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Abstract.

Speech source separation has been of great interest for a long time, leading to two major approaches. One

of them is based on statistical properties of the signals and mixing process known as blind source separation (BSS). The
other approach named as computational auditory scene analysis (CASA) is inspired by human auditory system and exploits
monaural and binaural cues. In this paper these two approaches are studied and compared in more depth.

1. Introduction

In real environments the microphones do not only receive the
energy from the target source, but also from the reverbera-
tion and other interfering sources. Consequently, the recorded
signals are mixtures of different sources which degrade the
performance of hearing aids, automatic speech recognition
(ASR) and many other communication systems. Therefore, it
is desired to separate the source signals as an auditory front-
end. However, in most cases the source signals and the mixing
process are not known, introducing a blind problem.

There have been various methods suggested to perform
blind source separation such as independent component anal-
ysis (ICA) [14,8] and beamforming [15] which need as many
mixtures available as the number of sources and fail when
the number of sources exceed the number of sensors. To deal
with underdetermined cases, when the number of mixtures
are less than that of sources, the signals are transformed into
time-frequency (T-F) domain where the speech is sparse and
the sources can be separated using T-F masks [17]. In sparse
domain, where only one source is dominant, the mixing matrix
in ICA algorithm [14] reduces to a mixing vector (MV) which
can be estimated by clustering the observation vectors as in
[11]. However, the BSS algorithm proposed in [11] degrades
in high reverberation.

On the other hand, human auditory system with just two ears
has shown great performance for source separation [5,4] which
has been studied under the name of computation auditory scene
analysis (CASA) [2,16]. It is found that different monaural and
binaural cues such as pitch, interaural level difference (ILD)
and interaural phase difference (IPD) can be estimated and
exploited to generate corresponding T-F masks to identify the
T-F units of the mixtures’ spectrograms dominated by each
source. Although binaural cues applied by [10] have shown
significant improvement over other algorithms, their perfor-
mance is poor where the sources are close to each other.

In this paper, we study the MVs as in [11] and the binaural
cues as applied by [10] to investigate the strengths and weak-
ness of each of them. We have found that MVs are estimated
based on the mixture models with additive noise whereas the

binaural cues are calculated using the mixture models with
convolutive noise. Consequently, we have shown that the MVs
models are less affected by additive noise while ILD and IPD
models are more robust to reverberation. Moreover, we have
compared the MV models with ILD and IPD models and pre-
sented that MV models are more distinct where the sources are
close to each other whereas ILD and IPD models have more
overlaps resulting in poor performance when the sources are
not well away.

2. Complex Mixing Vector Representation

In BSS approach the noise-free instantaneous mixtures are
modeled by x = As, where x is the observation vector, A is
the mixing matrix and s the source vector. Each column of
A, a;, represents the basis vector (mixing vector) from the ith
source to the microphones. In the sparse domain where only
one source is active with other sources being almost zero,
all the columns of the mixing matrix are multiplied by zeros
except the one corresponding to the active source. As a result,
each observation vector can be considered as a basis vector
multiplying the dominant source magnitude. For example in
the time domain where s (¢) is active while other sources are
zero the following equation holds.
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Therefore, the points on the scatter plot of x(¢) versus x;(¢)
would be along a line with the direction of [ay; a12}T

In real environments such as reverberant rooms, the micro-
phones record not only the direct signal, but also a reflected
(i.e. filtered) version of the source along with some added
noise:

xi(t) = si(t) * hir (1) +nf (1), 2
X2(l)=Si(l)*h,’2(l‘)+ng(t), 3)

where h;; is the room impulse response from source i to micro-
phone k with n{ being the additive noise as k = 1,2. t is the
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Figure 1.

Histograms of /X| + /X, and ZX; — ZX, for T-F samples at fre-
quency 2.35 kHz.

discrete time index and * denotes convolution. In order to sim-
plify the equation, the signals are transformed to T-F domain
using short time Fourier transform (STFT):

Xl(m7f) ~ Sl(maf) Hll(f) +Nf(m7f)?
Xo(m, f) = Si(m, f) - Hio(f) + N3 (m, f).

These two signals are then concatenated to generate complex
2D vectors at each T-F unit, (m, f):

x(m, f) ~ Si(m, f)a;(f) +N*(m, f), (6)

where x(m, f) = [Xi(m, f),Xa(m,f)], is the complex 2D
observation vector at each T-F unit, a;(f) = [a;1 (f),an(f)]! ~
[Hi1(f),Hn(f)]" the basis (mixing) vector for the ith source
and N2 (m, f) = [N{(m, f),N§(m, f)]T is the additive noise that
contains background noise. To eliminate the effect of source
amplitude variation, the observation vectors are normalized
with respect to their magnitudes at each T-F unit,
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In the T-F domain with complex 2D vectors having amplitude
and phase information, it is difficult to illustrate the same prop-
erty as in 1. However, we will show that the observation vectors
have less degrees of freedom after normalization in (8) which
removes the effect of source amplitude:
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so at each frequency bin f:
X2+ [Xa* =1 (10)
LX)+ LXy = Lag+ Lap+2LSi(m), (11)
X1 — 24Xy, = ZLaj — ZLap, (12)

with ZX; + £X; and £ZX| — ZX, having uniform and normal
distributions, respectively (see Fig. 1).

Moreover, as shown in (11), ZX; + £X; is time variant due
to the random phase of the source signal and therefore cannot
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Figure 2. 2D representation of the observation vectors in frequency channel
= 2.35 kHz after normalization and whitening on a (a) unit cylinder wall, and
(b) after unwrapping, for two different sources at 0° and 10° azimuths.

be applied to estimate the time-invariant basis vectors. Conse-
quently, the mixing vectors (MV), a;(f), which can be evalu-
ated as the main eigenvector of the covariance matrices,

T
Ry =Y x(m, f)x" (m.f), (13)

m
will have two degrees of freedom with ||a;|| = 1 and Za;; or

Z(l,‘z =0.

This result is consistent with the fact that the covariance
matrices are positive-semidefinite and symmetric [3] and so
Hermitian in complex domain with all the eigenvalues being
real and simple [12]. Consequently, the eigenvectors (mixing
vectors) will be like [r cr]T where r € R and ¢ € C, with rela-
tive phase and amplitude containing the whole information.

Fig. 2 (a) depicts the normalized and whitened observed
samples at frequency channel = 2.35 kHz for two different
sources positioned at 0° and 10°. To generate this scatter plot,
two random utterances are chosen and convolved with binau-
ral room impulse (BRIR) of room A (see Table 1) for sources
at 0° and 10° azimuths independently. It can be seen that due

Table 1. Room acoustical properties in initial time delay gap (ITDG), direct—
to-reverberant ratio (DRR) and reverberation time Ty [7]. .

Room Type ITDG [ms] | DRR [dB] | Tgg [s]
A a medium office 8.72 6.09 0.32
D a large seminar room 21.6 6.12 0.89

to normalization all the points are confined to a unit cylinder
which can be unwrapped to a 2D plane as shown in Fig. 2 (b).

3. Closely Spaced Sources

In order to compare the MV models with binaural cues, the
model distributions of cues at extreme conditions (e.g. when
the sources are close to each other) are illustrated using equal
probability contours [13]. To calculate the probability distri-
butions, one needs to estimate the model parameters assuming
that the distributions are normal. The mean value of the MV
models are estimated based on equation (13). The variance of
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Figure 3. Equal probability contours for sources at 0° and 10° in dashed lines
with decision boundary in solid line for (a) mixing vectors and (b) binaural
cues in frequency = 2.35 kHz.

the MV of each source over time can be calculated according
to equation (11) in [1] with posterior probability set to 1 as
only one source is considered here. Once the model parame-
ters of the sources at 0° and 10° azimuths have been obtained,
/X, — ZX, varies from —7 to 7 and tan™! % from 0 to § to
cover all possible phase differences and level ratios. Then we
set Xo = 1 as reference and set the corresponding x = [X) XQ]T
in equation (6) in [1] to calculate the probabilities and plot the
equal probability contours using equation confour in Matlab.
The results are shown in Fig. 3 (a) which represents distinct
distributions where the sources are positioned close to each
other. The ILD and IPD model parameters are estimated based
on the equations (18)-(22) in [10] with the probability v; ; = 1.
Once the parameters have been achieved, the joint probability
of each source is calculated based on equations (7) and (27) in
[10], where ¢ varies from —x to 7 and o from 0.1 to 10. The
resultant contours are close to each other and have overlaps as
represented in Fig. 3 (b) which leads to missassigned T-F units.
The decision boundaries draw a line to separate the phase-level
values corresponding to sources at 0° and 10°. The MV models
are well away from each other, reducing the false assignment
of each T-F unit to a source, while binaural cue models show
overlap which makes it difficult to decide if the observed phase
or level value corresponds to the source at 0° or the source 10°.
In other words, MV models are more robust where the sources
are positioned near each other.

The same procedure has been followed for sources at 0° and
75° in room A. Fig. 4 represents the equal probability con-
tours in dashed lines and decision boundaries in solid lines
for the sources. It can be seen that when the sources are well
away from each other with 75° difference in azimuths, binau-
ral cues represent quite distinct source models whereas obser-
vation vectors have more overlap.

We also examined how distinct the source models are over
the frequency ranges based on the Kullback-Leibler (KL)
divergence [6] between the source models for two sources at
0° and 10° or 75° azimuths. As it is shown in Fig. 5 (a), MV
based source models are well separated even when the sources
are close to each other (10° azimuth) especially in frequency
range 2 —4 kHz where ILD and IPD are not very reliable.
However, as the sources are positioned away from each other
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Figure4. Equal probability contours for sources at 0° and 75° in dashed lines
with decision boundary in solid line for (a) mixing vectors and (b) binaural
cues in frequency = 2.35 kHz.
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Figure 5. KL distance between the source models based on binaural cues
and mixing vectors in room A with Tgy = 0.32 s where one source is at 0° and
the second source is at (a) 10° and (b) 80°.

(75° azimuth) the IPD/ILD source models become more dis-
tinct compared to those based on MVs (see Fig. 5 (b)). It shows
that these models play complementary roles under different
positioning.

4. High Reverberation

Next, we examine the effect of two types of noise on the cues.
First, speech shaped noise is generated by averaging the spec-
tra of the anechoic recordings of 15 utterances used in the
experiments to be added to a clean signal similar to [9]. The
clean signal was one of the utterances convolved with anechoic
BRIR . The same utterance was also convolved with BRIR
of room D (as in Table 1) to introduce convolutive noise. To
measure the relative level of this convolutive noise we divided
the room D’s BRIR at 32 ms, which is also half of the win-
dow lengths (64 ms), and zero-padded each remaining part to
have two RIRs representing desired early reflections and late
noisy reverberation. The two parts were then convolved with
the utterance and the relative energy of the signals was mea-
sured to be almost 5 dB for room D. Accordingly, we set the
additive noise with SNR= 5 dB.

The model parameters of the source were then estimated
under three different conditions: 1—anechoic room, 2—in ane-
choic room with additive noise, and 3—in high reverberant
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room, to investigate the effect of additive and convolutive
noise. The degradation from the original models is measured
based on the KL distance [6] between the pdfs of the noisy
observations and those corresponding to the clean anechoic
signal.

Table 2. KL-distance between the clean and noisy signal models for three
different cues and two types of noise averaged over all frequencies. .

- MV | IPD | ILD
additive noise 210 | 2.70 | 3.39
convolutive noise | 2.31 | 2.01 | 3.29

The results are shown in Table 2. Inspecting the Table 2 it
is clear that MV model is more affected by high reverberation
with higher KL distance (2.31) compared to (2.10) due to the
same level of additive noise. On the other hand, binaural cues,
and especially IPD with KL= 2.01, are more robust to rever-
beration but more sensitive to additive noise with KL= 2.70,
playing complementary roles for dealing with different types
of noise.

Moreover, we can see that MV and IPD are more reliable
compared to ILD with less deviation from the original models,
exhibiting smaller KL distances.

5. Conclusion

In this paper the mixing vectors (MV) applied by blind source
separation (BSS) techniques have been examined in great
detail. We have shown that where the sources are close to
each other, the MV models are more distinct compared to bin-
aural cues which overlap in these situations. However, when
the sources are positioned away from each other, binaural
cues represent distinguishable distributions while MVs show
more overlap. Consequently, MVs and binaural cues can play
complementary role to enhance the performance of source
separation techniques.

In addition, we have examined the influence of additive and
convolutive noise on the source models and shown that MVs
are more robust to additive noise with less deviation whereas
binaural cues and specifically IPD are more robust to reverber-
ation.
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