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Abstract
A compact, data-driven statistical model for identifying roles
played by articulators in production of English phones using
1D and 2D articulatory data is presented. Articulators critical
in production of each phone were identified and were used to
predict the pdfs of dependent articulators based on the strength
of articulatory correlations. The performance of the model is
evaluated on MOCHA database using proposed and exhaustive
search techniques and the results of synthesised trajectories pre-
sented.
Index Terms: coarticulation, speech production, articulatory
modeling, critical articulator

1. Introduction
Coarticulation is one of the main problems faced by researchers
in speech technologies. Many researchers tried to explain the
invariance associated with phonetic segments in acoustic and ar-
ticulatory domains using features, targets or goals. They viewed
coarticulation as a spread of features [8, 15, 6] or coproduction
of articulatory gestures [20, 4, 14, 12]. In feature based mod-
els, a set of binary features [5, 7] were specified for each phone
based on phonological rules. Formant based targets for some
vowels and consonants were presented in [13, 16]. Phonetic
invariance in articulatory space was also explained using crit-
ical articulator concept based on phonetic rules using degree
of articulatory constraint [18] and coarticulatory resistance [3].
Later on, powerfull statistical models which make efficient use
of the available data took over the rule based ones, and mod-
els such as segmental HMMs [19] and trajectory HMMs [21]
have been proposed in recent years to capture the dynamics of
speech. The variation due to context was modelled in a statisti-
cal way using articulatory curvatures of preceeding and follow-
ing contexts [2]. Our attempt to identify the phonetic invariance
in the articulatory domain in an entirely statistically driven way
is presented in this paper. Effective models of the constraints
of the human articulatory system in speech production have the
potential to ensure naturalness in speech synthesis and to im-
prove speech recognition in noisy conditions.

Researchers have used different kinds of articulatory data,
such as MRI, X-ray cine and microbeam, electro-palatograph
(EPG), electro-glottograph (EGG) and electro-magnetic artic-
ulograph (EMA) [17, 22, 23]. The MOCHA articulatory
database [23] contains EPG, EGG, EMA and audio record-
ings of male and female speakers uttering 460 TIMIT sentences
each. With coils on the bridge of the nose and upper front in-
cisor providing reference, there are 14 EMA channels of x and y
movements for 7 articulators: upper lip UL, lower lip LL, lower
incisor LI, tongue tip TT, tongue blade TB, tongue dorsum TD,
and velum V. Fig. 1 gives a midsaggital display of articulators,
showing the outline of normal distributions fitted to data for two
phones, [s] and [g].

Figure 1: Midsaggital display of different articulatory points
and distributions of global (dotted) and phone specific distribu-
tions (solid) of [g] and [s] generated using male speaker (msak)

During an utterance, the articulators continually change
their role. If an articulator has to attain a specific position or
a gestural movement is essential for production of a speech
sound, such articulator is considered to be critical for that
sound, e.g. position of tongue tip in production of alveolar frica-
tive [s] in fig. 1. An articulator is said to be dependent on one
or more critical articulators if it follows the critical articulators
and its position is influenced by them. A redundant articula-
tor is not constrained during the production of a speech sound
and its position does not effect the production of sound criti-
cally. As an example, movement of tongue dorsum towards the
velum during the utterance of a velar sound [g] is considered to
be critical, tongue blade and tip are dependent, lips and jaw are
redundant as shown in fig.1.

In our approach to model the movements of articulators dur-
ing speech, we use the information of critical, dependent and
redundant articulators and incorporate three different kinds of
correlations associated with them (1) correlated movements of
the articulators in space, (2) correlations amongst the articula-
tors and (3) correlations over time. The first kind of correlation
is most apparent with the jaw and lower lip that move vertically
much more than in the anterior-posterior direction. The second
kind captures the biomechanical relationship between articula-
tors, for example, amongst different points on the tongue. The
third kind of correlation mentioned here is associated with the
smooth movements of the articulators over time as in [21] [2]
[10]. The present model incorporates the first two correlations
in its structure in an entirely data driven, statistical and compact
way and uses some of the existing methods to generate smooth
trajectories. The following sections in this paper present our
model description, evaluation of the models’ performance, con-
clusions and future work.

2. Modeling articulator roles
We propose an algorithm for identifying the set critical articu-
lators for each phone statistically, using their locations to pre-
dict those of dependent articulators based on correlation. High



Table 1: Univariate correlation matrix R∗ of strong and
statistically-significant correlations.

correlations between articulators induce strong effects from the
critical articulators’ configuration on the others. The algorithm
seeks to explain the position distributions of all the articula-
tors from data in terms of a compact set of critical positions,
representing the essential articulation for a given phone. From
various distance measures considered for testing the quality of
the distribution match (student’s t, Hotelling’s T2, Fischer’s lin-
ear discriminant), Kullback-Leibler (KL) divergence was cho-
sen [11], which measures the distance between pdfs in terms of
their mutual information. Before we can identify the critical ar-
ticulators, and examine their effect on the other articulators, we
need first to find the significant correlations between them.

2.1. Correlation analysis between articulators and in space

EMA data for one male (msak) and female (fsew) speaker were
smoothed using a Hann window and sampled at 10 ms frame
rate. The model was implemented for 1D data, where x and y
coordinates were assumed independent (n = 14), and for 2D
data, where correlations in an articulator’s x and y movement
were included (n = 7). Global distributions over all utterances
by each speaker modeled by univariate and bivariate normal
pdfs respectively, based on the grand statistics: mean Mi and
variance Σij (1D); M i and Σij (2D).

Univariate model: Global 1D correlations were computed
between the 14-channel articulatory data, R = {rij} ∀i, j ∈
1..n. The Pearson significance test was applied at α = 0.05,
and statistically insignificant correlations were set to zero, along
with very weak ones |rij | < 0.1. Table 1 shows the remaining
univariate statistically significant correlations R∗, which are re-
lated to the covariance: Σij = Σ

1/2
ii rij Σ

1/2
jj .

From table 1, we can see that tongue tip, blade and dorsum
are highly correlated in the x direction (TTx, TBx, TDx); impor-
tant but less so in the y direction. The low correlations between
x and y directions of TT, TB and TD highlight the tongue’s inde-
pendent movement in two directions. Strong correlations exist
between lower lip and lower incisor (LL and LI). Upper lip (UL)
is correlated with LL but there is little correlation between UL
and the jaw LI, as expected; some correlation between TT and
LI exists in the y direction. Velum, strongly correlated with it-
self in 2D, has almost no correlation with other articulators, so
it does not suffer from inter-articulator gestural conflict.

Bivariate model: 2D correlations, taking x and y data to-
gether, were computed by canonical correlation (CC) analysis
[9]. This technique finds the combined directions in which two

Figure 2: Directions of first and second significant canonical
correlations between TT, TB (left) and TB, TD (right), grand
covariance ellipses are plotted in black.

articulators have maximum correlation and allows for the num-
ber of degrees of statistically-significant correlation to be tested:

Σij = Σ
1/2
ii U i rij U ′

j Σ
1/2
jj , (1)

where U i and U j contain the eigenvectors for each articulator,
the 2×2 matrix rij = diag

`
ρ1

ij , ρ
2
ij

´
contains the CCs ρij and

′ denotes transpose. CCs were computed between every artic-
ulator pair i, j and significance tested at α = 0.05. As before,
weak and insignificant correlations were set to zero. Most artic-
ulatory pairs (56 %) had two significant CCs; very weak corre-
lation was found between TD and LI; other articulator pairs had
one significant correlation.

Figure 2 shows CCs between TT-TB, and TB-TD. The
eigenvector directions emphasise the strong front/back corre-
lation of motion tangential to the tongue surface (ρ1

TT,TB=0.92;
ρ1

TB,TD=0.93), compared to raising/lowering (ρ2
TT,TB=0.75;

ρ2
TB,TD=0.50). The bivariate correlations, expressed in the 14 ar-

ticulator dimensions, were similar in absolute value to the uni-
variate ones. However, the orthogonal representation of correla-
tion compressed the total number of related degrees of freedom.
The next section presents an iterative algorithm to identify crit-
ical articulators automatic for any given phone φ.

2.2. Identification and influence of critical articulators

1. Initialisation. Data samples at the phone midpoints provide
reference statistics of normal articulatory distributions: mean
µφ

i and variance σφ
i (1D); µφ

i and σφ
i (2D).

The model pdfs are initialised with global statistics: mφ
i =

Mi and sφ
i = Σii (1D), mφ

i = M i and sφ
i = Σi (2D).

2. Critical identification (C-step).
Identify critical articulator:

At each level, k = 1..n, calculate (univariate or bivariate)
KL divergence between model and phone distributions Jφ

k (i)
for each articulator i, incorporating the standard error by mul-
tiplying the variance of N data points by (N + 1) /N . The
next critical articulator j = argmaxi{J

φ
k (i)} is selected iff

Jφ
k (j) > θcrit.

Set critical articulator distribution: Model statistics are set to
phone statistics as 1D or 2D respectively:

mφ
j ←[ µφ

j , sφ
j ←[ σφ

j ; mφ
j ←[ µφ

j , sφ
j ←[ σφ

j . (2)

3. Dependent update (D-step).
Gather dependency statistics: The covariations are collated
from the grand statistics, Σii, Σij and Σii, for all dependent
(iff Jφ

k (i) > θdep.) and critical articulators i and j (1D); Σii,
Σij and Σjj (2D).
Update dependent articulator pdfs: Combining these statistics



Figure 3: Distributions of 1D (left) and 2D (right) models after
identification of first critical articulator for phone [k], θcrit =
0.5 and θdep = 0.1.

with the phone ones for any critical articulator j, the conditional
pdfs get re-estimated, according to [1], which for 2D case gives:

mφ
i ←[ M i + ΣijΣ

−1
jj

“
µφ

j −M j

”
sφ

i ←[ Σii + ΣijΣ
−1
jj

“
σφ

j −Σjj

”
Σ−1

jj Σ′
ij . (3)

The algorithm stops in C-step when Jφ
k (i) < θcrit∀i ∈ 1..n.

3. Evaluation
3.1. Results on MOCHA

The results obtained after implementation of critical articula-
tor detection algorithm on male and female speaker data from
MOCHA database are presented in this section. The 1D and
2D model distributions are shown for phone [k] in fig.3, after
the first critical articulator was identified at level k=1 in C-step
and models updated in D-step. In the 1D case, the distribu-
tion of the first critical articulator, TDy, strongly influenced the
distribution of TBy as the correlation between them was strong
(table 1). Since the correlations between LLx, LLy, Vy and TDy

were small in value, the distributions of those articulators were
weakly affected. In the 2D case, the distribution of first critical
articulator, TD, had a similar effect on configurations of TB and
other articulators. The algorithm stopped after choosing 6 crit-
ical articulators (TDy, Vx, TBy, ULy, LLy, TTx) in the 1D case
and 3 (TD, V, TB) in the 2D case respectively.

On average, 4 articulators were chosen as critical per phone
for 1D and 2D models when θcrit = 0.5 and θdep = 0.1. As a
measure of fit of the model distributions to the phone distribu-
tions, at each level k, the average of Jφ

k (i) was computed across
all phones and articulators for 1D and 2D models. The average
KL divergence dropped by 90% of its initial value in the 1D
case and 93% of its initial value in the 2D case after all criti-
cal articulators were identified for each phone which indicates
a significant improvement in the model convergence. The set of
critical articulators chosen by our algorithm for each phone was
compared with the articulatory features given in [5]. The results
of our algorithm are in broad agreement with the active articu-
lators and the corresponding target regions that were specified
for each phone. For example, our algorithm chose upper and
lower lips, velum as critical articulators for a bilabial nasal stop
[m]. For the high-front vowel [i:], tongue tip, dorsum and lower
lip were chosen as critical.

This critical articulation detection model is compact as
the model distributions can be effectively represented using
the identity and the statistics of critical articulators (for each
phone), grand distributions and grand articulatory correlations.

Figure 4: Avg. KL divergence across all phones between 1D
phone distributions and 1D models, estimated using proposed
1D algorithm (♦) and ES procedure (×).

The number of parameters required for representing the model
distributions using our algorithm was 40% less in the 1D case
and 43% less in the 2D case when compared with the parame-
ters in the conventional models where statistics of all articula-
tors for every phone are stored.

3.2. Exhaustive search-1D models

An exhaustive search (ES) algorithm was implemented on 1D
data to check if the set of critical articulators identified by the
proposed algorithm gave the best model convergence and if
their order affected the final models. A search for best criti-
cal articulator combination was performed at each level con-
sidering all possible combinations, independent of the previous
critical articulators’ information. The dependent articulator dis-
tributions were updated conditioned on each critical articulator
combination (D-step). For every phone, the combination of crit-
ical articulators that gave minimum KL divergence between 1D
model and phone distributions was chosen as critical at each
level. The ES procedure was implemented upto 4 levels on
male speaker data. We found that the order of critical articu-
lators made no difference to the model convergence in all cases
upto level k=4 except for 10% of the cases (a mere 1% improve-
ment was given by ES procedure) when similar set of critical
articulators were identified by both procedures. When two dif-
ferent sets of critical articulators were chosen, the ES procedure
gave a 13% improvement over the proposed algorithm. The
average KL divergence values between 1D model distributions
(estimated using proposed and ES procedures) and phone dis-
tributions computed across all phones at each level are depicted
in fig.4. The time taken to run ES upto level 4 was 3×105 sec-
onds whereas the proposed algorithm took 100 seconds for the
same. On average across all levels, the critical articulators iden-
tified using ES procedure reduced the divergence by 12% over
those identified using the proposed algorithm at the expense of
significant increase in the computational effort.

3.3. Trajectory generation

The performance of the models was evaluated by generating
synthetic trajectories using the information of articulatory roles
given by the proposed algorithm. The positions of critical and
dependent articulators at every phone midpoint were set to the
mean of the corresponding model distributions and successive
target positions were linearly interpolated. No target positions
were specified for redundant articulators since they are not con-
strained to achieve any target positions. The trajectories thus
generated by modeling redundancies were compared with the
original articulatory trajectories and the trajectories generated
by linear interpolation between static targets where positions of
the redundant articulators were also set to their model means.



Figure 5: Original and synthetic trajectories generated using
static positions and our model for one sentence uttered by msak.

All synthetic trajectories were filtered using a zero phase or-
der 10 lowpass filter at 20Hz sampling frequency. Figure 5 de-
picts the movement of TTx for one sentence uttered by the male
speaker. For phones [uh], [@] and [g], TTx was found to be re-
dundant and therefore no target position was specified for TTx

at the midpoint of those phones. The trajectory generated by
modeling redundancies was a closer fit to the actual trajectory
than the one generated using static target positions. Normalised
RMS errors and correlations between synthetic and original tra-
jectories were used to evaluate the performance of the models.
The normalised RMS error was reduced by 2.2% (male), 2.3%
(female) and correlation was improved by 2.6% (male), 3.0%
(female) when redundancy modeling was used over interpola-
tion between static targets. Redundant articulatory positions
were observed only in 17% of all the male speaker and 22%
of all the female speaker data. Hence, the improvement was a
small percentage when compared with modeling contextual ef-
fects of articulator acceleration on entire trajectories, as in [2],
which gave 12.3% improvement on male and 8.7% on female
data.

4. Conclusions and future work

We proposed a statistical algorithm for identifying the roles
played by articulators in production of speech sounds using 1D
and 2D articulatory data and evaluated the performance of the
models on MOCHA database. The fit of the 1D and the 2D
models to the respective phone distributions was presented. The
list of critical articulators generated for each phone were found
to be in broad agreement with the phonetic features. We found
that the order of the critical articulators made no significant dif-
ference to the model convergence and the critical articulators
obtained using an exhaustive search procedure improved the
convergence by a small amount but with a considerable increase
in the computational effort. Preliminary evaluation of trajectory
generation using the information of articulatory roles gave pos-
itive results. Future work will focus on evaluating the perfor-
mance of the models on other articulatory databases, using dif-
ferent trajectory generation schemes, finding ways to exploit re-
dundant degrees of freedom within dependent articulators, and
using the compact representation to improve articulatory speech
recognition.
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