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Problem 1: Forward procedure

Consider a¢(i) = P(01,02,...,0t Tt = i|\):
1. Initially,
a1 (i) = m; b;(01), for 1 <i < N;

2. Fort=2,3,....T,
ar(§) = [Ty o 1(i) aij) bjor),  for 1<j<N;

3. Finally,
P(O|X) = i ar(i).

Thus, we can solve Problem 1 efficiently by recursion.



Problem 1: Backward procedure
Define 5;(i) = P(0441,0¢42,--.,07|Tt =1, \):

1. Initially,
Br@i) =1, for 1 <i< N,

2 Fort=T-1T-2,.. .1,
Bi(i) = X0 1 aijbj(op41) Bey1(5),  for 1 <i < N

3. Finally,
P(OIX) = ;L mibi(o1) B1(4).

We now have another efficient way of computing P(O|)).



Problem 2: Viterbi algorithm

1. Initially,
61(¢) = m;b;(01)
P1(i) =0 for 1 <i < N;

2. Fort=2,...,T,
5:(3) = max; |6;_1(i)as;] bj(or)
¥(j) = arg max; |61 (d)aj] for 1< j < N;

3. Finally,
A* = max; [67(2)]
r = arg max; [07(2)];

4. Trace back, fort=T-1,T—-2,...,1,

Tf = P41 (:UZ‘_H) , and X* = {z7,z5,...,27}. (1)



Problem 2: Trellis diagram
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Figure 1.6 The Viterbi algorithm for Isolated Word Recognition.
From (YYoung et al. 1997), p. 10.



Problem 3: Re-estimation of \

Parameters of the model A = {x, A, B} are adjusted to
maximise P(Ol|\), i.e., according to the ML criterion.

As before, in eq. 4 (Tut. 2),
P(OIN) = 3" P(O, X)), (2)
X

which means considering all possible state sequences.

We can perform this maximisation using the Baum-Welch
formulae.



Baum-Welch re-estimation (occupation)

Consider
(i) = P(x¢=1|O,N). (3)
By Bayes law,
() — P (x¢ = 1, O|N)
7t P(ON)
() Bt(7)
PO )

where o; and (B are as in eqgs.5 & 6 previously, and
P(O|N) = XN 1 ap(4) is the solution to Problem 1.



Baum-Welch re-estimation (transition)

Define
§&(4,§) = Pl(xy—1 = 4,2 = j|O,N). (5)
Similarly, by Bayes law,

P (z;_1 =i,z = j,O|\)
P(O[N)

ft(za.])

— [P($t_]_:’l:,0]_,...,0t_]_|>\)X
P(ZCt = J, Ot,...,OT|CCt_]_ — ZaA)]/P(OlA)

= [a;_1(:) P(x¢=j,0tlxs_1 =4, \) X
P (Ot—|—17 .. .,OT‘;Ut = 7, )\> ] /P(O|)\)

a;—1(3) a;;bj(or) Be(4)
P(OIN) '

(6)



Baum-Welch re-estimation formulae

(a) Initial-state probabilities,
T = v1(7) for 1 <i < N;

(b) State-transition probabilities,

= 2 i=p&(id)
SRS AP0

for 1 <i,j < N;

(c) Discrete output probabilities,
S| @

o=k

thzl Y (7)

bi(k) = for 1 <j < N;

and 1 < k< K.

For the new model )\, it can be shown that,

P(O[X) > P(O|N), (7)

although it does not guarantee a global maximum.



Parameter estimation examples
Example 0: LS estimate of the mean

We have a set of measurements O = {o1,09,...,07},
from which we would like to estimate the mean, pu.

Starting with a least-squares approach, we can write an
expression for the squared distance of the samples from
the mean:

T
E = Y (o —p)?
t=1

= Y (F)-2u Y )+ T2 (8)

T
t=1 t=1
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Example O (continued)

To find the minimum, the derivative is set to zero:

OF T
—=2TE—2Y (0r) =0
Op t;

1T
= /]LS—? Z (ot),

which gives the usual equation for evaluating the sample
mean.
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Example 1: ML estimate of the mean

Now, if we assume that observations are continuous and
normal, of the form

oo =pu+mng forte{l,2,...,T},

where n; ~ N (0,X) are independent Gaussian random
variables with zero mean and variance 2., estimate the
value of u from a set of 1" observations.

The likelihood function is of the form (scalar):

plolp) = ]] o5

T 2
1 _

exp [_(Ot ) ]
2T

Taking the logarithm and solving the ML equation, gives
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Example 2: ML estimate of the variance

Now estimate the variance >, assuming that u is known.

It can be shown that the ML-estimated variance is
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ML estimates for a multivariate Gaussian

Similarly, we can derive maximum likelihood estimates
of the mean vector p and the covariance matrix X using
their respective moments:

1 T
L — O
= T; (9)
and

. 1 XL
3 = fz — p)(or — p)’. (10)
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B-W re-estimation of Gaussian state parameters

Assuming that the observations come from an HMM with
a continuous multivariate Gaussian distribution, i.e.:

bj (Ot) =N (075; ,Ll,j, Ej) , (11)
we can make a soft (i.e., probabilitistic) allocation of
the observations to the states. Thus, if 14(j) denotes

the likelihood of being in state 5 at time t then eqgs. 9
and 10 become weighted averages,

_ Yoo

— 12
HITST 0 G) (12)
and
T . o oY
5 = > =1 ’Yt(])(;)t MJ')(Ot p;) | (13)
> i1 7(5)

normalised by a denominator which is the total likelihood
of all paths through node j.
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Today’'s summary

Recap. of likelihoods a3 and G
Recap. of Viterbi algorithm

Re-estimating models, A = {\}
— Occupation and transition

— Baum-Welch formulae

Gaussian pdf examples, N (u, X)
— Least squares
— Maximum likelihood

— B-W re-estimation

16



Next time

e \Worked example illustrating Baum-Welch algorithm

e More on output pdfs: multivariate Gaussians, Gaus-
sian mixtures and other types of pdf

Homework

1. Using the models you built last week and the forward-
backward algorithm:

e re-estimate model parameters for one state;

e check for increased likelihood with new model.

2. Using Viterbi, test whether the updated parameters
of your new model alter the state alignment.
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