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IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 2AbstractAlmost all speech contains simultaneous contributions from more than one acoustic source within thespeaker's vocal tract. In this paper we propose a method | the pitch-scaled harmonic �lter (PSHF) |which aims to separate the voiced and turbulence-noise components of the speech signal during phonation,based on a maximum likelihood approach. The PSHF outputs periodic and aperiodic components thatare estimates of the respective contributions of the di�erent types of acoustic source. It produces fourreconstructed time series signals by decomposing the original speech signal, �rst, according to amplitude,and then according to power of the Fourier coe�cients. Thus, one pair of periodic and aperiodic signals isoptimized for subsequent time-series analysis, and another pair for spectral analysis. The performance ofthe PSHF algorithm was tested on synthetic signals, using three forms of disturbance (jitter, shimmer andadditive noise), and the results were used to predict the performance on real speech. Processing recordedspeech examples elicited latent features from the signals, demonstrating the PSHF's potential for analysisof mixed-source speech. [EDICS: 1-ANLS] KeywordsPeriodic-aperiodic decomposition, speech modi�cation, speech pre-processing.Corresponding author: Dr. C. Shadle, Department of Electronics and Computer Science,University of Southampton, Southampton, Hants. SO17 1BJ, UK.Tel: +44 (0)2380 592690, Fax: +44 (0)2380 594498, Email: chs@ecs.soton.ac.uk
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IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 3I. IntroductionThe acoustic cues that are central to our ability to perceive and recognize speech derive froma variety of acoustic mechanisms and are often classi�ed according to the nature of the soundsource: phonation, frication, plosion or aspiration [1], [2]. Identifying and characterizing thevarious sources is fundamental to speech production research [3{5], and to the classi�cation ofpathological speech. Recent studies of hoarse speech have concentrated on measures of roughnessin phonation, e.g., [6], and yet turbulence-noise sources contribute largely to this e�ect (asbreathiness). In normal or pathological speech, when more than one sound source is operating,it is di�cult to segment the corresponding acoustic features, which typically overlap both intime and frequency, thus hindering the isolation of individual source mechanisms, and making itpractically impossible to examine source interactions in any detail. Our particular area of interestis that of turbulence-noise sources in the vocal tract, and in order to explore these phenomena,we would like to be able to analyze the voiced and turbulence-noise components of mixed-sourcespeech separately, possibly even to distinguish between all the di�erent acoustic contributions.To that end we have developed a signal analysis technique for separating separating the periodiccomponent, an estimate of thepart attributable to voicing, from the aperiodic component, anestimate of the part attributable to the simultaneous turbulence-noise source(s). Assessing therelative contribution of these two components as a harmonics-to-noise ratio (HNR) has long beena useful tool in the laboratory and the clinic [7{15], but there has been growing interest in morecomplete descriptions of the periodic and aperiodic signal components. Recent developmentof decomposition algorithms has been fueled by the demands of numerous speech applications:enhancement [16{21], modi�cation [22{24], coding [25] and analysis [26], [27].Decomposition is generally achieved by �rst modeling voicing deterministically, since voicingtends to be the larger signal component, and then attributing the residue to the estimate ofthe aperiodic component. Concentrating the periodic component into a certain region of atransformed space improves estimation of the model's parameters. The extraction of energyconcentrations from the transformed signal is equivalent to the separation of deterministic andstochastic elements, which may be realized by a threshold operation, as in [28] using wavelets.Serra and Smith [25] combined peak-picking and tracking to code the voiced (deterministic) partand �tted line segments to the residual noise spectrum. However, the regularity of vocal foldvibration can be used to de�ne the region of concentration, and to design a comb �lter thatMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 4e�ectively averages successive pitch periods. The two main approaches are time domain (TD)and frequency domain (FD), although most contain elements of both.TD models typically assume that noise is added to pulsed excitation of a time-varying, linear�lter. One TD method is the comb �lter with teeth periodically aligned on the pitch pulses. Inorder to adapt the spacing of the teeth of the comb �lter in synchrony with variations in voicing,knowledge of the glottal pulse epochs is required. There have been many TD realizations of thispitch-synchronous method, which have accommodated timing variations by truncation and zero-padding [7], [29], [30], scaling [15], least-squares alignment [27], [31] or dynamic time warping[17].FD methods estimate the Fourier series of pitch harmonics from the short-time Fourier trans-form (STFT), using the fundamental frequency f0 to identify regions of the spectrum that corre-spond to voicing. Thus, they model voicing by a short-time harmonic series, whose parameterstend to be smoothed between analysis frames [16], [18], [20], [22], [23], [32], [33]. Laroche et al. [22]included linear f0 variation within a frame, but in their example (pitch-synchronous, two-periodwindow) the data were over-�tted, resulting in 3 kHz low- and high-pass �ltered speech signalsto represent the periodic and aperiodic components, respectively. Gri�n and Lim [33] used thepitch harmonics to sub-divide the spectrum, and made a \voiced/unvoiced" decision on eachharmonic band for coding the speech signal.A compromise was proposed by de Krom [9], who created a harmonic comb �lter in the FDusing the rahmonics of the real cepstrum, which has been the basis for various implementations[9, 12{14, 35]. The log-spectrum obtained in this way from the rahmonic cepstrum (with thespectral envelope removed), which oscillates about zero, was then thresholded: frequencies forwhich it was greater than zero were de�ned as periodic, and those less than zero as aperiodic.Hence, the partitioning of regions in the cepstral domain provided a means of labelling thoseregions in the STFT spectrum.For HNR estimation and synthesis applications (coding, copy-synthesis, modi�cation), the ac-curacy with which the component signal is estimated is not important provided the salient signalproperties are captured, which is also the case for certain types of analysis. More generally,though, we would like to analyze all the information that is known, without introducing inap-propriate assumptions, and therefore provide an output with a minimum of distortion. Aftersubtraction of the periodic model from the original spectrum, the residue's spectrum typicallyMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 5lacks data at the harmonics, i.e., the region where voicing was concentrated, and values of zeromay be the best estimate available for the aperiodic signal spectrum. Yet, for feature extractionfrom the power spectrum (e.g., for generating a stochastic model that reproduces the longer-term spectral characteristics of the aperiodic component), �lling those gaps can be advantageous.Thus, spectral interpolation has been performed by linear prediction [22], and by approximatingthe spectral envelope with line segments [25] or cepstral coe�cients [23]. One recently-publishedtechnique [14] uses a reconstruction algorithm, but we have discovered certain problems with it,which are described in the Appendix. Yet, we have followed a similar methodology in evaluatingour algorithm.Still, choosing a technique for one's own data and purpose is not straightforward. Lim etal. [30] showed that TD comb �ltering decreased intelligibility, whereas a harmonic methodincreased it [18]. On the other hand, Qi and Hillman [12] found that an adaptation of de Krom'smethod performed poorly compared to another TD method [7]. Furthermore, it depends on one'sobjective and the particular kinds of speech one wishes to study. In our case, we are interested insounds with a signi�cant noisy element, such as voiced fricatives, where the voicing tends to beweak and pitch epochs are hard to identify precisely. This scenario would favor an FD approach,but even modal vowels are suitable candidates for FD decomposition if one wants to examine thespectral characteristics. TD methods, on the other hand, might be more appropriate at abrupttransitions in voicing, e.g., at onset.Our technique, presented in the next section, is an FD method called the pitch-scaled harmonic�lter (PSHF). It provides outputs that constitute our best estimate of the voiced and turbulence-noise signals (suitable for TD analysis), and spectrally-interpolated outputs that provide a betterestimate of the components' power spectrum (suitable for power spectral analysis and modeling).Previous techniques have failed to distinguish these two objectives of the decomposition task.In Section III, the behavior and performance of the PSHF algorithm was tested using syntheticspeech signals that contained three kinds of disturbance: shimmer (perturbed amplitude), jitter(perturbed fundamental frequency f0), and additive Gaussian noise with variable burst duration.Section IV gives examples from speech recordings that were analyzed to illustrate some of thedecomposition technique's capability, and Section V concludes.
May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 6II. Pitch-scaled harmonic filterA. Basis for a pitch-scaled approachWe use the term pitch-scaled to refer to an analysis frame that contains a small integer multipleof pitch periods. It implies, for a constant sampling rate fs, that the number of sample pointsin the frame N will be inversely proportional to the fundamental frequency f0. This propertycomplicates the windowing and re-splicing processes, but also brings substantial bene�ts: mainlythat the harmonics of f0 will be aligned with certain bins of the STFT (assuming we know thevalue of f0). For example, if our analysis frame contains b pitch periods, then the frequency ofthe nbth Fourier coe�cient will correspond to nf0. When the frequency in question is not exactlyaligned with one of the discrete frequency bins, leakage and spectral smearing take place, whichproduce errors in the form of bias.For a single in�nite sinusoid of frequency f1 in Gaussian white noise (GWN), the highestpeak in the DFT spectrum provides the least-squares estimate (minimum mean-squared error)of the magnitude, frequency and phase of the sinusoid, given enough samples are taken at a highenough rate [36], [37],1 and coincides with the maximum likelihood estimate for the Gaussiandistribution [38]. If f1 is of the same order as the frequency resolution (i.e., � 2fs=N), thenegative-frequency image centered at �f1 will not be su�ciently separated from it, and willbias the estimates [16], [36]. In contrast, if the analysis frame is chosen to have several wholecycles (with adequate fs), f1 will lie on a DFT bin, and the bias terms from interference andspectral leakage will disappear; the remaining error is unbiased Gaussian noise whose varianceis proportional to that of the additive noise. When there is more than one sinusoid presentin GWN, they must be su�ciently separated in frequency (�f � 4fs=N) to maintain optimal(maximum likelihood) estimation of the deterministic components, as well as each meeting theearlier constraints [38], [39]. Again, these biases are avoided when N is scaled to the frequencyof both sinusoids, which must therefore be harmonically related.However, speech signals, although predominantly harmonic, are not composed of pure sinusoidsof in�nite duration. Vibration of the vocal folds tends to generate sound pressure signals thatare approximately periodic, but whose amplitude and fundamental frequency uctuate duringvoicing and change dramatically at voice onset/o�set. Although some of the techniques we have1Having too few samples would not give su�cient frequency resolution, and too low a sampling rate wouldprovoke aliasing problems.May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 7mentioned e�ectively applied a rectangular window, most used a smooth function, viz. Hanningor Hamming, to accommodate such non-stationarity. We have chosen to use a Hanning window,which still yields unbiased estimates when pitch-scaled, though it increases the variance of theerror by 50% [39], [40]. This step greatly enhances the technique's robustness to minor pertuba-tions in periodicity. Cross-term bias errors between harmonics caused by deviations from perfectperiodicity are reduced by a factor of 15 at the adjacent harmonic by the Hanning window, incomparison to a rectangular window (i.e., 24 dB, four bins away), as shown in Figure 1. Also, thehalf-power bandwidth of the main peak is increased from 0.44 bins to 0.72 bins at each harmonic,an increase of 60%. Thus, despite being based on a maximum likelihood approach for estimat-ing harmonically-related sinusoids, some of the idealized performance has been compromised tomake the process more suitable for time-varying signals.B. OverviewThe pitch-scaled harmonic �lter (PSHF), derived from a measure of HNR [8], was designedto separate the periodic and aperiodic components of speech signals. It is assumed that thesecomponents will be representative of the vocal-tract �ltered voice source and noise source(s),respectively. The original speech signal s(n) is decomposed primarily into the periodic (estimateof voiced) and aperiodic (estimate of turbulence-noise) components, v̂(n) and û(n) respectively.Further periodic and aperiodic estimates, ~v(n) and ~u(n), are computed based on interpolation ofthe aperiodic spectrum, which improves the spectral composition of the signals when consideringfeatures over a longer time-frame.In the process of estimating the HNR from a short section of speech s(n), Muta et al.[8] used the spectral properties of an analysis frame that was scaled to the pitch period inorder to distinguish parts of the spectrum containing harmonic energy from those without.Hence, they applied a window function w of length N(p) to s(n), centered at time p, to formsw(n) = w(n) s(n+ p�N=2). They computed the spectrum Sw(k) by discrete Fourier trans-form (DFT) using a value of N = b� that was a whole number b of pitch periods of length � (insamples): Sw(k; p) = N�1Xn=0 sw(n) exp��j 2�nkN � ; (1)which concentrated the periodic part of sw into the set of harmonic bins B, where B containsevery bth coe�cient: fb; 2b; 3b; : : : ; b(N � 1)g. Choosing a four-pitch-period Hanning windowMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 8(b = 4): w(n) = 0:5 (1 � cos 2�n=N) for n 2 f0; 1; : : : ; (N � 1)g, the harmonics were translatedto bins f4; 8; 12; : : :g, while the bins halfway between f2; 6; 10; : : :g were kept free from spectralleakage of the periodic component. Thus, for an adult male speaker with pitch period of 8ms(f0 = 125Hz), a 32ms window would be used.We have extended the process [41] to yield a full decomposition into periodic and aperiodiccomplex spectra, which can be converted back into time series, v̂ and û respectively, as explainedbelow. We also propose an interpolation step for improving power-spectral estimation, whichproduces a further pair of signals ~v and ~u. The outputs can later be analyzed using any standardtechnique: v̂ and û for TD analysis, ~v and ~u for FD analysis. For time-frequency analysis, wede�ne a threshold of half the mean PSHF window length, hNi=2, or two pitch periods, whichis the point at which the harmonics begin to be resolved. Thus, v̂ and û would be used forwide-band spectrograms, and ~v and ~u for narrow-band. The remainder of this section describesthe Muta et al. [8] pitch estimator, the segmentation of speech signals into frames and the PSHFalgorithm.C. Pitch estimationThe PSHF relies on the window length being scaled to match the time-varying pitch period:N(p) = b�(p). The pitch-tracking algorithm estimates the period � by sharpening the spectrumat the �rst H harmonics. The sharpness is described in terms of the higher and lower spectralspread, S+h and S�h respectively, which are de�ned for a given window at each harmonic, h 2f1; 2; � � � ;Hg as:S+h (N; p) = jSw(bh+ 1)j2 � jSw(bh)j2jW (h�f0)j2 ����W �h�f0 � 1N �����2 (2)S�h (N; p) = jSw(bh� 1)j2 � jSw(bh)j2jW (h�f0)j2 ����W �h�f0 + 1N �����2 ; (3)where �f0 = 1=�� = bfs=�N ,W (k) = N2 �sinc�kN + 12 [sinc�(kN � 1) + sinc�(kN + 1)]� exp�j��f0N ;for the Hanning window, and sincx = sin(x)=x. Thus, the spectral smearing due to the windowis calculated for the higher and lower bins adjacent to each harmonic, k = bh � 1, and thevalues are compared to the measured values in those bins. The optimum pitch estimate Nopt(p)is obtained by minimizing the di�erence between the calculated and measured smearing in aMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 9minimum mean-squared error sense, according to the cost function at time p:J (N; p) = HXh=1�S+h (N; p)2 + S�h (N; p) 2� ; (4)see [8] for further details. The optimization is perfectly matched to the PSHF because, using thesame window, it maximizes the concentration of signal energy into the harmonic bins.For each section of voiced speech, the initial estimate of N(p) was set manually. For larger datasets, standard methods could easily be implemented for automatic initialization, e.g., [42{44].The pitch tracker operated as follows: (i) window speech signal (N -point, Hanning); (ii) evaluatecost function J(N; p) near current estimate N(p); (iii) update the current estimate to Nopt (valueat minimum cost); (iv) increment time p and repeat.D. Windowing and re-splicingWindowing was used in the PSHF not only to process the data in �nite frames, but also to allowthe piecewise stationary model to adapt in line with the many kinds of variation in the speechproduction system: amplitude, fundamental frequency, formant frequencies, voice onset/o�setand other transients. After decomposing a frame, the output signals were recombined with theresults of preceding frames by overlapping and adding.For simplicity, the center positions pi of the frames i were spaced at a constant interval:� = pi � pi�1. However, since the window size was not generally constant, neither was thesignal weighting; lower fundamental frequency regions, having longer windows wi(n), accruedmore weighting than higher f0 regions. Therefore, to normalize the �nal output signals, i.e., there-spliced periodic and aperiodic components, they were multiplied by W (m), the reciprocal ofthe sum of the contributions from the windows wi:W (m) = 1Pi fwi (m� pi +N(pi)=2)g ; (5)for all frames i that included the pointm (not necessarily contiguous). Alternatively, each frame'swindow could be normalized to give an even point-wise weighting, as done in [30]. A cosine rampwas applied to each end of the normalization factor W (n) to fade out sections of voicing at onsetand o�set.E. AlgorithmHarmonic �lter. Let us consider how the PSHF algorithm performs the decomposition in theFD for a single frame, centered at time p. (Note: all functions within the algorithm are adaptiveMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 10and depend on p, but for clarity, we omit the argument p hereafter.) After applying the pitch-scaled Hanning window to the speech signal to get sw(n), the PSHF algorithm computes Sw(k)by DFT, as depicted in Figure 2. The harmonic �lter (HF) takes the pitch harmonics from Swand doubles the coe�cients to form the harmonic spectrum V̂ (k), compensating for the meanwindow amplitude of 0.5: V̂ (k) = 8><>: 2Sw(k) for k 2 B0 otherwise ; (6)where B = fb; 2b; : : : ; (N � 1)bg. This spectrum, when returned to the time domain by inverseDFT (IDFT), produces a signal that is periodic with no envelope shaping, so these four pitchperiods are windowed to yield the periodic signal estimate v̂w(n):v̂w(n) = w(n)N N�1Xk=0 V̂ (k) exp�j 2�nkN � : (7)The aperiodic signal estimate is the di�erence between this and the input signal: ûw(n) =sw(n)� v̂w(n). Alternatively, in the frequency domain, we can subtract V̂ from the unwindowedspectrum: Û(k) = 8><>: S(k)� 2Sw(k) for k 2 BS(k) otherwise ; (8)and then the aperiodic component ûw comes from applying the IDFT and window, as before. Asa result, any errors in the periodic estimate caused by the decomposition algorithm are (wrongly)attributed to the aperiodic signal. Note that the number of pitch periods b can potentially beany integer that achieves a harmonic concentration, viz. b 2 f2; 3; 4; : : :g. There is inevitably atrade-o� between time and frequency resolution which, among other things, balances the noiserejection performance against the tolerance to jitter and shimmer. We have found that b = 4o�ers a favorable compromise, but we have not tested alternatives.Power interpolation. The spectrum of the estimated aperiodic signal Ûw(k) contains gaps atthe harmonics, where the coe�cients are of zero amplitude, since Ûw(k) = Sw(k)�(2Sw(k)) =2 =0 for k 2 B. However, subsequent analysis often involves computing power spectra or spectro-grams, which depend on the squared magnitude of the Fourier coe�cients, and the gaps thereforegive strongly biased under-estimates. We can improve the power estimates by �lling Ûw in atthe harmonics. If we assume that the aperiodic component is the result of a stochastic processwith a smoothly varying frequency response, we would expect the power in any frequency binMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 11to be similar to its adjacent bins. Therefore, we calculate L(k), a frequency-local estimate ofjUwj at the harmonics, by power interpolation (PI) of the values of the aperiodic spectrum inthe adjacent bins, Ûw(k � 1):L(k) =vuut���Ûw(k � 1)���2 + ���Ûw(k + 1)���22 for k 2 B : (9)The RMS amplitude L(k) is compared with the periodic spectrum V̂w(k) = Sw(k) for k 2 B, todetermine the real factor �(k), which is the proportion of the coe�cient to be allocated to therevised aperiodic estimate ~U(k), for each harmonic:�(k) = L(k)qjSw(k)j2 + L(k)2 : (10)The remainder of the power is left with the revised harmonic estimate ~V (k), so we have:~V (k) = 8><>: p1� �(k)2 V̂ (k) for k 2 B,V̂ (k) otherwise; (11)~U(k) = 8><>: Û(k) + �(k)V̂ (k) for k 2 B,Û(k) otherwise. (12)Hence, by using the original phase information for both components, arg (Sw(k)), we can re-construct the power-based time series ~vw(n) and ~uw(n) in a way that is consistent betweenoverlapping frames. These signals retain the detail of the original time series, while avoidingmisleading artefacts in the power spectrum in the form of troughs or valleys at the harmon-ics, and thus are suitable for long-term spectral analysis. As shown in Figure 2, the algorithmgenerates four complex spectra, V̂ (k), Û(k), ~V (k) and ~U(k), from a single input. After inverse-transforming and windowing, these are output as four time-series signals: v̂w(n), ûw(n), ~vw(n)and ~uw(n), respectively. Each of these can be combined with the outputs from previous framesby sequential overlapping and adding to reconstruct two pairs of complete signals correspondingto the original signal s(n): the periodic and aperiodic signal estimates v̂(n) and û(n), and theperiodic and aperiodic power-based estimates ~v(n) and ~u(n).III. TestingA. Signal generationThe PSHF was tested with synthetic speech-like signals and the accuracy of its decompositionevaluated. The signals s(n) were generated in the TD (avoiding any potential artefacts fromMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 12later FD �ltering) by convolving excitation signals c(n) with an appropriate �lter q(n):s(n) = c(n) � q(n) : (13)Each excitation signal c(n) was the sum of a pulse train g(n) (with samples : : : 0, 1, 0, 0, : : : )and GWN d(n): c(n) = g(n) + d(n) : (14)The pitch period and amplitude of g(n) were perturbed from their nominal values ( �f0 = 120,130.8 or 200 Hz, �a = 1) by speci�ed degrees of jitter (0, 0.25, 0.5, 1 or 3%) and shimmer (0,0.5, 1 or 1.5 dB), respectively.2 Normal values for jitter and shimmer during modal phonationare typically less than 0.7% and 0.5 dB, respectively [45] (less than 1% and 0.25 dB accordingto [46]), although they can be as much as 3% and 1 dB [11]. The noise, d(n), was added at sixlevels with HNRs of 1, 20, 10, 5, 0 or �5 dB. In some cases, the amplitude of the noise wasmodulated by a rectangular wave in time with the pulses to give a burst duration 60% of thepitch period.A set of linear predictive coding (LPC) coe�cients (50-pole, autocorrelation) was computedfor a male [�], using a section from the middle of the �rst vowel in a recorded nonsense word (seeSection IV-B for details). Each excitation signal, c(n), was passed through the correspondingLPC synthesis �lter, q(n), at sampling rate of 48 kHz.B. ParametersJitter is a measure of uctuation in the pitch period (or fundamental frequency) of the voice.Usually expressed as a percentage, it is de�ned [47{49] as:�̂T = E [j�i � �i�1j]E [�i] � 100 (%) , (15)where the period of the ith pulse, �i = ti� ti�1, is the di�erence between the current pitch epochti and the previous one, and E [ ] denotes the expected value. It can be evaluated for all pulsesin a given section of signal, or restricted to a region of that signal, to give a more time-speci�cmeasurement.2The jitter and shimmer perturbations created respectively by Eqs. 16 and 19 do not necessarily representrealistic patterns of f0 variation, but are used to illustrate the e�ect of perturbations on the PSHF. The �ne timeresolution of the PSHF leaves it una�ected by low-frequency perturbations, such as vibrato, but the above testmethodology provides quantitative and self-consistent results.May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 13For generating signals, each speci�ed jitter value was used to modify the period [11]:�i = 1�f0  1 + rip�2 �T100! ; (16)where �f0 is the nominal fundamental frequency and ri is a random variable with a Gaussiandistribution of zero mean and unit standard deviation. The factor of p�=2 is needed to matchthe standard deviation of �i to the mean di�erence between two such variables, j�i � �i�1j.In real speech, the jitter and equilibrium fundamental frequency vary with time. So, usinga window function x(n) (e.g., triangular, Hanning, Hamming, Kaiser, etc.) o�ers a means toevaluate the short-time jitter:~�T (p) = hj�i � �i�1j x(ti � p)ih�i x(ti � p)i � 100 (%) , (17)in the vicinity of point p, where h i denotes the time average. Note that, in practice, computationof Eq. 15 over a �nite number of pitch periods is equivalent to Eq. 17, when x(n) is rectangular.To identify the pitch instants, �i, we used zero-crossing [10] and peak-picking [50] methods tore�ne initial manual estimates.Shimmer is a measure of the uctuation of the amplitude of the voice. Usually expressed indecibels, it is de�ned [46], [48] as:�̂A = 20 log10 �E [jai � ai�1j]E [ai] � (dB) , (18)where ai is the amplitude of the ith pulse. For generating signals, the pulse amplitude wascalculated as [11]: ai = �a 1 + rip�2 100:05�A! ; (19)and the corresponding short-time shimmer was:~�A(p) = 20 log10 � hjai � ai�1j x(ti � p)ihai x(ti � p)i � (dB) . (20)For real speech, each pulse amplitude, ai, was estimated using the RMS amplitude of the signal,windowed by an asymmetric Hanning window, extending one pitch period either side of the pitchinstant in question.The HNR is often used as a measure of the relative amplitudes of the voiced and noise com-ponents and is de�ned [30], [48] as:�̂N = 10 log10  E �v2�E [u2]! (dB) . (21)May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 14For the synthetic signals, the gain of the noise signal, d(n), was adjusted relative to that of thepulse train, g(n), to give the desired ratio �N . The short-time HNR, based on the periodic andaperiodic estimates, is: ~�N (p) = 10 log10  h~v2(n)x2(n� p)ih~u2(n)x2(n� p)i! (dB) . (22)C. Performance calculationAs a result of decomposition of the speech s(n), we want a periodic signal v̂(n) that representsthe best estimate of the voiced component, de�ned as having the minimum mean squared errorbetween the actual voiced component time series v(n) and the estimate v̂(n). Similarly, wewant the aperiodic signal û(n) to be the best estimate of the additive noise u(n). The errore(n), de�ned as e = v̂ � v = � (û� u), is equally (and oppositely) present in the periodic andaperiodic components.The performance of the PSHF was assessed by considering the change in signal-to-error ratio(SER) for each component. The jitter and shimmer perturbations of the pulse train were con-sidered intrinsic to the synthetic voicing signal, whereas the additive noise was treated as theproduct of another (turbulence-noise) source, and thus attributed to the aperiodic component.Therefore, for the periodic component, the additive noise was the initial `error' on the voicedcomponent, the `signal'. Conversely, for the aperiodic component, the actual voiced componentwas taken to be the initial `error' on the additive-noise `signal'. Hence, the periodic performance�v and the aperiodic performance �u are:�v = 10 log10  hv2i=he2ihv2i=hu2i! = 10 log10  hu2ihe2i! (dB) , and (23)�u = 10 log10  hv2ihe2i! (dB) . (24)It follows that evaluating the change in SER for the periodic and aperiodic estimates from thesynthetic speech constitutes a more rigorous performance metric for reconstructing signals thana comparison of prescribed HNR (before synthesis) versus measured HNR (after decomposition).So, although we include some HNR measurements to aid comparison with other algorithms, weprefer to use the SER to describe the performance of the PSHF.
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IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 15D. ResultsFirst, the cost function J(N; p) was used by the pitch tracker (H = 8 harmonics) to optimizethe window length N(p) for each synthetic signal. The signals were then decomposed by thePSHF algorithm into periodic and aperiodic components, v̂ and û respectively, the estimatesof the voiced and turbulence-noise parts. For this study, we were deliberately conservative,centering frames on every sample point (o�set � = 1), which was computationally expensive.Figure 3 shows the results for three periodic signals corrupted by various amounts of eitherconstant or modulated noise. The performance was positive in all but a few extreme cases, andwas typically �v � 5 dB for the periodic component and �u � �N+5dB for the aperiodic one. For�N � 0 dB, the performance deteriorated and in some cases became negative; this deteriorationwas more pronounced for modulated noise. At in�nite HNR (�N = 1dB), improvements inthe aperiodic SER were 73, 54 and 50 dB respectively, for the three values of �f0: 120, 130.8 and200Hz. Thus, pitch quantization and spectral smearing de�ned a performance limit by producingerrors up to 1/300th of the original signal with no jitter, shimmer or noise disturbance.The results were almost identical for all �f0 values, a characteristic of pitch scaling, exceptat low HNRs where pitch tracking errors produced spurious readings. Similarly, altering theenvelope of the noise, although perhaps making the tracker more error-prone, did not signi�cantlya�ect the quality of the decomposition. In another study [51], we synthesized signals withconstant-amplitude noise and noise modulated by f0, and showed that the respective constantand modulated envelopes of the reconstructed noise signals were retained. These results suggestthat any modulation observed in components of speech is real rather than a processing artefact.Figure 4 illustrates the e�ects of jitter (left) and shimmer (right) on the PSHF performance,in combination with constant noise added at various levels. The trends are qualitatively similarfor both perturbations. For example, when there is no noise, there is a notable performancedegradation with the introduction of any jitter or shimmer. However, for the range of valueschosen, uctuations in the pitch period (jitter) have a larger e�ect on performance than amplitudeuctuations (shimmer). Where there is already one disturbance, i.e., HNRs of 20, 10 or 5 dB,the introduction of a second one, either jitter or shimmer, is less marked. The performancesare generally positive, except for �v at the higher levels of jitter (�T � 1:5%) and shimmer(�A � 1:5 dB) with high HNR (�N � 20 dB), for which the initial error was relatively small. Thegrid of results in Table I extends this principle to the combination of all three disturbances, whoseMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 16worst element puts a bound on the performance. Indeed, the performance can even improve, asoccurred for jitter of 3% when shimmer was added. For normal speech, the presence of all threedisturbances degrades performance by 1 to 2 dB with respect to the noise-only case (in Fig. 3).Although not principally designed for such a purpose, the power-based outputs of the PSHF,~v and ~u, may be used as a measure of the total power of each component. Hence, by comparingh~v2i with h~u2i, an estimate of the HNR may be formed, where h i denotes time averaging. Themeasured HNRs, calculated for the signals from Figure 3, are just above the true (prescribed)HNRs in all cases, except for �N =1 (the no-noise case discussed above), as shown in Figure 5.The measured HNRs varied little with �f0, and the noise envelope (constant or modulated) hada negligible e�ect. The discrepancy between the measured and prescribed HNRs is largest forthe cases with most tracking errors, i.e., at �5 dB, but otherwise it is ca. 1{2 dB. Note thatthe decomposition anomaly evident in Figure 3 (�N = 0dB, modulated, �f0 = 130:8 Hz) is notapparent in these results, because the measured HNR, which is the ratio of the componentpowers, is not based on the actual decomposed signals and merely compares their mean squarevalues.In summary, the introduction of any form of disturbance, from noise or perturbation, dras-tically reduced the performance from that under ideal conditions, but the PSHF continued togive robust performance in the presence of secondary or tertiary disturbances. For positive HNRvalues, the algorithm enhanced the aperiodic component (i.e., improved its SER) much morethan the periodic one, which particularly aids us in the study of turbulence-noise components ofmixed-source sounds. For recordings of normal speech, the results suggest improvements to theSER of a factor of about �ve for the aperiodic component (�u � 10{20 dB for 5 dB � �N � 15 dB)and about two for the periodic component (�v � 4 dB).IV. Application to real speechA. Recording methodTwo adult, native speakers of British English RP, one male (PJ) and one female (SB), recordeda speech corpus containing nonsense words and sustained vowels (V=/�, i, u/) in a sound-treatedroom. The sound pressure at 1m was measured using a microphone (B&K 4165), a pre-ampli�er(B&K 2639) and ampli�er (B&K 2636, 22Hz{22 kHz band-pass, linear �lter), and recorded ontoDAT (Sony TCD-D7, fs = 48 kHz). The 16-bit data were then transfered digitally to computerMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 17for analysis. Calibration tones were recorded to give an absolute reference to pressure, andbackground noise was recorded to assess the measurement-error oor.B. Example 1: nonsense wordOur �rst example is the nonsense word [ph�z�] spoken by subject PJ. A decomposition of theentire word is illustrated in Figure 6 as two sets of spectrograms: wide-band using s, v̂ and û, andnarrow-band using s, ~v and ~u, respectively.3 In the voiceless regions (0{10ms and 720{800ms),there was no need to extract the voiced component, so the PSHF was not applied. For ourpurposes the voiced/voiceless decision was made manually, although there are many ways to doso automatically (e.g., [42]). Therefore, the periodic outputs were set to zero, v̂ = ~v = 0, and theaperiodic outputs were set equal to the original signal, û = ~u = s, during the voiceless periodsat either end of the utterance.In the wide-band spectrogram of the original signal (Fig. 6, top left), the main cues arevisible: the burst stripe (at 10ms) with subsequent aspiration noise and formant transitions; theonset of voicing (at 70ms) exciting the formants, which continues until the start of the fricative(ca. 300ms) when it begins to die down, F1 and F2 diverge, and the high frequency noise grows(until 380ms); the second vowel (from 420ms), and �nally voice o�set (at 720ms). The periodiccomponent v̂ retains a small yet signi�cant part of the frication noise, but generally the voicingstripes are cleaner and more pronounced. The aperiodic spectrogram is generally mottled inappearance, as is characteristic for noisy sounds. However, di�erent frequency regions are excitedin each of the four source types: burst (all frequencies simultaneously with lowered formants),aspiration (all frequencies), mid-vowel (principal formants), and frication (higher formants).Vertical striations can be seen in the high-frequency turbulence noise during the onset offrication, which become less noticeable towards mid-fricative. There is some contamination fromthe voiced part, particularly in unsteady regions (i.e., 200ms, 270ms, 450ms) and at voice onset(70{100ms), which correspond to rapid changes of f0 and local peaks in the cost function.In the narrow-band spectrograms (Fig. 6, right), one can see �ne horizontal striations from theharmonics of the fundamental frequency, both for the original signal and more obviously for theperiodic component, persisting throughout phonation. Some prosodic e�ects are visible, such aswhen harmonics cross a formant (e.g., F3 at 2.7 kHz, 100{200ms). Again, the periodic spectro-gram is cleaner than the original one, while the aperiodic one remains mottled. The horizontal3This is consistent with the discussion in Section II-B.May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 18stripes are evident in short sections of the aperiodic spectrogram, where voicing perturbationshave caused some leakage. However, the overall structure of ~u is not generally periodic: notethe stripes are absent from the pulsed frication noise and from much of the vowel sections (e.g.,590{680ms), while the wide-band spectrogram shows clear signs of modulation. This impliesthat the PSHF has extracted pulsed noise into the aperiodic estimate, which would most likelybe from aspiration in the vowels.Figure 7 gives an expanded view of the reconstructed signals at the vowel-fricative transition[-�z-]. In agreement with earlier observations [22], [52], the aperiodic component exhibits modu-lation by the voice source during development of the fricative (300{370ms). The e�ect becomesnegligible (around 380ms) as voicing dies away and the noise level increases. The periodic pulsesin v̂ become less spiky, consistent with a weaker glottal closure, and approach the form of asimple harmonic oscillation (that is increasingly contaminated by the frication noise).4C. Example 2: sustained vowelOur second example, a sustained vowel [�g] produced by SB, was decomposed to give theperiodic and aperiodic estimates, v̂ and û, and the power-based estimates, ~v and ~u respectively.Figure 8 depicts the spectra derived from s, ~v and ~u, using a steady section from the center ofthe vowel.The periodicity of ~v is strongly marked by the harmonic peaks of its spectrum, still noticeableabove 8 kHz. Reassuringly, the levels of the harmonic peaks remain practically untouched bythe PSHF, while the inter-harmonic troughs were deepened. Both components show the e�ectof the principal formants, although their spectral tilts are very di�erent. Apart from the verylow-frequency noise (f < 50Hz, mostly wind noise generated at the microphone), ~u contains amuch greater portion of the original signal at high frequencies (f > 3 kHz), as expected for ow-induced, turbulence noise. Moreover, in the detail, there are features distinct to the aperiodicspectrum, such as a peak which had been hidden between the �rst two harmonics (� 250Hz)and a trough just above F2 at 1.4 kHz.The jitter, shimmer and HNR were measured locally for the same section of speech: ~�T = 0:9%,~�A = 0:07 dB and ~�N = 14 dB. These values were used to predict the PSHF's performance by4It is possible to incorporate heuristic knowledge of speech signals to reduce the cross-contamination of theperiodic component, e.g., by low-pass �ltering [22], but subjective assessment indicates that additional processingoften incurs a loss of intelligibility [30].May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 19interpolating the results of Table I: �v � 3 dB and �u � 17 dB. Thus, we can claim with somecon�dence that the periodic component is an improved estimate of the voiced part over theoriginal signal, and that the majority of the aperiodic component was produced by a turbulence-noise source.D. SummaryFor the nonsense word (Ex. 1), we discussed spectrograms of the decomposed signals andused them to extract features in the individual components. Examination of the time series atthe vowel-fricative transition revealed the weakening of modulation of the aperiodic part as thefricative developed. When one listens to the separated components, the periodic component of[ph�z�] sounds like [�z�] with less emphasis on the fricative, and the aperiodic component like awhispered version of the original, albeit with some remnants of voicing.The PSHF provides separate output signals that can be analyzed individually for featureextraction [24], [53], or in tandem to investigate interactions of voicing and noise sources. Indeed,the PSHF has been used to enable us to examine the timing relationship between voicing and themodulation of frication in a number of voiced fricatives [51]. We have also used it to compare theaperiodic component of voiced phonemes with their voiceless correlates to evaluate di�erences intheir production [41]. Both the performance predictions and the interpretations of the periodicand aperiodic spectra (e.g., Fig. 8) present a compelling argument for their validity.V. ConclusionAn analysis technique has been developed for decomposing mixed-source speech signals that isbased on a pitch-scaled, least-squares separation in the frequency domain. The PSHF techniqueprovides estimates of the voiced and turbulence-noise components, as periodic and aperiodicparts, using only the speech signal. The components can subsequently be subjected to anystandard analysis, as time series or as power spectra, for instance.Tests on synthetic speech demonstrated the PSHF's ability to reconstruct the components,despite corruption by jitter, shimmer and additive noise. It achieved improvements to the SERof the periodic and aperiodic parts of �v = 5dB and �u = 15 dB, respectively, for typical speechconditions (�T = 0:5%, �A = 0dB and �N = 10 dB). The performance decreased graduallywith increased corruption over a normal range of test conditions. Processing real speech ex-amples resulted in convincing decompositions that revealed features particular to the individualMay 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 20components.5 Local measurements of the perturbation of the original speech signal were thenused to predict the accuracy of the decomposed signals as estimates of the voiced and turbulence-noise components.The main limitations of the technique concern its computational e�ciency and robustness ofthe pitch-tracker to deviations of the input speech signal from periodicity. The current imple-mentation of the algorithm is far from real-time, although there is plenty of scope for reducingthe amount of computation. Jitter, shimmer, transients and voice onset/o�set transitions alltend to produce errors degrading performance, although a high degree of robustness has beendemonstrated across normal speech conditions. Further work is needed to explore potential re-�nements to the PSHF, and to benchmark it against other TD and FD methods. However, thereis potential for applying the PSHF to a variety of speech problems, particularly the analysis ofmixed-source speech production and speech modi�cation.AcknowledgmentsWe would like to thank Drs. Bob Damper and Paul White, and two anonymous reviewers fortheir helpful comments on earlier versions of this manuscript, and Dr David Lopes and Prof. Yeg-nanarayana for helpful discussions. We are also grateful for the cooperation of Dr. d'Alessandrowho furnished us with signals for comparison.

5Sound �les can be found at the project web site [54].May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 21AppendixPeriodic-aperiodic decompositionThe periodic-aperiodic decomposition (PAPD) algorithm is an alternative technique, whichwas developed by Yegnanarayana, d'Alessandro and Darsinos [14], [34], [35], [55] for separatingthe voiced and noise components of a mixed-source speech signal. The algorithm would appearto have the characteristics needed for our purposes, and we have indeed adopted aspects oftheir general approach. However, as mentioned in the Introduction, we have discovered certainproblems with it, which we have used to inform the development of our PSHF. This critiquesummarizes their algorithm, argues that the interpolation procedure converges to the originalsignal, presents supporting simulation results and discusses their approach in general. For consis-tency of notation within this article, many of their symbols have been altered. The substitutionsare given in Table II.A. Pr�ecisFigure 9 is a schematic summary of the PAPD, which illustrates the way the algorithm isencased by an LPC analysis/synthesis shell. This shell pre-whitens the input signals beforedecomposition and returns the spectral coloring (e.g., from the formants) afterwards. The algo-rithm operates on the excitation signal, c(n), to separate the periodic and aperiodic componentsin a two-stage process.The �rst stage makes an initial separation in the frequency domain using a cepstral �lter.The signal c(n) is windowed and zero-padded to form cw(n), where N is the DFT length and(N=2 � 1) the window length. Its spectrum Cw(k) and real cepstrum are computed. The periodicregion of the cepstrum is partitioned by extracting the �rst rahmonic, in a manner similar to deKrom's [9], and the DFT is computed. By comparing the log-spectrum to zero, the bins of thespectrum Cw(k) are assigned to either the periodic component (positive values) or the aperiodiccomponent (negative values). The initial aperiodic estimate is thus set equal to the originalspectrum for the aperiodic bins Bd and zero elsewhere:D0(k) = 8><>: Cw(k) for k 2 Bd,0 otherwise. (25)The second stage is an iterative interpolation process (IIP), involving repeated transformationsbetween FD and TD. The IDFT of D0(k) is not generally time-compact like cw(n): that is,May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 22d0 6= 0 for N=2 � n � N . The interpolation sets these points to zero, computes the DFT,resets Dm(k) = Cw(k) for k 2 Bd, computes the IDFT and so on. Setting the points to zerois equivalent to multiplying by a rectangular window: �(n) = 1 for n 2 f1; 2; : : : ; N=2 � 1g, 0for n 2 fN=2; : : : ; Ng. The process is repeated for 20 iterations, which Yegnanarayana et al.considered enough to allow Dm(k) to converge.Their results of decomposing synthetic signals show a strong correlation between the HNR thatwas prescribed when generating the synthetic speech (prescribed HNR), and the value calculatedfrom the decomposed signals (measured HNR), which they called the periodic-aperiodic energyratio. However, there appears to be a tendency to under-estimate the aperiodic component, sinceall reported values of measured HNR were too high, except in the total absence of noise. Thee�ects of jitter, shimmer and f0 glides are also highly signi�cant, producing a large reduction inthe measured HNR; a normal degree of jitter (� 1%) typically gives errors of the order of 10%on the periodic component (i.e., �N � 20 dB).B. Theoretical analysisYegnanarayana et al. assume that Dw(k) = Cw(k) for k 2 Bd ([14], p.5 col. 1, para 4), whichimplies that the periodic spectrum Gw(k) is precisely zero for those frequency bins. Using theargument of compactness that they employ in Eqs. 16 and 17 (col. 2, bottom), it can be seenthat the spectrum is zero at all frequencies: Gw(k) = 0 8 k. Yet, the authors remark that \thesidelobe e�ects of the windowing may produce signi�cant values in the noise regions" ([14], p. 5).Therefore, provided that their argument is true, and that some part of the periodic componentmust reside in the aperiodic bins (as they remark), the convergent solution of the IIP must bethe original:6 limm!1Dm(k) = Cw(k). In fact, the IIP, which is based on Parseval's theorem, isa standard signal reconstruction technique [56]. However, Eqs. 12, 13 and 14 should not be strictinequalities, since Dm(k) equals Dw(k) at convergence.7 So, while the expressions guarantee thatthe error does not increase, they alone cannot guarantee that they converge on a unique solution,a point noted in [56].6Otherwise, the convergence point would not be reached, no interpolation would take place and the solutionwould be (somewhat arbitrarily) determined by the initial assignment of bins.7In the Papoulis-Gerchberg extrapolation technique from which this method is derived [57], the convergenceregion is explicitly excluded from the proof for this very reason.
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IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 23C. SimulationsIn their trials [14], [55], Yegnanarayana et al. evaluated the PAPD (Hamming window, N = 512or 1024 points, sampling rate fs = 8 kHz) by the measured HNR and a perceptual spectraldistance. We ran simulations of the PAPD using their parameters (Hamming, 512-point DFT,8 kHz) on a mid-vowel section of the �rst vowel in /p�z�/ recorded by an adult male speaker ofBritish English RP, which was 6:1 downsampled to allow direct comparison with [14]. The signalwas LPC pre-emphasized (10 pole, autocorrelation) and 255 points used for the analysis. Ateach iteration m of the interpolation, the signal power in the periodic and aperiodic estimates,hd2mi and hg2mi, were calculated and plotted.The results showed that the aperiodic estimate dm began to approach convergence after about1000 iterations, rather than after 20 as proposed [14]. Moreover, the solution upon which itappeared to converge was the original excitation signal, cw(n), suggesting that the algorithm,rather than decomposing the speech into periodic and aperiodic parts, actually reconstructedthe original signal using half of the Fourier coe�cients. Repeating the tests at other parts of theutterance revealed the same behavior. A second series of simulations was performed with signalssynthesized from a pulse train plus GWN at HNRs ranging from �20 to 1dB. Being spectrallyat, these signals required no LPC processing. Although convergence appeared to need a greaternumber of iterations, the results were similar: the IIP reconstructed the original signal, ratherthan achieving a stable decomposition.Figure 10 shows the e�ect of IIP on the decomposed components (top) and the PAPD perfor-mance (bottom), for a pulse train in GWN. Again, the parameters speci�ed in [14] were used(Hamming, 512, 8 kHz). As with the other examples, the aperiodic estimate converged to theoriginal signal, the periodic estimate to zero, and the error to the original periodic component.The performance, despite showing a marginal improvement initially in this case, su�ered severedegradation as the interpolation process was iterated, falling by 4 dB (�v from 0 dB to �4 dB, �ufrom 5 dB to 1 dB). By comparison, the PSHF achieved performances of �v = 1dB and �u = 7dBon the same example. Reconstruction of the original signal from the initial aperiodic estimated0(n) was consistently observed for all trials over a wide range of noise levels, with di�erentf0 values, DFT sizes and window functions. The initial conditions and the rate of convergencevaried depending on the original signal's real cepstrum, which was governed by the choice ofwindow and the details of the noise, but the asymptotic behavior appeared in every case. Thus,May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 24because of the theoretical aspects that were overlooked, and the low number of iterations used,the PAPD algorithm appears to yield a reasonable decomposition.D. ComparisonFor the sake of a direct comparison of the PAPD algorithm against our PSHF, we present theresults of decomposing synthetic signals using each technique. The signals were generated asdescribed in [55]: the authors of [55] provided us with their decomposition for comparison, whilethe PSHF was applied by us. The four signals were chosen to be representative of the wider testswith noise, jitter, shimmer and an alternative f0. They are listed in Table III along with thecorresponding performance results. The prescribed (initial) and measured (decomposed) HNRsare also given.For these test signals, the performance results of the PSHF are better than those of the PAPDin all cases by at least 3 dB, and the HNRs estimated from the signals are more accurate inall but one case. (To validate our own implementation of the PAPD algorithm used earlier inthis appendix, we compared our output signals with those supplied by d'Alessandro et al. andobtained very similar results.)E. DiscussionOur simulations, running over 105 iterations, support our theoretical argument that conver-gence is achieved when the original signal has been reconstructed (Section A-B). This resultwas expected since similar algorithms have successfully been applied to incomplete spectra as asolution to signal reconstruction problems [56], [58], [59]. The iterative algorithm is, however, acumbersome, computationally-intensive method of signal reconstruction.8 The initial estimateof the aperiodic part is based on the assumption that D(k) = Aw(k) for k 2 Bd, but this doesnot account for the e�ects of windowing, despite the authors' earlier remark that it is an im-portant issue. The PAPD crucially depends on the interplay between the spectral leakage of therectangular window and the original Hamming window to determine the rate of convergence.Therefore, the amount of energy in the interpolated bins (k 62 Bd) depends on the number of it-erations, on the way the time-compactness criterion is enforced (i.e., by rectangular window), on8For this purpose, it could probably be replaced by a single-step calculation, like other such methods [56],involving the Hilbert transform or convolution with the complex spectrum of the rectangular window �(n) thatenforces the time-compactness criterion, for instance.May 26, 2001 DRAFT



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2001 25the HNR (owing to side-lobe leakage of the periodic part into the initial estimate D0(k) = Aw(k),for k 2 Bd), and on the details of the aperiodic spectrum in the initial estimate. It does notdepend on the amount of aperiodic energy any more than on the periodic energy. It was probablychance that the interpolated aperiodic energies approximated the expected HNR values. Indeed,the discrepancies observed in Fig. 3 of ([55], Section IIIA, p.18) can be explained by this and bythe decision to iterate only twenty times.Although it attens the formant peaks, pre-whitening the speech signal by LPC is unable tohelp when the sources have di�ering spectral tilts, and when additional zeros are present in thenoise spectrum, which are both typical features of voiced consonants. Moreover, in frequencyregions of low HNR, voicing makes a negligible contribution and yet the PAPD allocates, onaverage, half of the excitation energy to the initial periodic estimate. While harmonics and noiseare spectrally indistinct, the PSHF allocates one fourth of the excitation energy to the harmonicestimate. The authors state \that the decomposition algorithm is able to separate aspirationnoises and the periodic noise in the voice source" ([14], p. 9). However, the low sampling rateused (8 kHz) means that much of the turbulence noise was missed. These factors hindered thePAPD's ability to uncover new features in the decomposed speech.In light of the above mathematical argument and the simulation results, we conclude thatthe PAPD ultimately converges, if the objective is a decomposition, to the wrong solution.Nonetheless, while there are some critical aws and several shortcomings in the PAPD algorithm[14], it may still be applicable as an analysis tool, and their use of synthetic signals and choiceof variables o�er a comprehensive methodology for testing decomposition algorithms, which wehave largely followed.
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TABLE IPeriodic and aperiodic performance of the PSHF versus jitter �T , shimmer �A and HNR�N . Entries are (�v �u) in dB. [recommended width = 1 col. (21pc)]�T �A Initial HNR (dB)% dB 1 20 10 50 0 { 54 6 26 5 15 5 101 { 22 1 21 5 15 5 100.5 0 { 29 4 24 5 15 5 101 { 19 �2 18 4 14 5 103 0 { 13 �7 13 1 11 3 81 { 14 �6 13 2 11 4 9
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TABLE IIKey to symbols used here and in [14]. [recommended width = 1 col. (21pc)]Here [14] Descriptionn n point in timek k point in frequencyN N DFT lengthm m iteration numberBd Fr selected aperiodic binsc(n) e(n) excitation signalCw(k) E(k) excitation spectrumd(n) r(n) true aperiodic excitation signalDw(k) R(k) true aperiodic part's spectrumGw(k) P (k) true periodic part's spectrumd0(n) r0(n) initial estimate of aperiodic signalD0(k) R0(k) initial estimate of aperiodic spectrum0 ^ time-compacted versiondm(n) rm(n) mth estimate of aperiodic signalDm(k) Rm(k) mth estimate of aperiodic spectrumgm(n) pm(n) mth estimate of periodic signal (p. 2)gm(n) gm(n) mth estimate of periodic signal (p. 5)�(n) l(n) hypothetical signal�(k) L(k) hypothetical spectrum(n) h(n) hypothetical periodic signal�(k) H(k) hypothetical periodic spectrum
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TABLE IIIComparative results, where the burst duration ratio (BDR) is the proportion of eachpitch period for which there is noise. [recommended width = 2 col. (7.1875in)]Settings (dB) PAPD PSHFf0 J S Nom. BDR Init. Decomp. Performance Decomp. PerformanceHz % dB HNR % HNR HNR �v �u HNR �v �u120 0 0 10 60 11.7 15.2 1.1 12.7 14.5 4.4 16.1120 1 0 1 � 1 32.0 �1 20.0 28.9 �1 27.5120 0 0.5 1 � 1 17.4 �1 15.2 26.7 �1 23.0200 0 0 5 100 5.47 8.5 2.8 8.2 7.9 5.8 11.2
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