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— integers
— characters

— floating point numbers (real numbers)
+ But often we get data in sets of ‘like’ objects, e.g.

— images - 2D array of pixels
— strings - 1D array of characters

The order of the data is important

Declaring Arrays

» C provides a simple data structure, applicable

to all data types: the array

- int teleph[100]; /* 100 telephone numbers*/

- float marks[115]; /* 115 exam marks */

- char text[20]; /* a string 20 characters long */
* We can use any constant integer expression

to declare the size of an array:

#define CLASS_SIZE 108 /* number of students*/

float marks[CLASS_SIZE];
int thing[2*3+5];

Declaring Arrays

» We can assign initial values to any array,

int a[31={10,11,12};
or int all={10,11,12};

» C counts the number of items in the initialisation list
» The above declaration assigns values to the individual

array elements as follows:

alo]l=10, al1l]=11, al2]=12

» Each a[...] is an integer variable.

subscripts in square brackets [ ]

They are identified by

» In C, subscripts always begin at Zero i.e. a[0]

— Well see why in the next lecture

Array Storage

» Array elements are stored sequentially in memory,
starting with the [0] element

<«—— low memory address

17 24 3 12 92 18 24
A )
x[0] X[1] x[2] X[3] X[4] X[5] X[6]

int x[71={17,24,3,12,92,18,24};

» Note that although we declare x[7] (7 elements), the
highest subscript is 6. If we try to access x[7] the
computer will let us but the result will be rubbish or
may result in the programming crashing

Subscripts and loops

* ltis very common to use a for loop to access

low memory address——»

each element of an array .in turn.

/* Example: arrays */

/* Example: arrays */

#include <stdio.h>
array2.c #include <stdio.h» array1
#define MAX 21

main ()
main()
int u;

int u long p2[21] =

long p2[MAX]; /* powers of two */
/* initialise array: */
p2[0] = 1;

for (u = 1; u < MAX; u++)
p2lul =2 * p2lu - 11;

/+ print: +/

{1, 2, 4,8 16, 32, 64, 128,
256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536,
131072, 262144, 524288,
1048576

}i

for (u = 0; u < 21; us+)
printf ("2 to the power $2i = %71i\n", u, p2[ul);

for (u

u < MAX; us+)

printf ("2 to the power %2i = $71i\n", u, p2[u]);




Vectors as Arrays Strings as Arrays

/* Bxample: vectors represented by arrays */

« A vector in 3-space + We'll look at this in more detail later, but note
has three components | =0 that strings are ordered sets of characters

( x,y,z for a position ine a1 = (2, 4, s); oearpie: analysis of text +/ /+ Bnalyse contents of textll: +/
int b(3]) = {-5, 1, -9};
Vector) ine c(2], alal; ! #include <stdio.n» for (1= lc - uc - dig - oth - 0; 1 < MAX; ivs)

princEta - B2 42 wi\mee, all, ani, a2 wain0
« It can be represented printf('b - 21 %21 W2il\ma, b(O), bOL, b2 " char et b1, o
/* form vector sum: */
by a 3 element array.
i - b /+ save typed chazacters in textll: +/
‘ analyse.
printf(*a + b = [$2i %21 $2i)\nm\n", c(0], c(1], cl[2)); for (i = 0; i < MAX; i+4)
/* form vector difference: */ text[i] = getchar(); }
gt
dli) = ali]l - bli); } printf("\nti lower case letters\n', lc);
printf(*a - b = [$2i %21 %2i]\n", dl0], d[1], d[2]); printf ("% digits\n", dig);

suaps) ;

printf ("\n%i swaps were performed.\n",
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Two dimensional Arrays Two dimensional Arrays

+ Sometimes the data has a 2D structure * Two dimensional arrays are actually stored in
e.g. a table or image a linear fashion, row by row
int table [2] [3]
unsigned char image [640] [480] ROWO ROW 1

» The array can be initialised by a array of 17 24 3 12 92 18
arrays Row f T

index X [o0] [0]

f 3
x[o0] [2] X[1][1]
1

(1] (0] X

ROW 0 X[o] [o] |x[0] [1] [x[0] [2]

K11 [9] .
s int x[2] [31={{27,19,53},{14,41,59}};
ROW 1 X[1][0] |X[1][1] [X[1][2] Column

index

COoLO coL1 COL2




Multidimensional arrays

* You can have as many subscripts as
you like, though its rare to have more
than three:

double large([10] [20] [30] [40];

» Again the array is stored linearly, with
the RH index varying most rapidly and
the LH index most slowly
— Think of it like a mileometer

/* BUG ZONE!!!
Example: arrays */

#include <stdio.h>

#define N 2
f#define M 5
f#define SIZE 17

main ()
({
int carrots[SIZE], parsnips (4] [3];
int i, j, n -2, m=5;
float cabbages[N] [M], potatoes [n] [m];
float x = 4.17, y = 5.73;

for (i = 1; i <= SIZE; i++) /* BUG */
carrots(i] = 99;

for (i = 0; i < 3; i+4)
for (j = 0; j < 4; j++) /* BUG */

parsnips(i] [§] = 0;
carrots[n+m] = 37;
carrots([n-m] = 38; /* BUG */

parsnips (x] [y] = 13.654; /* BUG */

/* BUG */




