A compact statistical model of coarticulatory dynamics

introduction correlations detection algorithm

trajectories

summary

DANSA

A compact statistical model of coarticulatory dynamics

Veena Singampalli and Philip JB Jackson

Centre of Vision, Speech and Signal Processing (CVSSP) University of Surrey, UK

11 January 2007

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Overview

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

DANSA

- A compact statistical model of coarticulatory dynamics
- introduction
- correlations
- detection algorithm
- trajectories
- summary

- Dealing with context-dependency:
 - speech isn't like "beads on a string", it's a dance!
 - coarticulation applicable in synthesis & robust ASR
 - compact models for efficient exploitation of data
- Building a model of coarticulation:
 - Introduction
 - Critical, dependent & redundant articulation
 - Modelling dependencies dynamically
 - Preliminary evaluation of generated trajectories
 - Summary

A compact statistical model of coarticulatory dynamics

introduction

correlations

detection algorithm

trajectories

summary

Related contributions

- Statistical trajectory-modelling techniques:
 - Tokuda (trajectory HMM), Frankel & King (LDM)
 - Ostendorf, Russell, Holmes (segment models)
 - Deng et al. (dynamic Bayesian networks)
- Articulatory kinematics:
 - Öhman, Mermelstein ("knots and beads on a string")
 - Lindblom (targets & smoothing)
 - Kaburagi, Honda, Dang, Löfqvist (phone distributions, context-dependent weights)
 - Blackburn & Young (statistics of articulator inertia)
- Biomechanical dynamics:
 - Coker (articulatory priority)
 - Saltzman, Tremblay & Ostry (task dynamics)

A compact statistical model of coarticulatory dynamics

introduction

correlations

detection algorithm

trajectories

summary

Articulatory correlations & rôles

Three main kinds of correlation in articulatory data:

- 1 correlation for each articulator in **space**
- 2 correlations between articulators
- 3 correlations of trajectories over time

While speaking, articulators continually change their rôle:

- critical articulator
 - specified position (or gesture) is essential to phone
- dependent articulator
 - movement follows that of correlated critical articulator(s)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- redundant articulator
 - irrelevant, only constrained by surrounding context

Study relations 1 & 2 statistically to reveal coarticulation model's structure, based on Mocha data.

A compact statistical model of coarticulatory dynamics

introduction

correlations

detection algorithm

trajectories

summary

Phone distributions

▲ロト▲聞と▲臣と▲臣と 臣 めんぐ

A compact statistical model of coarticulatory dynamics

introduction

correlations

detection algorithm

trajectories

summary

Critical-artic. detection algorithm

- 1 Initialise model to grand distributions (Gaussian)
- 2 Compute phone distributions
- 3 Calculate intra- and inter-articulator correlations:
 - calculate grand correlations and test for significance

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

set low and insignificant values to zero

A compact statistical model of coarticulatory dynamics

introduction

correlations

detection algorithm

trajectories

summary

Univariate correlation matrix

1D grand correlation matrix

_	ul_x	ul_y	II_x	ll_y	li_x	li_y	tt_x	tt_y	tb_x	tb_y	td_x	td_y	v_x	v_y
ul_x	1.00	.53	.34	15	.00	17	18	.00	16	.00	22	.00	.00	.00
ul_y	.53	1.00	.27	31	.00	.00	.00	.29	.00	.19	15	.00	.13	.00
II_x	.34	.27	1.00	70	.61	55	.00	31	19	.00	17	.14	.11	.00
ll_y	15	31	70	1.00	49	.65	.00	.32	.14	.00	.10	10	18	.00
li_x	.00	.00	.61	49	1.00	71	.00	43	.00	36	.00	.00	.12	.00
li_y	17	.00	55	.65	71	1.00	.00	.60	.12	.42	.00	.00	12	.00
tt_x	18	.00	.00	.00	.00	.00	1.00	.00	.90	.00	.82	.00	.24	.19
tt_y	.00	.29	31	.32	43	.60	.00	1.00	.18	.53	.11	.00	.00	.00
tb_x	16	.00	19	.14	.00	.12	.90	.18	1.00	.00	.92	24	.14	.00
tb_y	.00	.19	.00	.00	36	.42	.00	.53	.00	1.00	.00	.75	.00	.00
td_x	22	15	17	.10	.00	.00	.82	.11	.92	.00	1.00	21	.00	.00
td_y	.00	.00	.14	10	.00	.00	.00	.00	24	.75	21	1.00	.00	.23
v_x	.00	.13	.11	18	.12	12	.24	.00	.14	.00	.00	.00	1.00	.81
v_y	.00	.00	.00	.00	.00	.00	.19	.00	.00	.00	.00	.23	.81	1.00

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

A compact statistical model of coarticulatory dynamics

introduction

correlations

detection algorithm

trajectories

summary

Critical-artic. detection algorithm

- 1 Initialise model to grand distributions (Gaussian)
- 2 Compute phone distributions
- 3 Calculate intra- and inter-articulator correlations:
 - calculate grand correlations and test for significance
 - set low and insignificant values to zero
- 4 Compute modified Kullback-Leibler divergences:
 - calculate std. error for phone and model pdfs
 - compute KL divergence including std. errors
- 5 Select articulator with max. divergence
 - test whether the value is above divergence threshold
 - set model pdf to phone pdf for critical articulator
- 6 Update model distributions:
 - for each dependent articulator, apply conditional mean and covariance based on critical articulator(s)

Repeat from step 4.

A compact statistical model of coarticulatory dynamics

summary

Univariate model convergence

-720

A compact statistical model of coarticulatory dynamics

trajectories

summary

Generation of trajectories

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A compact statistical model of coarticulatory dynamics

Average model error

summarv

Static targets
Our model
B&Y model
Combined

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- DANSA
- A compact statistical model of coarticulatory dynamics
- introduction
- correlations
- detection algorithm
- trajectories
- summary

- Coarticulatory model of speech dynamics
 - Tested for significant correlations (1D & 2D)
 - Detected critical articulator(s) for each phone, considering dependencies
 - Modified trajectory interpolation through redundancies
 - · Preliminary resuls of model gave an improvement
- Future investigation
 - Development of trajectory interpolation (e.g., to 2D)
 - Detailed evaluation of the model's performance
 - Model incorporation into multi-level SEGREC system

www.ee.surrey.ac.uk/Personal/P.Jackson/Dansa