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Recapitulation: fundamentals

Maximum likelihood estimation

p(o)

Bayesian estimation

p(o.i)




Markov Model, M

(a) Initial-state probabilities,
m= {m} ={P(z1=1)} for 1 <i < N;

(b) State-transition probabilities,
A= {a,w} ={P(:1:t=j|a:t_1=i)} for 1 <4,7 < N,
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Hidden Markov Model, )\

(a) Initial-state probabilities,
m= {m} ={P(z1=1)} for 1 <i< N,

(b) State-transition probabilities,
= {a;;} = {P(xt = jlzy—1 =14)} for1<i4,5 <N,

(c) Discrete output probabilities,
B = {b;(k)} ={P(ot =k|lry =1)} forl1<i<N
and 1 < k< K.
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I producing observations

with a state sequence
00 0O O3 05 O Og X ={1,1,2,3,3,4}.
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Three problems for HMMSs

1. Compute likelihoods P(O|));

2. Find best state sequence X*;

3. Re-estimate model parameters A = {\}.



Likelihood for MM state sequence

1.0 :0 0.2 :‘Q ®

Transition probabilities:
m={m} = [ 1 0 ], and

_ 108 0.2
a={o}=15° 03]
Probability of a certain state sequence, X = {1,2,2}:
P(X|M)
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Likelihood for HMM state sequence
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Probability with a certain state sequence, X = {1,2,2}:

P(O,X]\) = P(O|X,\)P(X|))
m1b1(01) a12b2(02) axoba(03)
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Problem 1: Computing P(O|))

Joint probability of the observations and state sequence,
for a given model A:

P(O, X|\) P(O|X,N)P(X|\)

= m1b1(01) a11b1(02) a12b2(03) ... (3)
To get the total probability of the observations, we must
sum across all possible state sequences:

P(OIX) =) _ P(O|X,\)P(X]N). (4)
X



Forward procedure

Consider a¢(i) = P(01,02,...,0t Tt = i|\):
1. Initially,
a1(i) = m; b;(01), for 1 <i < N;

2. Fort=2,3,...,T,
ar(5) = |y ap-1(3) agj| bj(op),  for 1<j < N;

(5)

3. Finally,
P(OIN) = SN ar(i).

Thus, we can solve Problem 1 efficiently by recursion.



Worked example of the forward procedure

State

SRR

Time (frame)
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Backward procedure
Define 5;(i) = P(0441,0¢42,-.,07|Tt =1, \):

1. Initially,
Br(i) =1, for 1 <i < N;

2. Fort=T-1,T-2,...,1,
Bi(i) = X0 aijbj(op41) Bry1(G),  for 1 <i < N,

(6)

3. Finally,
P(OIX) = Yot mbi(01) B1(4).

We now have another efficient way of computing P(O|)).
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Worked example of the backward procedure

State

SRR

Time (frame)
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Problem 2: best state sequence

Given observations O = {o01,...,o0o7}, find the state se-
quence X = {x1,...,x7} with greatest likelihood:

X* = arg max P(O, X))

= arg m)?xA(X) (7)
where
T
A(X) — 7'('331 b$1(01) H a/gjt_lmt bwt(Ot) (8)
t=2

The Viterbi algorithm is an inductive algorithm that al-
lows us to find the optimal state sequence X* efficiently.
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Step 1

State

Time (frame)

1. Initially,

61(2) = m;b;(01)
YP1(i) =0 for 1 <i < N;
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Step 2

State

Time (frame)

2. Fort=2,...,T,
5:(3) = max; [6;—1(#)as;| bj(or)

Yi(5) = arg max; |6;_1(i)aj| for 1 <j < N;
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Steps 3 and 4

State

Time (frame)

3. Finally,
A* = max; [67(7)]
r7 = arg max; [07(4)];
4. Trace back, fort=T-1,T—-2,...,1,
Ty = Ppyq (ac;f_H) , and X" ={xz7,25,..., 27} (9)
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Viterbi by numbers

State

Time (frame)
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Reformulating the optimisation

Recall the likelihood calculation,

P(O,X|)\) = P(O|X,\)P(X|))

= m1b1(01) a11b1(02) aiobo(03) ...

Now, taking the negative logarithm of eq. 8 gives

T
Q(X> = —|In (7Tx1 bxl(Ol)) + Z In <axt_1xt bxt(ot)> .
t=2
(10)

Hence, eq. 7 becomes

X* =arg m)}nQ(X). (11)
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Summary of the Viterbi algorithm

1. Initially,
q1(2) = —Inm; — In (b;(01))
YP1(i) =0 for 1 <i < N;

2. Fort=2,...,T,

gt(3) = min; |q—1(3) — Inag;| — In (b;(or))

YPi(j) = arg min; [%—1(73) —In az’j} for 1 <j <N,
3. Finally,

Q" = min; [g7(7)]

zp = arg min; [g7(4)];
4. Trace back, fort=T-1,T7—-2,...,1,

Ty = P41 ($2‘_|_1) , and X" = {x7,z5,... ,x*T}( )
12
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Today’'s summary

e Recap. of MMs and HMMs

e Computing likelihoods, P(O|X)
— for Markov models

— for Hidden Markov models

e Finding the best state sequence, X*
— Viterbi algorithm

— Trellis diagrams
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Next time

e Setting the parameters in the models A = {\}
— Baum-Welch re-estimation
— Forward-backward algorithm

— Continuous output pdfs

Homework

Implement the Viterbi algorithm for your own problem,
formulating it in terms of hidden states and observations:

e parameters determined empirically or heuristically

e parameters estimated by least squares (e.g., u, )
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