1. Introduction

Binary Representation

JLecture9 -

4 Hghlevel Languages

5 Sandadinputand ouput

6 Operators, expression and staterents
7. Making Dedisions

Arrays

For the last two lectures we have looked at
algorithms. We shall now return to data structures.

So far we have only looked at simple variables,

10, Basics of poirters

12 Basics of functions
13, More about functions
14. Files

14, Deta Structures

16. Case study: lottery nurber generator

— integers
— characters

— floating point numbers (real numbers)
+ But often we get data in sets of ‘like’ objects, e.g.

— images - 2D array of pixels
— strings - 1D array of characters

The order of the data is important

Declaring Arrays

» C provides a simple data structure, applicable

to all data types: the array

- int teleph[100]; /* 100 telephone numbers*/

- float marks[115]; /* 115 exam marks */

- char text[20]; /* a string 20 characters long */
* We can use any constant integer expression

to declare the size of an array:

#define CLASS_SIZE 108 /* number of students*/

float marks[CLASS_SIZE];
int thing[2*3+5];

Declaring Arrays

» We can assign initial values to any array,

int a[31={10,11,12};
or int all={10,11,12};

» C counts the number of items in the initialisation list
» The above declaration assigns values to the individual

array elements as follows:

alo]l=10, al1l]=11, al2]=12

» Each a[...] is an integer variable.

subscripts in square brackets []

They are identified by

» In C, subscripts always begin at Zero i.e. a[0]

— Well see why in the next lecture

Array Storage

» Array elements are stored sequentially in memory,
starting with the [0] element

<«—— low memory address

17 24 3 12 92 18 24
A)
x[0] X[1] x[2] X[3] X[4] X[5] X[6]

int x[71={17,24,3,12,92,18,24};

» Note that although we declare x[7] (7 elements), the
highest subscript is 6. If we try to access x[7] the
computer will let us but the result will be rubbish or
may result in the programming crashing

Subscripts and loops

* ltis very common to use a for loop to access

low memory address——»

each element of an array .in turn.

/* Example: arrays */

/* Example: arrays */

#include <stdio.h>
array2.c #include <stdio.h» array1
#define MAX 21

main ()
main()
int u;

int u long p2[21] =

long p2[MAX]; /* powers of two */
/* initialise array: */
p2[0] = 1;

for (u = 1; u < MAX; u++)
p2lul =2 * p2lu - 11;

/+ print: +/

{1, 2, 4,8 16, 32, 64, 128,
256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536,
131072, 262144, 524288,
1048576

}i

for (u = 0; u < 21; us+)
printf ("2 to the power $2i = %71i\n", u, p2[ul);

for (u

u < MAX; us+)

printf ("2 to the power %2i = $71i\n", u, p2[u]);

Vectors as Arrays Strings as Arrays

/* Bxample: vectors represented by arrays */

« A vector in 3-space + We'll look at this in more detail later, but note
has three components | =0 that strings are ordered sets of characters

(x,y,z for a position ine a1 = (2, 4, s); oearpie: analysis of text +/ /+ Bnalyse contents of textll: +/
int b(3]) = {-5, 1, -9};
Vector) ine c(2], alal; ! #include <stdio.n» for (1= lc - uc - dig - oth - 0; 1 < MAX; ivs)

princEta - B2 42 wi\mee, all, ani, a2 wain0
« It can be represented printf('b - 21 %21 W2il\ma, b(O), bOL, b2 " char et b1, o
/* form vector sum: */
by a 3 element array.
i - b /+ save typed chazacters in textll: +/
‘ analyse.
printf(*a + b = [$2i %21 $2i)\nm\n", c(0], c(1], cl[2)); for (i = 0; i < MAX; i+4)
/* form vector difference: */ text[i] = getchar(); }
gt
dli) = ali]l - bli); } printf("\nti lower case letters\n', lc);
printf(*a - b = [$2i %21 %2i]\n", dl0], d[1], d[2]); printf ("% digits\n", dig);

suaps) ;

printf ("\n%i swaps were performed.\n",

<
1 o
orting an Array H
. e}
2a,8% N EI
fedty 3 -
+ Very often we would like to sort an array into order. FERE £ 3
. . . 589 g g =
» There are many ways to do this, but the simplest is SEEIS 3 - S
8% . ha 5 i &
the bubble sort T Si57% 8 H N :
RGELE 3 g 4 g
» A bubble sort uses 2 nested loops i Beffe 3 % g %
MW a0 > n v
— Values in the array are compared in pairs and swapped if 58y, - w g - 8
necessary so the larger value is in the higher position. § Sg%ay 5 B B P
) ;) s REECH E s 2% [L83
— This continues until no more swaps are needed. L 5 “ gad RIS RS
o BefBRl FIOANN 2% gm. O e
— The value ‘bubbles up’ to the ‘top’ of the array. 8 gEEE”] gg v dg-z . 8 - SawE 5 % 239
T IR LE I - B L
LN I §oEvtE L 4 T guged B80T B
§ 94359 ¢ 5 fg 3 y-g; B v % felzd S ivg
2 08%. .5 % 89 ¢ 8.fy 8 . B FEzEE g .2
. SLEERC B g kg B ogerE T, Eiwwa o [gokf
g Sgffpa vog °% oy Trugog g ot ~ 2 & E'm
2 8.5 § o SR L - D —F 3 zf
FoefETef 5 8 - T8 A ETEE & — ~ & .3
i dzeafs 9 4 F opd L odpEt_ L 3 . Byb
s oxHRELE 5 g g R S RE- S0 S oA
RS

Two dimensional Arrays Two dimensional Arrays

+ Sometimes the data has a 2D structure * Two dimensional arrays are actually stored in
e.g. a table or image a linear fashion, row by row
int table [2] [3]
unsigned char image [640] [480] ROWO ROW 1

» The array can be initialised by a array of 17 24 3 12 92 18
arrays Row f T

index X [o0] [0]

f 3
x[o0] [2] X[1][1]
1

(1] (0] X

ROW 0 X[o] [o] |x[0] [1] [x[0] [2]

K11 [9] .
s int x[2] [31={{27,19,53},{14,41,59}};
ROW 1 X[1][0] |X[1][1] [X[1][2] Column

index

COoLO coL1 COL2

Multidimensional arrays

* You can have as many subscripts as
you like, though its rare to have more
than three:

double large([10] [20] [30] [40];

» Again the array is stored linearly, with
the RH index varying most rapidly and
the LH index most slowly
— Think of it like a mileometer

/* BUG ZONE!!!
Example: arrays */

#include <stdio.h>

#define N 2
f#define M 5
f#define SIZE 17

main ()
({
int carrots[SIZE], parsnips (4] [3];
int i, j, n -2, m=5;
float cabbages[N] [M], potatoes [n] [m];
float x = 4.17, y = 5.73;

for (i = 1; i <= SIZE; i++) /* BUG */
carrots(i] = 99;

for (i = 0; i < 3; i+4)
for (j = 0; j < 4; j++) /* BUG */

parsnips(i] [§] = 0;
carrots[n+m] = 37;
carrots([n-m] = 38; /* BUG */

parsnips (x] [y] = 13.654; /* BUG */

/* BUG */

