1. Introduction

2 Bray Represertation

Lecture 11 - o

I

Hghlevel Languages
5 Sandadinputand ouput

6 Operators, expression and statements

7. Making Dedisions

10. Basics of pointers

12 Basics of functions
13, More about functions
14. Files

14. DataStructures

16. Case study: lottery nurber generator

Strings

* We have already come across strings

e.g. puts(“Hello”) ;

* Here “Hello” is a literal string or string constant

* We can also have string variables

In C strings are not a simple data
A string is a null-terminated array

type
of char

+ This means that the end of a string is marked by
a “sentinel” character, *\ 0’ (ASCII code=0)

h & 1 1 o

\o E

Declaring String Variables

Simplest

char message[6];
« Initialising

char message[6]={‘H’,’e’,’1’,’1",’0",\o"};

But this is so common that C provides

the shorthand

char message[6]=“Hello”; or

char message[]="Hello”;

Which allocates the required 6 bytes

automatically

Declaring String
Variables

Because the ‘\O’ character marks the
end of a string it is ok to have more

My first name is David
My last name is Hamill

myname1 [0] =

mynamel (5] = '

mynamez [0]
myname2 (1]
myname2 (2]
mynamez (3]
myname2 (4] =
myname2 (5] =
myname2 (6] = ' ' (ASCIT 0)

-

space than needed
char message [80] =“Hello”; | #include <stdio.h»

main()

The 74 bytes beyond |... .oceie
the \O’ contain rubbish | ==

printed it e it

putchar("\n') ;

for (= 0; i <= 6; ia)
printf ('myname2 [¥i] =
myname2 [41) ;
putchar("\n') ;

printf("My first name is

at this point but are not | e s wn’sc’ss

/* Bxample: strings as null-terminated arrays of char */

= "David"; /+ 5 characters + '\0' */
char mynamez (] = "Hamill"; /* size set automatically */

£s.\n", mynamel);
\n", myname2) ;

¢t (ASCIT %i)\n", i, mynamellil,

'se' (ASCIT 8i)\n", i, myname(i]

Declaring String Variables

» As with all arrays, overrun must be avoided

» This is particularly easy with string
manipulation

/* Example: inputting strings from keyboard with scanf */
#include <stdio.h»

strings2.c
main()
{

char word[11]; /* a string, up to 10 characters (+ '\0') */
char sentence[] = "Very interesting.";

/* The simplest approach. What might happen if a long word is
entered? Why? */

printf ("Enter a word, not more than 10 characters: ");
scanf ("¥s", word);

printf ("You entered \"¥s\". ¥s\n\n", word, sentence);

Declaring String Variables

* The scanf function allows us to

input a string,

specifying the maximum number of characters

#include <stdio.h>

main ()

char sentence[] = "Very interesting.";

entered? Why? */

scanf ("310s", word) ;

/* Example: inputting strings from keyboard with scanf */
char word[11]; /* a string, up to 10 characters (+ '\0') */
/* A better approach. What happens if a long word is

printf ("Enter a word, not more than 10 characters: ");

printf ("You entered \"%s\". %s\n\n", word, sentence);

String Variables as Pointers to char

As with all arrays, we
can access individual
elements using a
pointer. This is
declared as

char* pc;
Note that this only
creates a pointer, it

/+ Exauple: string variables as pointers to char +/

#include <stdio.h> stringsS.c
main()
{

char town[] = "Guildford"; /+ array of char

char *pstring;
ine i;

/* pointer to char +/

pString - town + 5;

for (pstring = town, i = 8; i »= 0; i--)
putchar (pString(il) ;
/+ or putchar ((pstring + i)); */

putchar ("\n') ;

pString = town; *pString = 'B';
pString 4= §; *pstring - '\0';

/

puts (town) ;
i

— Guildford =

does not allocate any
memory to it

ford
drofdliue
Build

Manipulating Strings

» Because strings are actually arrays, in
general we must operate on individual
elements, e.g. we cant do

char message [40] ;
message=“Hello”;

» To do this we would probably use a for loop
and set each item (message [i]) individually

* Because this is a pain and a very common
requirement C has a standard library of string
manipulation functions <string.h> which you

can #include

#include <string.h>

Some of its useful routines are

strcpy(d,s); - copy string s (source) to string d (destination)
strcat (d,s); - concatenate (join) string s onto the end of string d

stremp (s1,s2); - compare strings s1 and s2

String comparison is done on a char-by-char

basis

Starting at position 0 and ending when a \0’ is

found in either string

The chars are compared numerically, using their

ASCII codes

The result is negative if s1<s2, zero if s1==s2

and positive if s1>s2

#include <string.h>

strlen(s); - gives the length of
string s (not counting the \0’)

strstr(sl,s2); - givesthe
position of s2 within s1

The nearest town to Guildford is Woking
Woking and Guildford are both in Surrey

Guildford is not the same as Surrey.

"How long is a piece of string?" contains 30 chara

“of" occurs at position 20 in "How long is a piece

/* Bxample: string manipulation using <string.h» library */
/* Bt the Unix prompt, enter 'man string' for details */

#include <stdio.h>
#include <string.h>

char town[] = "Guildford";
char county(] = "Surrey";

char s(80];

char *pc

int n

strcpy(s, "Woking”); /¥ string copy */

printf("The nearest town to %s is ¥s.\nm\n", ton, s);

/* string concatenation */

puts(s);

if (strcmp(town, county) == 0) /* string comparison */
printf("ss is the same as $s.\n", town, county)
else

printf("¥s is not the same as ¥s.\n", town, county);

v long is a piece of string?");
/+ string lengtn, excluding the '\0' +/
tains i characters.\mn®, s, n);

£7); /+ £ind a string within a string */
n = pe ubtract the pointers */
printf("\"of\" occurs at position ¥i in \"$s\"\n', n, 8);

Printing to a string

* We use printf to print to the screen
+ Similarly we can use sprintf to print to a string
* We can also scan from a string using sscanf

/e
e

Bxanple: formatted printing to a string using sprintf *

Like printf, but prints to a string instead of standard output */
#include <stdio.h>

main()

char format[40], output [40];
float x;

puts("Enter a positive or negative floating point number:");
scanf ("3£7, &x);

/% Rssemble format string at run time: */

sprintf(format, "You entered $s\n', (x >= 0) ? "$6.3f" : "35.3EV);

/* Generate output string: */

sprintf (output, format, x);

puts (output) ; 1.2
You entered 1.200

Enter a positive or negative floating point number:

Useful character functions

+ The standard library <ctype.h> contains some

useful routines to tell
characters

islower(c), isupper(c)

us about individual

isdigit(c), isspace(c), ispunct(c)

« they all return true/false if char c is lower case,

upper case........

. analyseZ.c—I

Common Bugs

/% BUG ZONE!!1
Example: some common string errors */

#include <stdio.h>
#include <strings.h> /* BUG */

min0 strings.bug

char thingl];
char *wing;
char string(41];

char name[5] = "David"; /* BUG */
thing = "What is this thing called love?"; /* BUG */
string = "How long is a piece of string?"; /* BUG */

puts ("Enter a word, not more than 10 characters: ");
scanf ("$s", &string); /* BUG

puts ("Enter a sentence, not more than 40 characters: ");
scanf ("$s", string); /* BUG */

strcpy (name, "Frankenstein"); /* BUG */

strepy (wing, "Oh, for the wings of a dove!"
strcpy ("Elvis Presley", string); /* BUG */
strcat (name, "Sir Isaac Newton"); /* BUG */

/* BUG */

