
A Visual Voice Activity Detection Method with

Adaboosting

Qingju Liu, Wenwu Wang, Philip Jackson

Centre for Vision, Speech and Signal Processing

University of Surrey, Guildford, UK
{Q.Liu,W.Wang,P.Jackson}@surrey.ac.uk

Abstract—Spontaneous speech in videos capturing the
speaker’s mouth provides bimodal information. Exploiting the
relationship between the audio and visual streams, we propose
a new visual voice activity detection (VAD) algorithm, to over-
come the vulnerability of conventional audio VAD techniques
in the presence of background interference. First, a novel lip
extraction algorithm combining rotational templates and prior
shape constraints with active contours is introduced. The visual
features are then obtained from the extracted lip region. Second,
with the audio voice activity vector used in training, adaboosting
is applied to the visual features, to generate a strong final voice
activity classifier by boosting a set of weak classifiers. We have
tested our lip extraction algorithm on the XM2VTS database
(with higher resolution) and some video clips from YouTube (with
lower resolution). The visual VAD was shown to offer low error
rates.

I. INTRODUCTION

Mouth region movements consist of abundant information

about human speech, and therefore can be useful for improving

the intelligibility of noise embedded speech, since it is hardly

affected by acoustic noise. A basic use of video signals is

visual voice activity detection (VAD), which classifies whether

a short time period, or frame, is silent or not, by exploiting

the synchrony of coherent audio and visual cues. Visual

VAD has potential applications in noise reduction, speech

separation or extraction and speech recognition. Some visual

VAD algorithms have been proposed [1], [2], [3]. The method

in [1] first projects the mouth region into principal component

space, then models silent and non-silent periods with a single

Gaussian distribution and a Gaussian mixture distribution

respectively for the decision rule. The algorithm in [2] uses

a filtered dynamic visual feature calculated from geometric

visual features with multi-thresholds for silence detection. The

approach in [3] estimates lip motion based on complex discrete

wavelet transform, then applies the hidden Markov model

for the statistical characterization of the lip motion, which

is finally thresholded for the VAD. However, the algorithms

above use either only static or only dynamic features, and the

features used are fixed for different objects (speakers). Also,

any rotation of the head may greatly degrade the performance,

which is however inevitable in most recordings.

To overcome those limitations, we propose a new voice

activity detection algorithm shown in Fig. 1. In the off-line

training process, we track the lip region and extract the visual

features, both static and dynamic, that are informative about

the voice activity. With the activity vector obtained from the

clean soundtrack as training labels, we apply adaboosting

[4] to automatically choose and combine the optimum visual

features for VAD.

Lip

Region

Extraction
Lip

Region

Extraction

Adaboost

training
Adaboost

training

Test

video

Training

video

Clean

training

audio

Lip

Region

Extraction

Audio voice

activity

detection

Adaboost

training

Adaboost

model

Visual

VAD

training a(t)

training v(t)

v(t)

Offline training process

Fig. 1. Flow of our proposed visual voice detection system.

Extracting the lip region accurately and robustly is a pre-

requisite for the subsequent visual signal processing. However,

it is difficult due to the deformable shape, the low lip-non-lip

contrast, the rotation and the lighting luminance. Liew et al. [5]

proposed a parameterized deformable model to approximate

the lip contour, and obtained those parameters by joint prob-

ability maximization. However, the lip and non-lip clustering

are affected by the luminance and the presence of teeth makes

the two-class clustering more difficult. The algorithm in [6]

combines greedy active contour models (ACMs) [7], [8] and

adaptable template matching to find the expected lip contour

of a specific speaker. It is straight forward to implement but

it cannot cope with head rotation. Jang’s method in [9] also

uses the ACM, and adds the shape displacement energy to

keep independent snake points from bending abruptly, but

the performance suffers from the lip-non-lip contrast, since

the method uses the classic image gradient as part of the

objective function in the energy minimization process. Ong

et al. [10] track lips by selecting linear predictors grouped

into a rigid flock, without any prior shape information, and

they obtained very good tracking performance but their method

requires off-line training. To efficiently implement our visual

VAD system, we also propose and present a lip extraction

method, robust to the luminance and head rotation. In our

proposed lip extraction algorithm, ACMs are used to drive

the landmark points towards the lip contours. To cope with

head rotation, we use rotational template matching. To avoid

points bending abruptly (which often occurs if the resolution

is very low), we add shape energy constraints. To prevent the

snake points from converging to one point (which happens if

the active contours mismatch at some frame), we add an area

energy term.

The remainder of the paper is organised as follows. Section

2 introduces the detailed lip extraction algorithm. The ad-

aboosting algorithm for visual VAD is presented in Section 3.

Experimental results are demonstrated in Section 4, followed

by the conclusions.

II. LIP EXTRACTION

Snake algorithms, or active contour models (ACMs) [7], [8]

are energy minimization processes that pull the snake control

points towards object contours or other salient image features

such as color boundaries, depending on what kind of energy is

defined. In our lip extraction process, a greedy snake algorithm

[8] is exploited, as described below.

A. Snake initialization and initial templates

The initialization for our snake algorithm is similar to [6],

with both manually selecting four corner points as in Fig.

2(a). After that, spline interpolations are applied to initialize

the other eight control points on the lower and upper lips

respectively, as in Fig. 2(b).

Then an initial rotational square template Tinit(n) is as-

signed to each snake point (x(n), y(n)), with a rotation angle

θ(n), n = 1, ..., 12. Each square template is centered on one

control point, rotated and scaled relative to the contour. For

the convenience of presentation, we use the coordinate vector

s(n) = [x(n); y(n)] to represent the n-th snake point. The

rotation angle θ(n) ∈ [−π, π] is calculated as

θ(n) =











c arccos
y(1)−y(N

2
+1)

‖s(1)−s(N

2
+1)‖

, n = 1

θ(1)± π, n = N
2 + 1

c arccos x(n+1)−x(n−1)
‖s(n+1)−s(n−1)‖ , otherwise

,

where N = 12 is the number of snake points, ‖ · ‖ is the

Euclidean norm and

c =

{

1, if
{ x(1)>x(N

2
+1), n=1

y(n+1)<y(n−1), n 6=1

−1, otherwise
.

We use the rotational template to adapt to head motion, which

makes our method more reliable and less likely to fail under

variations in head rotation. Also, the side length L(n) of each

square template varies depending on its location but remains

constantative. Fig. 3 shows the first, the fourth and the eighth

initialized templates.

B. Snake energy minimization

As in [7], [8], the overall contour energy is computed as:

E =

N
∑

n=1

(Eint(n) + Eext(n)), (1)

where Eint(n) and Eext(n) are respectively the internal and

the external energy for the n-th point.

(a) (b)

Fig. 2. Snake initialization process. (a) Manually selected four points. (b)
Initial contour after spline interpolation.

Fig. 3. Initialized templates Tinit(n) for each snake point.

Eint(n) is determined only by the position of the snake

points, and contains the continuity energy Econt(n) and the

curvature energy Ecurv(n):

Eint(n) = α(n)Econt(n) + β(n)Ecurv(n), (2)

and

Econt(n) =
∣

∣‖s(n)− s(n− 1)‖ − d̄(n)
∣

∣ /d̄(n),

Ecurv(n) =

∥

∥

∥

∥

s(n)− s(n− 1)

‖s(n)− s(n− 1)‖
−

s(n+ 1)− s(n)

‖s(n+ 1)− s(n)‖

∥

∥

∥

∥

2

,

(3)

where | · | is the modulus, d̄(n) is the average distance

between neighboring pixels (d̄(n) has two values, depending

on whether it is an upper lip point or a lower lip point), α(n)
and β(n) are weights.

Eext(n) is, however, much more complex and depends on

the image itself. In our proposed algorithm, we define three

energy components:

Eext(n) = γ1(n)Etemp(n)+γ2(n)Edisp(n)+γ3(n)Earea(n),
(4)

where γ1(n), γ2(n) and γ3(n) are weighting parameters and

Etemp(n) = −Corr(Tinit(n), Ttemp(n)), (a)

Edisp(n) = ‖Cinit − Ctemp‖, (b)

Earea(n) = exp

∣

∣

∣

∣

Atemp

Ainit

+
Ainit

Atemp

− 2

∣

∣

∣

∣

. (c)

(5)

In equation (5), Corr(·) calculates the normalized correlation

coefficient between its arguments, Cinit is the normalized

initial contour while Ctemp is the normalized current (tempo-

rary) contour. The term ‘normalized contour’ means a contour

centered at origin and with unit inside area. Ainit is the

initial area and Atemp is the current (temporary) contour area.

The above components are analytically chosen as the external

energy:

(a) Etemp is the template energy, which is the negative

correlation between the initial template and the temporary

template associated with each searching location. It drives

one snake point to a region with similar neighboring pixel

distribution as the original associated lip template. We use

the rotational template matching, therefore it is robust to

head rotation.

(b) Edisp is the displacement energy, which drives the snake

contours to be similar to the original lip shape, and

prevents independent snake points from converging sep-

arately to irregular contours.

(c) Earea is the area energy, which increases exponentially

when the area inside the contour is either too big or too

small as compared to the initial area.

The greedy snake algorithm [8] is implemented by updating

each snake point s(n) to one of its neighboring pixels in a

search area that minimizes Eint(n)+Eext(n) iteratively. The

neighborhood, i.e., the search area, is defined by an ellipse

area centered at the current snake point s(n) and aligned with

its template:

[s̃(n)− s(n)]TVDV
T [s̃(n)− s(n)] < 1, (6)

and

V =

(

cos(θ̃(n)) sin(θ̃(n))

− sin(θ̃(n)) cos(θ̃(n))

)

, D =

(

1/a2 0
0 1/b2

)

,

where θ̃(n) = π/2+θ(n), and a and b are the major and minor

axes of the scanning ellipse. We choose ellipses perpendicular

to the lip contour as search areas, since lip muscle movements

in mouth opening and closing coincide with these directions.

Every time, we scan one neighboring pixel for the possible

update of a snake point, we assign a temporary template

Ttemp(n) to it, centered at the scanning pixel with the rotation

angle θ(n). In each iteration, all snake points are updated once.

We found that satisfactory results can be obtained after two

iterations. Further iterations yield better results, but involve a

higher computational load.

C. Static lip features

After the lip extraction, we extended three static visual

features associated with each video frame:

• Width W = ‖s(1)− s(7)‖.

• Height H = ‖s(4)− s(10)‖.

• Mean intensity A of the rotational rectangle in the mouth

center with a rotation angle of π/2 + θ(1) and size of

W0/2×H0/2.

The first and second are geometric features, which can

be used to model the lip shape movement. The third is an

appearance-based feature, which captures key inner lip cues,

such as movement of the teeth and tongue.

III. VOICE ACTIVITY DETECTION WITH ADABOOSTING

The voice activity detector is a classifier that detects whether

the speaker is silent or not in each frame. To obtain a classifier

with a high accuracy, i.e. a so-called strong classifier with a

low error rate, we can apply the adaboosting technique [4],

which combines or boosts a set of weak classifiers (with high

error rates, but overall better than random guessing).

A. Visual features

To detect the voice activity from the video, we mainly

focused on the movement of lips over a short time period and

the current lip shape. Hence, we combined both static and

dynamic features. Denote dW (τ) = W (t)−W (t−τ) where t
is the discrete frame number and τ is the frame offset. In the

same way we get difference features dH(τ) and dA(τ). Then

we define a new visual feature vector as

v(t) = [W (t), H(t), A(t), dW (T), dH(T), dA(T),

dW (T − 1), ..., dW (−T), dH(−T), dA(−T)]T ,
(7)

and 2T +1 frames are used to obtain the above visual feature.

The first three elements of v(t) correspond to the static

geometric and appearance features, and the other elements are

dynamic features. However, it is less clear which elements in

the above feature vector are most informative about the voice

activity. Information redundancy could also be a problem, for

example, dW (T) and dW (T − 1) are highly coherent. Yet, as

discussed in the next section, adaboosting can be employed

as a feature selection process, since in each iteration it selects

one feature that best classifies the outputs. This adaboosting

selection process has been successfully used in the Viola-Jones

object detection algorithm [11], for example.

B. Adaboost training

We apply a simple threshold to the energy of the clean

speech signal associated with the training video to get the

audio voice activity vector as training labels a(t). Then

adaboost training is applied to the extracted visual features.

The weak classier hi(v(t),m, p, φ) used in the i-th iteration

contains the selected m-th element of v(t), a threshold φ and

a polarity p:

hi(v(t),m, p, φ) =

{

1, if pvm(t) > pφ
0, otherwise

. (8)

Suppose ǫi is the error rate in the i-th iteration, which is

the sum of the updated weights associated with the samples

misclassified in the i-th iteration. Then, in the (i + 1)-th
iteration, the weights of misclassified samples are amplified

by a factor of 1−ǫi
ǫi

before the normalization of all sample

weights.

We abbreviate the i-th classifier as hi(v(t)), so the final

combined strong classifier C(v(t)) is a weighted voting pro-

cess:

C(v(t)) =

{

1, if
∑I

i=1 wihi(v(t)) >
1
2

∑I

i=1 wi

0, otherwise
, (9)

where 1
2

∑I

i=1 wi is the voting threshold and wi = log 1−ǫi
ǫi

.

To be more cautious about rejecting silent frames, i.e., if

we want fewer active frames to be misclassified as silent

frames while tolerating the situation that more silent frames are

misclassified as active frames, the voting threshold 1
2

∑I

i=1 wi

can be slightly increased.

IV. EXPERIMENTAL RESULT

A. Lip extraction

1) Parameter setup: Suppose in the first frame, the initial

lip width is W0 and the height is H0 after manual selection

of four points (measured by the pixel number). The parameter

setup is given in Table I. Note the values of W0 and H0 will

change depending on the video resolution. As an example, W0

and H0 in Fig. 4 are 88 and 34 respectively.

TABLE I
PARAMETER SETUP FOR THE GREEDY SNAKE ALGORITHM

Snake Points n=1,7 otherwise

Energy Parameters

α(n) 0.4 4
β(n) 0.1 1
γ1(n) 4 4
γ2(n) 5 5
γ3(n) 1 1

Search Area
a M M = W0

4
(1 + exp(− 3W0

H0
))

b 0.5M 0.5M
Square Template length L(n) 1.5M M

0◦ 10◦ 20◦

30◦ 40◦ 50◦

0◦ 10◦ 20◦

30◦ 40◦ 50◦

Fig. 4. Example of lip extraction results with the proposed method applied
to XM2VTS. We rotated the above frame images by six angles: 0◦, 10◦,
20◦, 30◦, 40◦, 50◦. Row 1 and Row 2 are with rotational template matching
while Row 3 and Row 4 are with upright template matching.

2) Lip extraction results: We first applied the proposed lip

extraction algorithm on the XM2VTS database [12], which

was recorded with high resolution, and subjects seldom moved

or rotated their heads. To test our algorithm, we rotated each

frame by 0.2◦ cumulatively in an anti-clockwise direction. Fig.

4 shows the lip contour with (the first and the second rows) and

without rotational template matching with different rotation

angles. With rotational templates, our method is more robust

to the head motion and accurately tracks the lip contour.

However, most recordings in real life do not have the high

resolution around the mouth (e.g. the lip region shown in

Fig. 4 occupies about 88 × 34 pixels). To test the robustness

of our algorithm, we used several videos downloaded from

YouTube with relatively low resolutions. In these videos,

the speakers’ heads rotated, and the lighting conditions var-

ied. Results may be found on-line via the following link:

http://www.youtube.com/watch?v=j7jr7sh5fmQ (the lip region

occupied about 45× 17 pixels).

B. Adaboost Training

1) Parameter Setup: To provide data of sufficient

duration for adaboost training, we used another

long video clip from YouTube (available from

http://www.youtube.com/watch?v=zXBpW8GCDtY). The

first 120 seconds were used for adaboost training, and the

following 30 seconds for testing.

In the training process, the labels (the voice activity for each

frame) were obtained by thresholding the short-time energy

of the clean audio signal. We set T = 10, therefore, the

neighboring frames of 800 ms (frame step is 40 ms) could

influence the current time frame. In adaboosting, 100 iterations

(weak classifiers) were applied (I = 100).

2) Visual VAD: After the training process, we obtained

an adaboost model, then we applied this model to the 30-

second test video via majority voting. Our algorithm accurately

detected most of the active frames. Outliers, i.e., a silence

frame with neighboring frames being active, were set as active

in the post-processing. We implemented the method in [1]

for comparison. The extracted lip region (the so-called ‘ROI’,

i.e. region of interest) was first mapped into a 6-dimensional

space via principal component analysis, then the first order

difference was used as the visual feature. The voice class was

modeled with a 5-kernel Gaussian mixture model (GMM),

and instead of a single Gaussian distribution, the non-voice

class was approximated with a 3-kernel GMM. Fig. 5 shows

the comparison of our proposed method against the references

from the clean audio and the algorithm in [1].

We used the error rate as a criterion to evaluate the perfor-

mance:

ǫ =
1

Q

Q
∑

t=1

(C(v(t)) 6= a(t)), (10)

where Q is the number of frames and a(t) is the reference

VAD label. In the same way, we defined the positive error rate

ǫp and the negative error rate ǫn when we only consider the

frames for which a(t) is positive or negative. With 120 seconds

for training and I = 100, we got ǫp = 0.11, ǫn = 0.21 and

ǫ = 0.14. As a contrast, using method in [1], we got ǫp = 0.26,

ǫn = 0.40 and ǫ = 0.30.

To investigate how the number of iterations and the length of

the training data influence the performance, we set the iteration

number from 1 to 100, and the error rate tended to decrease

50 100 150 200 250 300 350 400

silent

active
silent

active
silent

active

Number of frames

Proposed visual VAD

Ground truth

Liu visual VAD

Fig. 5. Visual VAD on the test data against the ground truth and the method
in [1]. The beginning 400 frames are shown. The adaboost model was trained
on 120 s training data with 100 iterations and 40 ms frame step.

both in the training process and testing process. With post-

processing to eliminate the outliers, we gained another 5%
improvement. Fig. 6 presents the performance of our algorithm

with respect to the number of iterations. We then increased the

length of the training data from 10 seconds to 120 seconds,

and the performance is shown in Fig. 7.

0 20 40 60 80 100 120 140 160 180 200
0.1

0.15

0.2

0.25

0.3

0.35

Number of iterations

E
rr

o
r

ra
te

 (
u

n
it
)

Training error rate

Test error rate

Test error rate with post−processing

Fig. 6. Performance with respect to the iteration number.

V. CONCLUSIONS

A lip extraction method with rotational template matching

and model constraints was implemented using a greedy snake

algorithm. We used both static and dynamic features extracted

from the lip region to form a classifier for visual voice activity

detection, which was obtained by adaboost training. We tested

our lip extraction on both XM2VTS database and some low-

resolution videos from YouTube (the mouth region occupied

10 20 30 40 50 60 70 80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

Length of training frames (second)

E
rr

o
r

ra
te

Training error rate

Test error rate

Test error rate with post−processing

Fig. 7. Performance with respect to the length of training data.

about 45 × 17 pixels). The visual VAD algorithm applied to

the low-resolution video demonstrates its good performance,

offering low error rates.

ACKNOWLEDGMENT

This work was supported by the Engineering and Phys-

ical Sciences Research Council (EPSRC) (Grant number

EP/H012842/1) and the MOD University Defence Research

Centre on Signal Processing (UDRC).

REFERENCES

[1] P. Liu and Z. Wang, “Voice activity detection using visual information,”
in IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), vol. 1, May 2004.
[2] D. Sodoyer, B. Rivet, L. Girin, C. Savariaux, J.-L. Schwartz, and

C. Jutten, “A study of lip movements during spontaneous dialog and its
application to voice activity detection,” The Journal of the Acoustical

Society of America, vol. 125, no. 2, pp. 1184–1196, Feb. 2009.
[3] A. Aubrey, Y. Hicks, and J. Chambers, “Visual voice activity detection

with optical flow,” Image Processing, IET, vol. 4, no. 6, pp. 463–472,
Dec. 2010.

[4] Y. Freund and R. E. Schapire, “A short introduction to boosting,”
Japonese Society for Artificial Intelligence, vol. 14, no. 5, pp. 771–780,
1999.

[5] A. Liew, S. Leung, and W. Lau, “Lip contour extraction using a
deformable model,” in International Conference on Image Processing

(ICIP), vol. 2, Sept. 2000, pp. 255–258.
[6] M. Barnard, E. J. Holden, and R. Owens, “Lip tracking using pattern

matching snakes,” in the 5th Asian Conference on Computer Visio

(ACCV), Jan. 2002.
[7] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour

models,” vol. 1, no. 4, pp. 321–331, 1988.
[8] D. J. Williams and M. Shah, “A fast algorithm for active contours and

curvature estimation,” CVGIP: Image Understanding, vol. 55, no. 1, pp.
14–26, 1992.

[9] K. S. Jang, “Lip contour extraction based on active shape model and
snakes,” in International Journal of Computer Science and Network

Security (IJCSNS), vol. 7, Oct. 2007, pp. 148–153.
[10] E.-J. Ong and R. Bowden, “Robust lip-tracking using rigid flocks of

selected linear predictors,” in the 8th IEEE Conference on Automatic

Face and Gesture Recognition, 2008.
[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features,” in IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), vol. 1, 2001, pp. 511–518.
[12] XM2VTS, Website, http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/.

