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Segment Models

+ Segmental HMMs (SHMMs) generate a
feature-vector trajectory per state, for speech
recognition or synthesis.
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* However, expanding the state space for the
trajectory makes SHMMs computationally
costly.

Computational load problem

+ Standard HMMs  o,(i)=max , (j)a by,
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Computational load problem

* SHMMs () =max max o _,(/)a,b(y,,.)
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Computational load problem Computational load problem

* SHMMs () =max max & _,(/)a,b(y. s.) * Therefore...
— Efficient search is essential for a recognizer to
perform decoding within a reasonable time,
b4 for training and recoinltlon.
— = by, '
——— Pruning
b,y  But, before that,...
— Decoding algorithm for SHMMs, derived from
f, the Viterbi algorithm
The Decoding Algorithm The Decoding Algorithm
* More elegant way of decoding * SNP calculation ,b’,(i)=mgx a.(ja,
— Introduction of Start Node (SN) and End Node — Finding best state-transition

(EN), and their probabilities SNP and ENP
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The Decoding Algorithm

* ENP calculation ()= max f_,.()b,(y.,.)
— Finding best segment-duration

18"

N
N

[ N
m.-C
z

t-D, . +1 t

The Decoding Algorithm

* SNP calculation --- seeding

* ENP calculation --- harvesting
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Pruning Strategies

* Russell (2005) proposes:
(3) —beam pruning (for EN)
(4) — state-duration pruning

* We add:
(1) — pre-cost partition
(2) — beam pruning for SN
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Pruning Strategies

1. Pre-cost partition

in the case of D, =3
® possible SN
® possible EN
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Pruning Strategies Pruning Strategies

2. SN beam pruning 4. State-duration pruning (Russell,2005)
— Pruning before output probability calculation L
. Let 5.(,,.) denote the maximal SNP at time . by, 4) = Di(d) 71157\[(]?0),0,';%)
If [log (i) —log A,(7) > 6", the start node of state i T
attime 7 is pruned. 2z
3. EN beam pruning (Russell,2005) z D,(d)
— Pruning after output probability calculation g
. Let o, (j,mf) denote the m?ximal ENP at time . ' threshold 6"
If [loge,(j,.)—loga, ()] > 6", the end node of state ; p
attime ¢ is pruned.
Experiments Experiments
+ Condition 1. Pre-cost partition
— Monophone, 3-state SHMMs ) )
— Linear segment-trajectory Reduction of number of output-prob calculations (%)
— Parametric duration model using Gamma distribution training recognition
— Phone-level bigram language model supervised
. 18.9 42.8
Data N (phone-level)
— TIMIT male speaker training set
— 3180 and 80 sentences for training and evaluation, embedded 0.1 0.4
respectively (sentence-level)
— 13 MFCCs including C,, 25ms width, 10ms spacing
window
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Experiments
2&3. SN and EN beam pruning
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Experiments

4. State-duration pruning
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* Pre-cost partition reduced output-prob
computation for supervised training and
recognition by 18.9% and 42.8%.

* The result of beam pruning showed that SN
beam pruning is more efficient than EN beam
pruning.

+ Recognition accuracy was sensitive to
duration probability threshold 8", unlike the
experiment by Russell (2005).

duration-pruning threshold (log prob)
Summary
Recognition (embedded)
computational
accuracy(%) reduction (%)
no pruning 53.8 0.0
pre-cost part. 53.8 04
pre-cost part. + SN (8 5=30) 53.8 28.6
pre-cost part. + EN (8 E=20) 53.9 13.2
pre-cost part. + SN (8 $=30)
+EN (8 5=20) 54.0 30.9
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Conclusions

SHMM decoder based on SNP and ENP

» Experiments on TIMIT with four pruning
strategies

What's next?

Introducing context-sensitive models
» SN beam pruning for standard HMMs?
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