

HMM tutorial 5

by Dr Philip Jackson

- Simple example
- Use of HMMs
 - Introduction to HTK
- Practical issues
 - Training and testing
- Application to speech
 - Isolated words
 - Continuous
- Summary

* Figures taken from Young et al. (1997)

http://www.ee.surrey.ac.uk/Personal/P.Jackson/tutorial/

Illustrative example

Aim:

to provide an objective labelling of voiced and unvoiced regions during fricative speech.

Feature extraction front end

From top: acoustic waveform (top) of VFV utterance of devoiced /zh/; original and band-passed EGG waveforms; derived Lx level.

Effect of training

From top: histograms of Lx level classified manually with initial models; convergence of model re-estimation (from dashed start).

Example summary

- Hand labelled training data
- Initialised model
- Trained model
- Decoded with model to determine voiced/unvoiced boundaries
- Timing results used in analysis

Tools for using HMMs

- Data preparation
- Training
- Testing
- Analysis

Message encoding and decoding.*

Isolated word recognition

The problem is to find

arg max {
$$P(w_i|\mathcal{O})$$
}, (1)
where, according to Bayes, $P(w_i|\mathcal{O}) = \frac{P(\mathcal{O}|w_i)P(w_i)}{P(\mathcal{O})}$.

Isolated word problem.*

The hidden Markov model

In this case, we assume

$$P(\mathcal{O}|w_i) = P(\mathcal{O}|\lambda_i)$$
(2)
= $\arg \max_X \pi_{x_1} b_{x_1}(o_1) \cdot \prod_{t=2}^T a_{x_{t-1}x_t} b_{x_t}(o_t).$

Building the grammar

Example utterances:

Dial three three two six five four Phone Woodland

Call Steve Young

Task grammar:

```
$digit = ONE | TWO | THREE | FOUR | FIVE |
SIX | SEVEN | EIGHT | NINE | OH | ZERO;
$name = [ JULIAN ] ODELL |
[ DAVE ] OLLASON |
[ PHIL ] WOODLAND |
[ STEVE ] YOUNG;
( SENT-START ( DIAL <$digit> | (PHONE|CALL) $name) SENT-END )
```

Key: | alternatives, [.] optional, <.> one or more reps.

Grammar for voice dialling.*

Dictionary

ONE	W	ah	n	sp
TWO	t	uw	sı	þ
THREE	tł	n r	iy	y sp
FOUR	f	ao	s	2
FOUR	f	ao	r	sp

• • •

Training and test data

Choose Max Using HMMs for isolated word recognition.*

Re-estimation process

Isolated unit re-estimation.*

Output probabilities

Recall, for a Gaussian mixture, the output probability

$$b_j(\mathbf{o}_t) = \sum_{m=1}^M c_{jm} \mathcal{N}\left(\mathbf{o}_t; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm}\right)$$
(3)

Representing a mixture of Gaussians.*

Viterbi re-estimation:

means $\hat{\mu}_{jm} = \frac{\sum_{t=1}^{T} \psi_t(j,m) \mathbf{o}_t}{\sum_{t=1}^{T} \psi_t(j,m)}$, variances $\hat{\Sigma}_{jm} = \frac{\sum_{t=1}^{T} \psi_t(j,m) (\mathbf{o}_t - \boldsymbol{\mu}_{jm}) (\mathbf{o}_t - \boldsymbol{\mu}_{jm})'}{\sum_{t=1}^{T} \psi_t(j,m)}$, weights $\hat{c}_{jm} = \frac{\sum_{t=1}^{T} \psi_t(j,m)}{\sum_{t=1}^{T} \psi_t(j)}$,

where $\psi_t(j,m)$ and $\psi_t(j)$ are binary indicator functions.

Baum-Welch re-estimation:

means $\hat{\mu}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j,m) \mathbf{o}_t}{\sum_{t=1}^{T} \gamma_t(j,m)},$ variances $\hat{\Sigma}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j,m) (\mathbf{o}_t - \boldsymbol{\mu}_{jm}) (\mathbf{o}_t - \boldsymbol{\mu}_{jm})'}{\sum_{t=1}^{T} \gamma_t(j,m)},$ weights $\hat{c}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j,m)}{\sum_{t=1}^{T} \gamma_t(j)},$

where $\gamma_t(j,m)$ is as before and $\gamma_t(j) = \frac{\alpha_t(j) \beta_t(j)}{P(\mathcal{O}|\lambda)i)}$.

Training procedure

- 1. initialise accumulators for all HMMs' parameters
- 2. read the next training utterance
- 3. join HMMs in sequence to make composite HMM
- 4. calculate forward & backward probabilities

The Viterbi algorithm for isolated word recognition.*

for Continuous speech recognition

- 5. use forwd/backwd probs to increment accumulators
- 6. repeat from step 2 until all utterances processed
- 7. use accumulators to update parameters for all HMMs

Recognition network for continuously spoken word recognition.*

Recognition and traceback

Annotation results

(a) 1-alternative, 1-level

ic	e	cream		_	
ay	S	k	r	iy	m

(b) 1-alternative, 2-level

Ι	scream		
ice	cream		
eyes	cream		

(c) 3-alternative, 1-level Example transcriptions.*

Practical issues

Initialisation

- 1. Random
- 2. Flat start
- 3. Least squares
- 4. Viterbi
- 5. Baum-Welch (supervised)
- Baum-Welch (unsupervised)

Flat start.*

Re-estimation and embedded re-estimation

Number of parameters

- Parsimony
 - Occam's razor
- Amount of training data

Regularisation

- variance floor
- parameter tying

Search strategies

- Depth first: stack decoder/A*
- Breadth first: beam pruning

Linking the silence models.*

Applications in ASR

Isolated word recognition

Example digit recognition networks.*

Hierarchy of recognition networks

Today's summary

- Example of a simple labelling task
- Intro to HMM toolkit & practical issues
- Applications in automatic speech recognition

Further reading

- F. Jelinek. *Statistical methods for speech recognition*. MIT, Cambridge MA, 1998. [ISBN 0-2621-0066-5].
- S. J. Young, J. Odell, et al. *The Fundamentals of HTK*, chapter 1 in *The HTK Book*, pp. 2–13, Entropic, Cambridge, UK, 1997. [http://htk.eng.cam.ac.uk/].
- S. J. Young. Large vocabulary continuous speech recognition. *IEEE Sig. Proc. Mag.* 13(5): 45–57, 1996.