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Data Structures

» One use of functions is that of procedural abstraction

— Breaking a complicated program into smaller manageable
pieces

— This is knows as structured programming

» Programs consist of both algorithms and data and
structures

+ C provides a way of structuring complicated data into
neat units too - the data structure

Data Structures

» A simple example is a complex number

» Complex numbers consist of
— areal part
— an imaginary part

* We could represent this using an array of size 2
— double array[2]

» Or we can declare a data structure

struct cplx{
-
double imag; structure members

“ag”

Data Structures

struct cplx({
double real;
double imag;

i
» This creates a new structured data type
called struct cplx which we can use in
a similar way to other data types (int,
char etc)

* e.g. we can declare and initialise variables
of this type:

struct cplx a, b={1.0, -5.3}, c;

Data Structures

+ Actually the “tag” is optional (but useful) so if
we want to declare a single structured
variable we can omit it.

* We can also combine this with the
initialisation
struct {
double real;

no ‘tag” double imag;

} p={57,9.2}, a;
* However, we now cant use this structure to
define further variables of the same type.

Structure Members

* The structure members can be a mixture of
different data types, including simple types
(int, long, double, etc) arrays, pointers,
strings and other structs

* We can then refer to members using a dot

notation e.g.
p.thing=17; g.other=p.other/3.2;
(an int) (@float) (afloat)




Structure Members

/* Example: using structures to represent complex numbers */

#include <stdio.h>

void maintvoie complex1.c
struct cplx { Pg 81

double real; /* real part */
double imag; /* imaginary part */

)i

struct cplx x = {2.5, 5.0}, y = {3.2, -1.7), z;

z.real = x.real + y.real; /* add real parts */
z.imag = x.imag + y.imag; /* add imaginary parts */

printf ("z = %4.2f + %4.2f j\n", z.real, z.imag);

return;

(z = 5.70 + 3.30 j|

Operations on Structures

» The only legal operations on a structure are
— accessing its members (see last slide)
— copying or assigning to it
— taking its address
* In the previous example we could have written g=p; then g
is an individual copy of p
— we don’t have to copy the members of the structure individually the
compiler will do this for us
* Remember that
— calling a function by value includes copying its arguments
— returning a value also includes a copy process
+ Structures are therefore a very convenient way of passing
information into and out of functions

/* Example: structures as function arguments and return values */ I

#include <stdio.h>

struct cplx { complex2.c
double real; /* real part */ 82
double imag; /* imaginary part */
. P9

struct cplx add(struct cplx a, struct cplx b); /* function prototype */

void main(void)
struct cplx x = {2.5, 5.0}, y = {3.2, -1.7}, z;
z = add(x, y);
printf("z = $4.2f + %4.2f j\n", z.real, z.imag);
return;

)

struct cplx add(struct cplx a, struct cplx b)
struct cplx c = a; /* can initialise an auto struct variable */
c.real += b.real;

c.imag += b.imag;
return c; /* can return a struct value */

! z:5.70+3.30jl

Scope of Structures

» The scope rules for struct are similar to
those for variables

* A struct declared within a block (including
function body) is visible only within that block

* A struct declared at the start of a program,
outside any block is visible throughout the
program i.e. it is global
— This is useful where a struct is to be passed to

functions

Pointers to Structures

* A pointer to a struct can be created and
initialised with the & (address of operator) just
as with any other type

* e.g. using the struct cplx previously
declared

struct cplx x={1.0, -2.1}, y;
struct cplx* px;

PX=&X;

y=*px;

(*px) .real=33.5;

Pointers to Structures

(*px) .real=33.5;
» Note that the parentheses () are necessary
» This is such a common operation that there is
a special notation for it
(*px) .real = px->real
» which means take the thing px points to and
access its member
Pointers allow us to use call-by-reference

— useful because it can avoid a lot of copying if
structures are large, this can slow down your
program




Arrays of Structures

» As with other data types we can have

arrays which are very useful

e.g. struct cplx arr[35];

Structures containing Structures

If structure1 contains structure2 which has a
structurel.structure2.x

world data records step by step
member x we can access it using

contain another
* This allows us to build up complicated real-

* There is no reason why one structure cant

} Cplx;
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/* Example: using typedef to define a structure type */
/* This program is based closely on complex2.c; compare them */

#include <stdio.h>

typedef struct {

double real; /* real part */ pg 85

double imag; /* imaginary part */

cplx;

/* "Cplx" can now be used as a synonym for this struct. This neatens

things up somewhat. */

Cplx add(Cplx a, Cplx b); /* function prototype */

void main(void)
cplx x = {2.5, 5.0}, y = {3.2, -1.7}, z;

z = add(x, y);

printf("z = $4.2f + %4.2f j\n", z.real, z.imag);

return;

)

Cplx add(Cplx a, Cplx b)
{

typedef.c

cplx ¢ = a;

c.real += b.real; What

are the advantages of this approach ?

c.imag += b.imag;
return c;

)

What are the advantages of
this approach?

+ Hides the complexity of the data structure
* Our user defined type can be used almost
exactly the same way as any other data type
— simpler to write
— makes the program easier to understand
— we can write more complex functions which
perform higher level operations on structured data
rather than just simple variables
« If you think of these structures as objects then
you are well on the way of moving to Object
Orientated Programming and C++

The FILE data type

» Remember last lecture

we looked at

files/streams and the use of the FILE data type

* Well FILE is actually a
/* Typical definition of type FIL
#define OPEN_MAX 32

typedef struct _iobuf {

typedef in <stdio.h>

E in <stdio.h>*/

int cnt; /* characters left */
char sptr; I+ next character */ -
char *base; /* start of buffer */ Pg

int bufsize; /* size of buffer */

int flag; ™
int fd; ™
) FiiE;

file access mode */
file “handle” */

FILE _iob[OPEN MAX]; /* global array of FILE structs */

#define stdin (& iob[0]) /*
#define stdout (&_iob[1]) /*
#define stderr (&_iob[2]) /*

standard input stream */
standard output stream */
standard error stream */

Lectures 12 and 13 looked at how to use functions
to structure your programs

Today we looked at how to also structure your data
— This was the last piece of the equation for programming C

You are now programmers!!!

— Well not really but you now know enough C to become
programmers
— The rest is up to you and it involves practice

Next Lecture we will cover some of the revision

topics you have requested, namely
« Arrays
« Pointers
« Functions

Is there anything else you would like to cover again




