 B
CI S 0% b BAR A
g5 R 5
i 8 e 8. 3

¢g bd
J'salojs

‘urngex
{ (emTeaTTE303 ,u\3Z'¥4 = enTea %2038 TeI0L.)Fautid

£ (490387 T£303 ‘,W\SWSAT T4 = [2AST Y9038 TeIoL.) FAUTIA

ts012d" [1]3zed 4 A3b° [1]3zed +
901d" [p]3xed 4 A3b- [0]37ed = enTea Te30l
‘&3b- [1]3xed + A3b- [0]3zed = %0038 Te303

/v tsioquow sInjonTas $59008 x/

tgevez = A3b- [1]3xed

15070 = ®o1ad- [1]3xed

¢ (L OLSISEN MPZ'0 3G WHO 0T. '0sep’ [1]3xed)Adoiss
£ (uTP99XZu ‘Ou 3zed" (1] 3xed) Adoxas

tgeLT = A3b- [0] 2xed
tsz70 = sotad- [0] 3xed
£(uDI aW¥ 40 TvLa '0sop’ [0] A7ed) Ado13s
! (465LYAP. 'OW 3xed" [0] 3xed) AdD13s

/% (ST73 ® wox3 eaep Sy3 Butpesz Aq suop oq ATqeqoxd

pInom STyl oT30BId UT) SISQUSW SINJONTIIS O SSNTEA UBTSSE 4/

tontea 1303 3EOTI

‘300387 Te303 JuT

/» seanaonaas jo Aexze 4/ ¢ [0z]axed

{
tA3b Jut
too12d 22013
‘[0¥] 289D Teu>
f[L)ou azed zeus
} aonzas
}

(pToa)utew proa

/% w0038 ut Katauenb s/
/x uoes so1ad ¥/
/+ uoTAdrIoseD X/
/x xsqunu 3xed 597018 X/

<y-BuTais> spnToUTH

<y‘oTpIs> spnyouTH

/% SWSIT S37038 -- S2IN3VNIIS JO AeiTe :oTdWeXH x/

2'sjuspnls

g 6d

oy quspnas 3ona3s

wry juspn3s 3oniis
Tut pue sxe1oap 4/
}

(proa)uten proa

/+ 93A30303d woTIGUNZ 4/ (s IuIPNIS IoNIIS)SI(NSRA 3utid PrOA

“

} Juspnas 3onz3s
o
‘10 jut pauBtsun
t36 zeun
“gzeu sbeauedad 4/ fod Jut paubrsun
} stmpou 3on13s

“

/+ PopIEME S3TPRID 4/

/s

/+ @938 Aq de3s ‘aIn3onI3s BIEp PoILOTTANOD © BUTPTING :TAUSKE 4/

/* Example: using typedef to define a structure type */
/* This program is based closely on complex2.c; compare them */

#include <stdio.h>

typedef struct {

double real; /* real part */ pg 85

double imag; /* imaginary part */

cplx;

/* "Cplx" can now be used as a synonym for this struct. This neatens

things up somewhat. */

Cplx add(Cplx a, Cplx b); /* function prototype */

void main(void)
cplx x = {2.5, 5.0}, y = {3.2, -1.7}, z;

z = add(x, y);

printf("z = $4.2f + %4.2f j\n", z.real, z.imag);

return;

)

Cplx add(Cplx a, Cplx b)
{

typedef.c

cplx ¢ = a;

c.real += b.real; What

are the advantages of this approach ?

c.imag += b.imag;
return c;

)

What are the advantages of
this approach?

+ Hides the complexity of the data structure
* Our user defined type can be used almost
exactly the same way as any other data type
— simpler to write
— makes the program easier to understand
— we can write more complex functions which
perform higher level operations on structured data
rather than just simple variables
« If you think of these structures as objects then
you are well on the way of moving to Object
Orientated Programming and C++

The FILE data type

» Remember last lecture

we looked at

files/streams and the use of the FILE data type

* Well FILE is actually a
/* Typical definition of type FIL
#define OPEN_MAX 32

typedef struct _iobuf {

typedef in <stdio.h>

E in <stdio.h>*/

int cnt; /* characters left */
char sptr; I+ next character */ -
char *base; /* start of buffer */ Pg

int bufsize; /* size of buffer */

int flag; ™
int fd; ™
) FiiE;

file access mode */
file “handle” */

FILE _iob[OPEN MAX]; /* global array of FILE structs */

#define stdin (& iob[0]) /*
#define stdout (&_iob[1]) /*
#define stderr (&_iob[2]) /*

standard input stream */
standard output stream */
standard error stream */

Lectures 12 and 13 looked at how to use functions
to structure your programs

Today we looked at how to also structure your data
— This was the last piece of the equation for programming C

You are now programmers!!!

— Well not really but you now know enough C to become
programmers
— The rest is up to you and it involves practice

Next Lecture we will cover some of the revision

topics you have requested, namely
« Arrays
« Pointers
« Functions

Is there anything else you would like to cover again

