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Lecture 6 Arithmetic Operators
• C has a number of arithmetic operators which are used to

combine variables and constants into expressions
– Unary operators +, -

• e.g. +x, -x

– Binary operators +, -, *, /, %
• e.g. x+y*z

• Integer expression examples
1+2 = 3
3*4 = 12
17/5 = 3
17%5 = 2

• Note that integer division discards any fractional part.
The modulus operator can be useful for many things
e.g. x%2 is 0 if x is even, 1 if x is odd

Operator Precedence

• If we have several operators in an
expression, what order are they processed in

e.g. does 1+2*3 evaluate to 9 or 7 ?

• C has fixed rules for this, see pg 22 of notes
( ), *, /, %, +, -

• We can force the order using parentheses
which have top priority

• For operators of equal precedence the
evaluation is from left to right

intarith.c
/*  Example: integer arithmetic operators */

/* Old Imperial measures: miles, furlongs, chains,

yards, feet and inches.

1 mi = 8 fur; 1 fur = 10 ch; 1 ch = 22 yd;

1 yd = 3 ft; 1 ft = 12 in */

#include <stdio.h>

#define FUR_PER_MI 8L

#define CH_PER_FUR 10L

#define YD_PER_CH 22L

#define FT_PER_YD 3L

#define IN_PER_FT 12L

/* Note: these are longs to avoid overflow later.

(The suffix L means the value should be treated

as a long.) */

main()

{

  int a = 5, b = 3;

  long x, remainder;

  int inches, feet, yards, chains, furlongs, miles;

  printf("a = %i, b = %i\n\n", a, b);

  printf("a + b = %i\n", a + b);

  printf("a - b = %i\n", a - b);

  printf("a * b = %i\n", a * b);

  printf("a / b = %i\n", a / b);

  printf("a %% b = %i\n", a % b);

  printf("\nEnter a number of inches: ");

  scanf("%li", &x);

  miles = x / IN_PER_FT / FT_PER_YD 
            / YD_PER_CH / CH_PER_FUR
            / FUR_PER_MI;
  remainder = x % (IN_PER_FT * FT_PER_YD 
                  * YD_PER_CH * CH_PER_FUR
                  * FUR_PER_MI);

/* Note: if the above constants are defined as ints, 
overflow might occur when their product is computed. 
This is because the product of ints is itself an int. */

  furlongs = remainder / IN_PER_FT / FT_PER_YD
                       / YD_PER_CH / CH_PER_FUR;
  remainder %= (IN_PER_FT * FT_PER_YD
               * YD_PER_CH * CH_PER_FUR);
   
  chains = remainder / IN_PER_FT / FT_PER_YD
                     / YD_PER_CH;
  remainder %= (IN_PER_FT * FT_PER_YD * YD_PER_CH);

  yards = remainder / IN_PER_FT / FT_PER_YD;
  remainder %= (IN_PER_FT * FT_PER_YD);
  
  feet = remainder / IN_PER_FT;
  inches = remainder % IN_PER_FT;
   
  puts("\nConverted to old fashioned units:");
  printf("%li inches = %i mi, ", x, miles);
  printf("%i fur, %i ch, ", furlongs, chains);
  printf("%i yd, %i ft, %i in\n", yards, feet, inches);
}

Traps for the unwary
/* BUG ZONE!!!
Example: integer arithmetic */

#include <stdio.h>

main()
{
  int r1 = 22000;
  int r2 = 10000;
  int r3 = 15000;
  int r;
  
  puts("Three resistors in parallel");
  printf("%i || %i || %i\n\n", r1, r2, r3);
  
  puts("Method 1: r = (r1 * r2 * r3)/(r1*r2 + r2*r3 + r3*r1)\n");
  r = (r1 * r2 * r3)/(r1*r2 + r2*r3 + r3*r1);  /* BUG */
  printf("Total resistance = %i\n\n", r);
  
  puts("Method 2: r = 1/(1/r1 + 1/r2 + 1/r3)\n");
  r = 1/(1/r1 + 1/r2 + 1/r3);  /* BUG */
  printf("Total resistance = %i\n", r);
}

/* BUG ZONE!!!
Example: integer arithmetic */

#include <stdio.h>

main()
{
  int StudentsInClass = 116;
  int MaxGroupSize = 5;
  int NumberOfGroups;
  int passes;
  int GirlsWithBrownEyes;
  
  NumberOfGroups = StudentsInClass/MaxGroupSize; /* BUG */
  
  printf("%i students at %i max. per group means %i groups\n\n", 
    StudentsInClass, MaxGroupSize, NumberOfGroups);
    
  /* Three-quarters of the class pass the exam: */
  
  passes = 3/4 * StudentsInClass;  /* BUG */
  printf("%i students passed the exam!\n\n", passes);
  
  /* Half the students are female, and 
  half of these have brown eyes */
  
  GirlsWithBrownEyes = StudentsInClass / 2*2;  /* BUG */
  
  printf("There are %i brown-eyed girls in the class\n",
    GirlsWithBrownEyes);
}

Floating point expressions
– arithmetic with floats or doubles works more or less as

expected, however we cant use % operator

/* Example: floating point arithmetic */

#include <stdio.h>

main()
{
  float r1 = 22000;
  float r2 = 10000;
  float r3 = 15000;
  float r;
  
  puts("Three resistors in parallel");
  printf("%5.0f || %5.0f || %5.0f\n\n", r1, r2, r3);
  
  puts("Method 1: r = (r1 * r2 * r3)/(r1*r2 + r2*r3 + r3*r1)\n");
  r = (r1 * r2 * r3)/(r1*r2 + r2*r3 + r3*r1);
  printf("Total resistance = %7.2f\n\n", r);
  
  puts("Method 2: r = 1/(1/r1 + 1/r2 + 1/r3)\n");
  r = 1/(1/r1 + 1/r2 + 1/r3);
  printf("Total resistance = %7.2f\n", r);
}
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Type Casting

• Conversion between data types (eg int to float) is
called casting. It can be :
– implicit (done automatically)

int x=1.34;

– explicit (we force it to happen)
int x=(int)1.34;

• Note:
int -> float is straightforward, e.g. 32 -> 32.000
float -> int involves truncation, e.g. 32.73 -> 32

typecast.c

/* Example: type casting */

#include <stdio.h>

main()

{

  float x = 34.256, y;

  int n = 27, m;

  char c = 'A';

  /* Implicit casting: */

  m = x * n; /* implicit (int) cast */

  y = n/2; /* implicit (float) cast */

  printf("m = %i, y = %6.2f\n\n", m, y);

  m = c * n; /* implicit (int) cast */

  printf("m = %i\n\n", m);

  /* Explicit casting: */

  m = (int)x * n; /* explict (int) cast */

  y = (float)n/2; /* explicit (float) cast */

  printf("m = %i, y = %6.2f\n\n", m, y);

  y = (float)c + x;

  printf("y = %6.3f\n\n", y);

  /* Explicit and implicit casting: */

  m = (float)n/2;

  y = ((int)x + 1)/2 + x;

  printf("m = %i, y = %6.3f\n\n", m, y);

}

Increment and Decrement Operators

• We could write x=x+1 (this is valid C)

• But shorthand versions are:
– pre increment  : ++x

– post increment : x++

• The difference is that with x++ the value of x is used
first then incremented; the reverse for ++x

eg int a=5, b; int a=5, b;

b=a++; b=++a;

/*Now a is 6, b is 5*/ /*Now a is 6, b is 6*/

• There is also a decrement operator -- which follows
the same rules

Assignment Operators
• We have already seen the basic assignment operator ‘=‘ e.g. x=y

• C also has some useful shorthand's
a+=b means a=a+b

a-=b means a=a-b

a*=b means a=a*b

a/=b means a=a/b

a%=b means a=a%b

• Something that can be used on the LHS of an assignment is called
an lvalue e.g.
x is an lvalue
x/2, 3+y, a+b are not

• Because assignments are operators several can be combined in a
single  statement:
x=y=z=0;

Relational Operators

• They are >, <, >=, <=, ==, !=
• Expressions involving these operators evaluate to

true or false, e.g.
– 27>21 is true
– 27<=3 is false

• In C there is no logical or boolean data type, but
integers can be used
– 0 -> false

– anything else -> true

• However, these relational operators give 1 for true

relation.c
/*  Example: relational and logical operators */

#include <stdio.h>

main()

{

  int a = 5, b = 6, c = 7;

  puts("int a = 5, b = 6, c = 7;\n");

  printf("The value of  a > b  is         \t%i\n\n", a > b);

  printf("The value of  b < c  is         \t%i\n\n", b < c);

  printf("The value of  a + b >= c  is    \t%i\n\n", a + b >= c);

  printf("The value of  a - b <= b - c  is\t%i\n\n", a - b <= b - c);

  printf("The value of  b - a == b - c  is\t%i\n\n", b - a == b - c);

  printf("The value of  a * b != c * c  is\t%i\n\n", a * b < c * c);

}
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Statements

• Expressions can be made into statements by
a suffixing  semicolon

• Statements can be simple or complex
e.g. x;

y++;

tall=height>180;

poly=a*x*x+b*x+c;

Blocks (or Compound Statements)

• These are simply one or more statements
enclosed within braces { } to group them
together.
{

x=3;

y=x+p;

++x;

}

• The compound statement is treated as a
single entity, as well see in the next 2 lectures


