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Overview

Segment Models
• Segmental HMMs (SHMMs) generate a 
feature-vector trajectory per state, for speech 
recognition or synthesis.

• However, expanding the state space for the 
trajectory makes SHMMs computationally 
costly.
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Computational load problem
• Standard HMMs
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Computational load problem
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Computational load problem
• Therefore…

– Efficient search is essential for a recognizer to 
perform decoding within a reasonable time, 
for training and recognition. 

• But, before that,...
– Decoding algorithm for SHMMs, derived from 
the Viterbi algorithm

PruningPruning

The Decoding Algorithm
• More elegant way of decoding

– Introduction of Start Node (SN) and End Node 
(EN), and their probabilities SNP and ENP
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The Decoding Algorithm
• SNP calculation

– Finding best state-transition
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The Decoding Algorithm
• ENP calculation

– Finding best segment-duration
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The Decoding Algorithm
• SNP calculation --- seeding
• ENP calculation --- harvesting
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Pruning Strategies
• Russell (2005) proposes:

– beam pruning (for EN)
– state-duration pruning

•• We add:We add:
–– prepre--cost partitioncost partition
–– beam pruning for SNbeam pruning for SN
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Pruning Strategies
1. Pre-cost partition

in the case of  Dmax= 3
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Pruning Strategies
2. SN beam pruning

– Pruning before output probability calculation
• Let            denote the maximal SNP at time t.
If                                     , the start node of state i
at time t is pruned.

3. EN beam pruning (Russell,2005)
– Pruning after output probability calculation

• Let             denote the maximal ENP at time t.
If                                       , the end node of state j
at time t is pruned.
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Pruning Strategies
4. State-duration pruning (Russell,2005)
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Experiments
• Condition

– Monophone, 3-state SHMMs
– Linear segment-trajectory
– Parametric duration model using Gamma distribution
– Phone-level bigram language model

• Data
– TIMIT male speaker training set
– 3180 and 80 sentences for training and evaluation, 
respectively

– 13 MFCCs including C0, 25ms width, 10ms spacing 
window

Experiments
1. Pre-cost partition

0.40.1embedded
(sentence-level)

42.818.9supervised
(phone-level)

recognitiontraining
Reduction of number of output-prob calculations (%)



One Day Meeting on 'Unified Models for Speech Recognition 
and Synthesis', 11th Jan. 2007, Birmingham 5

Experiments
2&3. SN and EN beam pruning

Increasing pruning levelIncreasing pruning level

28.6%

13.2%

Experiments
4. State-duration pruning

Increasing pruning levelIncreasing pruning level

Summary
• Pre-cost partition reduced output-prob
computation for supervised training and 
recognition by 18.9% and 42.8%.

• The result of beam pruning showed that SN 
beam pruning is more efficient than EN beam 
pruning.

• Recognition accuracy was sensitive to 
duration probability threshold     , unlike the 
experiment by Russell (2005).

Dθ

Summary

30.954.0pre-cost part. + SN (θS=30) 
+EN (θE=20)

13.253.9pre-cost part. + EN (θE=20)
28.653.8pre-cost part. + SN (θS=30)
0.453.8pre-cost part.
0.053.8no pruning

computational 
reduction (%)accuracy(%)

Recognition (embedded)
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Conclusions
• SHMM decoder based on SNP and ENP
• Experiments on TIMIT with four pruning 
strategies

• Introducing context-sensitive models
• SN beam pruning for standard HMMs?

What’s next?

Thank you very much for your attention

DANSA project is funded by EPSRC (GR/S85511/01)
http://www.ee.surrey.ac.uk/Personal/P.Jackson/Dansa


