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Problem 1: Forward procedure

Consider αt(i) = P (o1, o2, . . . , ot, xt = i|λ):

1. Initially,

α1(i) = πi bi(o1), for 1 ≤ i ≤ N ;

2. For t = 2,3, . . . , T ,

αt(j) =
[∑N

i=1αt−1(i) aij
]
bj(ot), for 1 ≤ j ≤ N ;

3. Finally,

P (O|λ) =
∑N
i=1αT (i).

Thus, we can solve Problem 1 efficiently by recursion.
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Problem 1: Backward procedure

Define βt(i) = P (ot+1, ot+2, . . . , oT |xt = i, λ):

1. Initially,

βT (i) = 1, for 1 ≤ i ≤ N ;

2. For t = T − 1, T − 2, . . . ,1,

βt(i) =
∑N
j=1 aij bj(ot+1)βt+1(j), for 1 ≤ i ≤ N ;

3. Finally,

P (O|λ) =
∑N
i=1 πi bi(o1)β1(i).

We now have another efficient way of computing P (O|λ).
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Problem 2: Viterbi algorithm

1. Initially,
δ1(i) = πibi(o1)
ψ1(i) = 0 for 1 ≤ i ≤ N ;

2. For t = 2, . . . , T ,
δt(j) = maxi

[
δt−1(i)aij

]
bj(ot)

ψt(j) = argmaxi
[
δt−1(i)aij

]
for 1 ≤ j ≤ N ;

3. Finally,
∆∗ = maxi [δT (i)]
x∗T = argmaxi [δT (i)];

4. Trace back, for t = T − 1, T − 2, . . . ,1,

x∗t = ψt+1

(
x∗t+1

)
, and X∗ = {x∗1, x

∗
2, . . . , x

∗
T}. (1)
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Problem 2: Trellis diagram
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Figure 1.6 The Viterbi algorithm for Isolated Word Recognition.

From (Young et al. 1997), p. 10.
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Problem 3: Re-estimation of λ

Parameters of the model λ = {π,A,B} are adjusted to

maximise P (O|λ), i.e., according to the ML criterion.

As before, in eq. 4 (Tut. 2),

P (O|λ) =
∑
X

P (O, X|λ), (2)

which means considering all possible state sequences.

We can perform this maximisation using the Baum-Welch

formulae.
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Baum-Welch re-estimation (occupation)

Consider

γt(i) = P (xt = i|O, λ) . (3)

By Bayes law,

γt(i) =
P (xt = i,O|λ)

P (O|λ)

=
αt(i)βt(i)

P (O|λ)
, (4)

where αt and βt are as in eqs. 5 & 6 previously, and

P (O|λ) =
∑N
i=1αT (i) is the solution to Problem 1.
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Baum-Welch re-estimation (transition)

Define

ξt(i, j) = P
(
xt−1 = i, xt = j|O, λ

)
. (5)

Similarly, by Bayes law,

ξt(i, j) =
P

(
xt−1 = i, xt = j,O|λ

)
P (O|λ)

= [ P
(
xt−1 = i, o1, . . . , ot−1|λ

)
×

P
(
xt = j, ot, . . . , oT |xt−1 = i, λ

)
] /P (O|λ)

= [ αt−1(i) P
(
xt = j, ot|xt−1 = i, λ

)
×

P
(
ot+1, . . . , oT |xt = j, λ

)
] /P (O|λ)

=
αt−1(i) aij bj(ot) βt(j)

P (O|λ)
. (6)
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Baum-Welch re-estimation formulae

(a) Initial-state probabilities,

π̂i = γ1(i) for 1 ≤ i ≤ N ;

(b) State-transition probabilities,

âij =
∑T
t=2 ξt(i,j)∑T
t=2 γt(i)

for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,

b̂j(k) =

∑T
t=1

∣∣∣
ot=k

γt(j)∑T
t=1 γt(j)

for 1 ≤ j ≤ N ;

and 1 ≤ k ≤ K.

For the new model λ̂, it can be shown that,

P (O|λ̂) ≥ P (O|λ), (7)

although it does not guarantee a global maximum.
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Parameter estimation examples

Example 0: LS estimate of the mean

We have a set of measurements O = {o1, o2, . . . , oT},
from which we would like to estimate the mean, µ.

Starting with a least-squares approach, we can write an

expression for the squared distance of the samples from

the mean:

E =
T∑
t=1

(ot − µ)2

=
T∑
t=1

(
o2t

)
− 2µ

T∑
t=1

(ot) + Tµ2. (8)
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Example 0 (continued)

To find the minimum, the derivative is set to zero:

∂E

∂µ
= 2T µ̂− 2

T∑
t=1

(ot) = 0

⇒ µ̂LS =
1

T

T∑
t=1

(ot),

which gives the usual equation for evaluating the sample

mean.
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Example 1: ML estimate of the mean

Now, if we assume that observations are continuous and
normal, of the form

ot = µ+ nt for t ∈ {1,2, . . . , T},

where nt ∼ N (0,Σ) are independent Gaussian random
variables with zero mean and variance Σ, estimate the
value of µ from a set of T observations.

The likelihood function is of the form (scalar):

p(o|µ) =
T∏
t=1

1√
2πΣ

exp

[
−

(ot − µ)2

2Σ

]
.

Taking the logarithm and solving the ML equation, gives

µ̂ML =
1

T

T∑
t=1

ot.
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Example 2: ML estimate of the variance

Now estimate the variance Σ, assuming that µ is known.

It can be shown that the ML-estimated variance is

Σ̂ML =
1

T

T∑
t=1

(ot − µ)2.
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ML estimates for a multivariate Gaussian

Similarly, we can derive maximum likelihood estimates

of the mean vector µ and the covariance matrix Σ using

their respective moments:

µ̂ =
1

T

T∑
t=1

ot (9)

and

Σ̂ =
1

T

T∑
t=1

(ot − µ)(ot − µ)′. (10)
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B-W re-estimation of Gaussian state parameters

Assuming that the observations come from an HMM with

a continuous multivariate Gaussian distribution, i.e.:

bj (ot) = N
(
ot;µj,Σj

)
, (11)

we can make a soft (i.e., probabilitistic) allocation of

the observations to the states. Thus, if γt(j) denotes

the likelihood of being in state j at time t then eqs. 9

and 10 become weighted averages,

µ̂j =

∑T
t=1 γt(j)ot∑T
t=1 γt(j)

(12)

and

Σ̂j =

∑T
t=1 γt(j)(ot − µj)(ot − µj)

′∑T
t=1 γt(j)

, (13)

normalised by a denominator which is the total likelihood

of all paths through node j.
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Today’s summary

• Recap. of likelihoods αt and βt

• Recap. of Viterbi algorithm

• Re-estimating models, Λ = {λ}

– Occupation and transition

– Baum-Welch formulae

• Gaussian pdf examples, N (µ,Σ)

– Least squares

– Maximum likelihood

– B-W re-estimation
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Next time

• Worked example illustrating Baum-Welch algorithm

• More on output pdfs: multivariate Gaussians, Gaus-

sian mixtures and other types of pdf

Homework

1. Using the models you built last week and the forward-

backward algorithm:

• re-estimate model parameters for one state;

• check for increased likelihood with new model.

2. Using Viterbi, test whether the updated parameters

of your new model alter the state alignment.
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