Lecture 4

N o

I IS

®

Introdiction

Binary Representation
Hardwere and Softvere:
HghLevel Larguages
Stardardinput and ouput
Operalors, expression and statements
Meking Decisions
Laoping

Arays

Basics of painters

Strings

Basics of furctions.

More about functions
Files

Data Strudures

16, Casestudy: otiery number generator

Machine Code

« As we have seen, programs exist as binary
machine code. This is inconvenient for humans
as we can not naturally interpret the code.

« To overcome this, assembly language was

invented, €.0. LDA 1BCO - loadaccumulatorfom accress 1809
ADD 05 - add 5 to accumulator
STA 1AF7 - store the result at address 1AF7

This is translated more or less directly into
machine code by a program called an
assembler

Assembler

‘ Source File }—{ Assembler ’—{ Object File ‘

(assembler code) (program) (machine code)

« For complex programs we need a greater level
of abstraction which is offered by high level
languages such as c

€e.g. x=newwW ndow(200, 300, x_pos, y_pos);

y=1+sin(theta)-cos(phi)/2;

Machine Code

Executable
file

Compilers
kg I

Machine Code

Object
file

Program

« A compiler is used to convert the HLL source code
into an object file, which is then possibly combined
with others to produce an executable program.

« Other object files can come from other programmers,
libraries (e.g. maths, graphics), assembler or other
HLLs

Errors

« Several types of error can occur when developing programs.
They are all introduced by the programmer, not the computer!

— Compile time errors (reported by the compiler)
a) Syntax errors, e.g. missing semicolon at end of statement
b) Semantic errors, e.g. forgetting to #include <stdio.h>, then using printf
(which therefore doesn’t mean anything)
— Run time errors
the program compiles ok but crashes when it is ran, e.g. z=x/y; where
y=0
— Algorithmic errors
the program compiles and runs ok, but doesn’t do what is intended.

c 2 © 2
®© s_ 5 - 2 =z
= =2 = d 2 o =z 3 <

s5. 3 = . H H <

g2 2 = 5 % 2 2 z
o 28 - - 2 "o 5 £ H

° : 55 3 2ch 2
= 2o o St H £Eg g

2> & %55 g 5 A 5 >
o gs2 8 g Sao ¢ g 2
3 28 g ° g2 5 e =
- &.8 3 .3 ¢ 352 s 5 5
> g% 03 vl o S z
() gEg° > 53% = vs e z o~ @
e 2Es SZE . SE- z > E]
& s5-°%_ 4 255 $q 53 = > 2
) S Scar 2 535 29 o2 B 54 @
D = 0. 3 Pty = 0w T E ° > =
—= g 52— i S §_% . ac s
e 3 w3 2. 83 -8 5o E
O =& 2.%8% so85 =3 5 ® .S .
SSE g E3E - -0 E) cn o
o =28E 3 Zi. 53 o .z 5 8
= z] s2. % 3 .
© v9 T 5o _ 8 55 § 8 5 3
- — = nw 205 o @ -1 S — -0 — . ©
B gso2 2 g3 2z z2 - . =z &
N 22, 3 =3 2% 850 = £s ¢
= O S5z 82 g5 .3 3 s
5 Bola £ R Sas < 2 55 S
88 I3 - 8o 244 £ 82
© s 62" 3 5-zc o8 88 . 5
8°-y 3. 2025 & =88 § < 3
s Szo8 2% §%.2 8_. EgE B g4 o %
= 52 . SoT o = o z & -5 .2
) » 808 °% | 833¢ . .3 T % 58 «
.28 .8 a2885 .24 848 ¢ 2 g P
§ oo-f -2 2583 ospf ZES 2 B 5% 523
S 28gp &5 Sooet Y2B: so - 2. a2
8 “288 §° SfpSe SiEE fZZe $..B & <
S _572 8o S&E22 ¢53s Ser &ls «5 o5
§ 58> 8¢ s%sgt £8%3 3%s 155 e "ge
2% 82 .8 sg2 = o2 0Z =%
. BeBu °F 54 § ©oEo. E5c 2% >3
5 8232 02 9,38 2._8 3BEr 5§85 g &2
2 23 YE - o~ als ~8o 55-~2 ‘5% 02 Xg2
= E w3, G. Sus-l 0wE?2 SCEw Z367 z =&
(U . XE . oE 3.-000 €. >.— .o® = ERE ~ Fe ®Ooce
§ L7B: 5§ -E"S8 fzas <985,% S. c FZ og8°:

Z_B:x SE.58 £E’E 84f Folc ¥ .® 2.

c 5ES 2F 2% §h.r 5288 _2%c E B -
. +£82 .5 S:8%- $.8% E.3Z2 ES.E B
< T L$8c 18 w189z RiEZ Ei3rs f8%: -

Simple Data types in C

Anatomy of a Simple C Program

g c
B B n z «+ C has only a few simple data types:
¥ ; 5 g g3 T o3& = — Integer types
o £ B « 2 % B 38 % int, short, |ong
, =03 L A — Floating point types:
,i s E 2 =5 i s e float, double, |ong double
- z EE S — Character types
PoEs 2 225 5 g3 g8 char
. % 28 5% & . S5l < * The integer and character types can be either signed
: =27 ge EDtgiize or unsigned
= TE: Borr i DT B * NB. C does not define how many bytes each type
5 TR LRt Rl T uses. The compiler does !!!
o

Integers One and Two’2 Complement

¢ Consider an unsi gned i nt variable. Suppose * Negative integers are stored in a form known as
the compiler uses 2 bytes for this data type. one and two’s complement

It can vary from 0000 to FFFF (hex), i.e. 0 to 65535 (decimal) « Standard Binary number
128 64 32 16 8 4 2 1

e.g. unsi gned int x=65535; 0 0 0 0 1 0 0 1=9

Y=X+1: * One’s Complement, Invert the number
' -127 64 32 16 8 4 2 1
1 1 1 1 0 1 1 0=-9
« Whats the value of X now ? ¢ Two's Complement, Invert the number and add 1

-128 64 32 16 8 4 2 1

Its 0000 (hex) - overflow has occurred. 1 1 1 1 0 1 1 1=-9

Two’2 Complement

overflow.c

» So when overflow occurs +127+1 gives??
¢ 127=

-128 64 32 16 8 4 2
0 1

occupying 4 bytes.

PR
1]

-
N}
I

occupyi ng 4 bytes.

. +1
-128 64 32 16
1 0

= UINT_MX - 1

s asigned int, occupying % bytes.\nin", sizeof(y));

0
2
2
N
5
=3
3
)
2
<
@
x
s
o
S
=
s
2
2
2
o

i the new value of x is %\n", x);
nitial value of y is %\n", y);
i the new value of y is %\n", y);

£
3
s

oo
o N
onN
or
= INTMAX - 1

= -128

“x is an unsigned int, occupying % bytes.\nn", sizeof (x));

Exanple: demonst rates overflow

s
>
J
N
©
=3
3
>
I
<
@
x
S
@
E
K]
>
w
g
@
2
=

The initial value of y is 2147483646
Add 1; the new value of y is -2147483648
Add 1; the new value of y is -2147483647

/* Dom't vorry about how the program works, just

appreci ate vhat happens! */
Add 1; the new value of x is 1

of integer variables */
#incl ude <stdio. h>

#include <l imts.h>

X is an unsigned int,

Add 1; the new value of x is 0
y is a signed int,

voi d min(voi d)
unsigned int x
signed int y

{

Add 1;

I

sizes.c

508
g
2 g
§ 8
I g]

LOBL M N_10_BP, LoBL WX 10 E5)

Wi this conputer and conpiler, the simple C

data types have the fol| ow ng charact eri stics.

Ranges from-2147483648 to 2147483647
Ranges from + -(1637 to 1E+38) approx
Precision is 6 deci ml digits approx
Ranges from + -(1E 307 to 1E+308) approx.
Precision is 15 decimal digits approx.
Ranges from + -(1E 307 to 1E+308) approx.
Precision is 15 decimal digits approx.

Ranges from -2147483648 t0 2147483647
Ranges rom 0 to 4294967295
Ranges rom 0 to 4294967295

Cecupies 1 byte (8 bits)
Ranges from-128 to 127
Cecupies 1 bytes (8 bits)
Ranges from0 to 255
Ranges from -32768 to 32767
Ranges 1rom 0 to 65535

Cecupies 2 bytes
Cecupies 2 bytes
Cecupies 4 bytes
Cecupies 4 bytes
Cecupies 4 bytes
Cecupies 4 bytes
Cecupies 4 bytes
Cecupies 8 bytes
Cecupies 8 bytes
Cecupies 4 bytes

signed char
unsi gned_char
signed short
unsi gned short
signed int
unsi gned int
signed long
unsi gned | ong:
float

doubl e

Iong doubl e
poi nt er

Integer types

* In the examples we used the si zeof
keyword to determine how many bytes are
used to store each type.

si zeof (unsi gned int) orsizeof (x)
data type variable
¢ The names short and | ong can be
misleading, on in the last example i nt and

| ong were the same size.
sizeof (short) < sizeof(int) < sizeof(long)

Floating Point Numbers

Numbers like 1234.567 can be expressed in “scientific
notation” as 1.234567 x 103, or +.1234567 e+4
[ininigiid

mantissa exponent

We let the decimal point float to the LH end of the mantissa
— Such as representation is called floating point
We can use a similar method to generate a binary code,
typically 4 bytes are used to store floating point N's
— The majority of bits are used for the mantissa and a few for the exponent.
— Both parts are stored as 2's complement
The float type is often poor precision (6 sig figs) far worse
than a calculator

— C also has a double precision floating point type , doubl e, which typically
uses 8 bytes

Characters

* There is only one character type, char

This is defined (in ANSI C) to be a single byte.

« Depending upon the context it can be treated as an
integer, so there are signed and unsigned versions
— char (-128 to +127) and
— unsi gned char (0 to 255)

« A char variable holds ASCII codes as well as some
escape characters
— ‘\n’ =newline,*\t’' =tab,*\a’ =alert(beep), \0" =null

¢ The nul I character has the code 0000000 (binary) and
has a special role in strings.

Names rules

« If we wish to create a new variable, say a floating point
variable called x, this is done by
float x;
« However there are restrictions on the names that we
can use.
— Can only include letters, digits or underscores
— First character cannot be a digit
— Upper and lower case are distinct (All upper used for #define)

— Must not be the same as any of C’s 32 keywords
+ auto, break, case, char, const, continue, default, do, double,
else, enum extern, float, for, goto, if, int, long, register,

return, short, signed, sizeof, static, struct, switch, typedef,
uni on, unsigned, void, volatile, while

— Isis also sensible not to use other common C identifiers,
e.g. printf

Declaring Variables

—int i,j,k;

—unsigned | ong very_bi g_t hi ng=1000000;

— char c;
—char ch="a',NL=*\n";

—float x,y=4E-6,z=0.0015f;

In C, all variables must be declared before
they can be used. Typical declarations :

Note that variables can be initialised (given a
value) at their declaration, if desired.

Constants

It makes sense to use symbols for constants, e.g. # instead of
3.14159..., to save typing, avoid errors and improve readability

We could define a variable
float pi=3.14159;

but it is better C style to use a #def i ne
#define Pl 3.14159

This means that where ever “PI” appears in the program, the pre-
processor substitutes “3.14159"”
— The pre-processor is a program that processes the source file just before
the compiler proper starts

Conventionally such constants are in CAPITALS

define.c

c);

c, ac, as, v;
)

= 5.678;

printf("Radius = %\n",
printf("Circle' s circunference = %\n",

doubl e r,
c=20*P *r;

r

(e.g. 3.14159265358979323846) throughout the program

only one line needs to be edited.

/* Exanpl e: constant definition using #define */
*/

/* To change this to a nore accurate val ue,

#incl ude <stdio.h>
#define Pl 3.142

i n()

=P *r %,
printf("Circle's area = %\n",

ac

ac) ;

as =40 * P *r *r;

as);

printf("Sphere's area = %\n",

v =40/3.0*P *r*r*r;

v);

%\n",

printf("Sphere's vol une

