

Coarticulatory constraints determined by automatic identification from articulograph data

Philip JB Jackson & Veena D Singampalli CVSSP, University of Surrey, UK

p.jackson | v.singampalli@surrey.ac.uk www.ee.surrey.ac.uk/personal/p.jackson/dansa

Abstract: Identification of critical, dependent and redundant articulators from 1D and 2D statistics of EMA data. Compared with IPA. Interesting findings.

Rôles in articulation

Critical: essential for a phone's production

Dependent: follows critical articulator due to connection with it *Redundant*: free to move, unconstrained by current phone

Background on coarticulation

- Coarticulation is a major challenge for speech technologies
- Coarticulation affects the *planning stage* of speech production to simplify commands for sequence of speech gestures [1,7]

Coarticulation affects the articulation stage from stiffness, damping and inertia, and effort minimisation [2,5,6,8,9]

Comparison with International Phonetic Alphabet (IPA)

Purpose of IPA:

- to capture linguistic distinctions
- from human speech
- observed by phoneticians

Critical articulators for consonants

Speech technology needs:

- descriptions of characteristics
- to include effec phoneme-to-ph
- ways to incorpo knowledge from

		L*1			t
		[th]	tty ttx	t	t
typical phone		[dh]	tty ttx	t	t
in a voice		[S]	tty ttx	t	t
		[Z]	tty ttx	t	t
ts of		[sh]	tty ttx	t	t
one manning		[zh]	tty ttx	t	t
onemapping		[h]	-	-	
orate		[ch]	tty ttx	t	t
n all sources		[jh]	tty ttx	t	t
		[p]	uly lly	U	ıl
		[b]	ulv llv	1	ıL

Φ		IPA	msak		fsew	
	1D	2D	1D	2D	1D	2D
[f]	lly llx	II	lly uly	II	lly llx	II
[V]	lly llx	II	lly uly	II.	lly llx	II
[th]	tty ttx	tt	ttx tty lly	tt II	tty ttx tby	tt tb ll li
[dh]	tty ttx	tt	ttx tty	tt	ttx tty	tt
[S]	tty ttx	tt	liy ttx tty	tt li	liy tty tbx	li tt
[Z]	tty ttx	tt	liy ttx tty	tt li	liy tty ttx	li tt
[sh]	tty ttx	tt	tty tbx liy tdy	tt li	tty liy ttx	li tt
[zh]	tty ttx	tt	liy tty tdy ttx lly	li tt td	tty liy tby tdx llx	tt li tb
[h]	-	-	-	-	tty	tt
[ch]	tty ttx	tt	liy tty tbx tby	tt li	tty liy ttx	li tt ul
[jh]	tty ttx	tt	tty tby ttx liy	tt tb	liy tty ttx	li tt
[p]	uly lly	ul II	uly lly	ul	uly	ul
[b]	uly lly	ul II	uly lly	ul II	uly lly	ul II
[t]	tty ttx	tt	tty	tt	tty liy	tt
[d]	tty ttx	tt	tty	tt	tty	tt
[k]	tdy	td	tdy	td	tdy	td
[g]	tdy	td	tdy	td	tdy	td
[m]	uly lly vx	ul II v	uly lly vx	ul II	lly uly	ll ul
[n]	tty ttx vx	tt v	tty vx	tt	tty	tt
[ng]	tdy vx	td v	tdy vx	td v	tdy	td
[w]	ulx llx tdy	ul II td	uly	ul	uly tdy lly	ul td II
[1]	tty ttx	tt	-	-	-	-
[r]	tty ttx	tt	tbx	tt	ttx	tt
[y]	tby tbx	tb	tby	tb	tby	tb tt

Present work proposes use of statistical models to uncover the likely representation of gestural commands for each phone [10] stops and nasals gave expected place, after labels corrected, and velum identified in nasals as secondary for one subject

fricatives and affricates were most constrained, setting jaw LI for

liquids and *semivowels* similar to predictions, except lateral []]

Electromagnetic articulograph (EMA) data [11]

Midsagittal trajectories of 7 glued coils

Male (msak) and female (fsew) British English subjects

460 sentences each with automatic phone transcription, which required some manual re-labelling

Calibrated data smoothed and re-sampled at 100 Hz

Measures distance between two distributions in terms of average log-likelihood ratio [4]:

Critical articulator identification algorithm

[s,z,sh,zh,ch,jh], as well as expected IPA place

Pseudocode description of the algorithm

Global statistics: $\Gamma = \{M, \Sigma\}$, grand correlation \mathbb{R}^* , sample size N Phone statistics: $\Lambda^{\phi} = \{\mu^{\phi}, \Sigma^{\phi}\}$, phone correlation \mathbb{R}^{ϕ} , sample size N^{ϕ} Model statistics $\Delta_k^{\phi} = \{m_k^{\phi}, S_k^{\phi}\}$, sample size N_k Threshold $\Theta = \{\theta_C, \theta_D\}$ Model initialisation: level k = 0

Critical articulators for vowels

Targets are in both acoustic and articulatory domains

high front and back vowels selected TBy orTDy/TB central and reduced vowels picked none

open and low vowels tended to choose LLy/LL

low back vowels also picked TBx or TBy/TB

Φ	IPA		n	msak		fsew	
	1D	2D	1D	2D	1D	2D	
[ii]	tty	tt	tdy lly ttx	tb	tby	tb td	
[iy]	tty	tt	tdy	tb	tdy ttx	tb td	
[uu]	tdy ulx llx	td ul ll	tdy	-	tby	td	
[i]	tty	tt	-	-	-	-	
[u]	tdy ulx llx	td ul ll	-	-	-	-	
[@]	tby	tb	-	-	-	-	
[@@]	tby	tb	lly	-	tty IIx	tb II	
[uh]	tby	tb	-	-	tby	tb	
[00]	tdy ulx llx	td ul ll	lly tbx tty	tb II	tdx lly tdy tby	td II	
[0]	tdy ulx llx	td ul ll	tby	tb	tby tdx	tb	
[aa]	tdy	td	lly tby tbx	ll tb	tby tdx	tb	
[a]	tty	tt	lly	ll l	lly tdy	ll td	

```
J = \int_{-\infty}^{\infty} f_1(x) \ln \frac{f_1(x)}{f_2(x)} dx + \int_{-\infty}^{\infty} f_2(x) \ln \frac{f_2(x)}{f_1(x)} dx
        = \frac{1}{2} \left[ \operatorname{tr} \left( \Sigma_1 - \Sigma_2 \right) \left( \Sigma_2^{-1} - \Sigma_1^{-1} \right) + \operatorname{tr} \left( \Sigma_1^{-1} + \Sigma_2^{-1} \right) \left( \mu_1 - \mu_2 \right) \left( \mu_1 - \mu_2 \right)^{\mathrm{T}} \right]
```

where $f_1 = \mathcal{N}(\mu_1, \Sigma_1)$ and $f_2 = \mathcal{N}(\mu_2, \Sigma_2)$.

Articulatory probability density functions (pdfs)

Low KLD (0.2) for [g] shows that ULy is redundant for velar High KLD (9.1) for [b] marks ULy as critical for bilabial correlated LLy becomes dependent for [b]

between Gaussian mixture models. Proc. ICASSP, 4:317-320, 2007.

```
m_{k,i}^{\phi} = M_i, \ S_{k,i}^{\phi} = \Sigma_i, \ N_{k,i} = N, \ orall i \in \{1..n\}
 Critical articulator list C_{k}^{\phi} = \{\}
 while (k \leq n)
            Identification divergence: J_{k,i}^{\phi} = \text{computeIdiv}(\Delta_{k,i}^{\phi}, \Lambda_{i}^{\phi}, N_{k,i}, N^{\phi}), \forall i \in \{1..n\}
            Articulator with maximum divergence j = \operatorname{argmax}\{J_{k,1}^{\phi}, J_{k,n}^{\phi}\}
            C-step:
            \operatorname{if}(J_{k,j}^{\phi} > \theta_{\mathrm{C}})
                       Go to the next level k = k + 1
                      \Delta^{\phi}_k = \Delta^{\phi}_{k-1}
                       N_{k} = N_{k-1}
                      Identify critical articulator: C_k^{\phi} \leftarrow \{C_{k-1}^{\phi}\} \cup \{j\}
                       Update distribution: m_{k,j}^{\phi} \leftrightarrow \mu_{j}^{\phi}, S_{k,j}^{\phi} \leftrightarrow \Sigma_{j}^{\phi}
                     N_{k,j} \leftrightarrow N^{\phi}
                        D-step:
                        [N_k, \Delta_k^{\phi}] = updateDep(\Delta_k^{\phi}, N_k, \Gamma, \Lambda^{\phi}, \Theta, C_k^{\phi}, R^*, R^{\phi})
                        Critical articulator list \hat{C}^{\phi} = C_{t_{e}}^{\phi}
                      Model distribution \hat{m}^{\phi} = m_k^{\phi}, \ \hat{S}^{\phi} = S_k^{\phi}
                       No: of critical articulators \hat{N}^{\phi} = k.
                       break
            end
 end while
function compute Idiv(\Delta_{k,i}^{\phi}, \Lambda_{i}^{\phi}, N_{k,i}, N^{\phi})
 Incorporating standard error:
S_1 = S_{k,i}^{\phi} + (S_{k,i}^{\phi}/N_{k,i}), \ S_2 = \Sigma_i^{\phi} + (\Sigma_i^{\phi}/N^{\phi})
J = \frac{1}{2} \left( tr(S_1 - S_2)(S_2^{-1} - S_1^{-1}) + tr(S_1^{-1} + S_2^{-1})(m_{k,i}^{\phi} - \mu_i^{\phi})(m_{k,i}^{\phi} - \mu_i^{\phi})' \right)
 return J
 function updateDep(\Delta_k^{\phi}, N_k, \Gamma, \Lambda^{\phi}, \Theta, C, R^*, R^{\phi})
Collate critical grand statistics: M_{\{C\}}, \Sigma_{\{C\}}(C) (from \Sigma and R^*)
Collate critical phone statistics: \mu_{\{C\}}^{\phi} and covariance matrix \Sigma_{\{C\}\{C\}}^{\phi} (from \Sigma^{\phi} and R^{\phi})
for i \in \{1...,n\} \cap \{C\}
            J_{k,i}^{\phi} = \text{computeIdiv}(\boldsymbol{\Delta}_{k,i}^{\phi}, \boldsymbol{\Lambda}_{i}^{\phi}, N_{k,i}, N^{\phi})
```

 $\begin{array}{l} \text{update mean: } m_{k,i}^{\phi} \leftrightarrow M_{i} + \Sigma_{i\{C\}} \Sigma_{\{C\}}^{-1}(\mu_{\{C\}}^{\phi} - M_{\{C\}}) \\ \text{update variance: } S_{k,i}^{\phi} \leftrightarrow \Sigma_{i} + \Sigma_{i\{C\}} \Sigma_{\{C\}}^{-1}(\Sigma_{\{C\}}^{\phi} - \Sigma_{\{C\}}) \Sigma_{\{C\}}^{-1}\Sigma_{\{C\}}' \Sigma_{\{C\}}' \\ \end{array}$

[e] tty **Discussion** Limitations of the MOCHA-TIMIT data - labelling alignment and transcription errors - sensor calibration and attachment problems - pronunciation of read sentences with EPG - number of sentences, subjects, speaking styles Extensions of the technique - more accurate pdfs, e.g., GMM or numerical methods [3] - from 1D and 2D to 3D data

Conclusions

Presented algorithm for identifying critical, dependent and redundant roles of articulators during speech production

Results with EMA data compared well to IPA for consonants; fricatives claimed additional critical articulators

Central and reduced vowels had no critical articulator

Future perspectives

41(2):310-20, 1967.

Potential to exploit new knowledge of articulatory constraints as

conditional dependencies in probabilistic speech models

[8] S. Öhman. Numerical model of coarticulation. J. Acoust. Soc. Am.,

speech production. Ecology Psychology, 1(4):333-82, 1989.

Need to investigate dynamic behaviour of articulatory constraints

Opportunity to expand critical articulator analysis to other data

REFERENCES	[4] S. Kullback. Information theory and statistics. Dover Pub., New York, 1 edition, 1968.
	[5] B. Lindblom. Spectrographic study of vowel reduction. J. Acoust. Soc. Am.,
[1] N. Chomsky and M. Halle. The sound pattern of English. Harper & Row, New	35:1773–81, 1963.
York, 1968.	[6] A. Löfqvist. Speech as audible gestures. In W.J. Hardcastle and A. Marchal
[2] J. Dang, M. Honda, and K. Honda. Investigation of coarticulation in continuous	(Eds.), Speech production and Speech Modeling. Dordrecht: Kluwer Academic
speech of Japanese. Acoust. Sci. & Tech., 25(5):318 - 329, 2004.	Publishers, 1990.
[3] J. R. Hershey and P. A. Olsen. Approximating the Kullback Leibler divergence	[7] K. Moll and R. Daniloff. Investigation of the timing of velar movements during

2007. [11] A. Wrench. A new resource for production modelling in speech technology. Proc. Inst. of Acoust., Stratford-upon-Avon, UK, 2001.

[9] E. Saltzman and K. Munhall. A dynamic approach to gestural patterning in

[10] V. D. Singampalli and P. J. B. Jackson. Statistical identification of critical,

dependent and redundant articulators. Proc. Interspeech, Antwerp, pages 70-73,

Poster 2.12 presented at 8th International Seminar on Speech Production (ISSP'08) in Strasbourg, France on Wednesday 10 December 2008 75 ISSP'08

speech. J. Acoust. Soc. Am., 50(2):678-84, 1971.

 $if(J_{h,i}^{\phi} > \theta_D)$

end if

return Δ_k^{ϕ}, N_k

end for

 $N_{k,i} \leftarrow N^{\phi}$

Dependent covariance : $\Sigma_{i\{C\}}$