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ABSTRACT

Application of the pitch-scaled harmonic filter (PSHF)
to automatic speech recognition in noise was investi-
gated using the Aurora 2.0 database. The PSHF de-
composed the original speech into periodic and aperi-
odic streams. Digit-recognition tests with the extended
features compared the noise robustness of various pa-
rameterisations against standard 39 MFCCs. Sepa-
rately, each stream reduced word accuracy by less than
1 % absolute; together, the combined streams gave sub-
stantial increases under noisy conditions. Applying
PCA to concatenated features proved better than to
separate streams, and to static coefficients better than
after calculation of deltas. With multi-condition train-
ing, accuracy improved by 7.8 % at 5 dB SNR, thus
providing resilience from corruption by noise.

1 INTRODUCTION

In a conventional front end for automatic speech recog-
nition (ASR), incoming speech signals are converted
into Mel-frequency cepstral coefficients (MFCCs), be-
fore any analysis or interpretation is carried out (e.g.,
by Viterbi decoding). In the present study, we have
sought first to separate the voiced and unvoiced con-
tributions to the speech signal (as periodic and ape-
riodic components respectively), which are then con-
verted into MFCCs. Thus, the acoustic models may
be considered as learning distinct characteristics of the
voiced and unvoiced parts for any given phoneme.

The acoustic cues of speech come from a variety of dif-
ferent mechanisms, such as phonation, frication and
plosion. Many ASR front ends treat them equally
although human speech production and speech cod-
ing studies have shown the characteristics of radiated
speech signals to depend greatly on vibration of the vo-
cal cords. Standard front ends try to extract features
that are not strongly influenced by the source char-
acteristics. Here, we attempt to segregate harmonic
and noise-like cues before describing their characteris-
tics, by extracting the contribution from voicing (with
large relative amplitude) from those of other acous-
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urces, hence improving the feature extraction for
kinds of cue: voiced and unvoiced.

ugh researchers have experimented with a
ora of ways to extract a single set of features from
h, methods of decomposing the acoustic signal
the speaker into parallel streams of information
ot so well studied. Some have shown benefit in
and processing [1] and MFCCs mixed with for-
s [2], while others have used a single set of features
parallel models [3]. Since we know from personal
ience that whispered, breathy or creaky speech
re difficult to understand in a noisy environment
normally-phonated speech, it seems logical that a
re extraction technique for ASR that also exploits
ignal’s harmonicity should offer gains in recogni-
accuracy and robustness to noise.

efore, to separate the quasi-periodic voiced com-
nt from the noise-like residual, the pitch-scaled
onic filter (PSHF) was used. It was designed
lit an input speech signal into two synchronous
ms: periodic and aperiodic, which act respectively
timates of the voiced and unvoiced components
e signal at any time [4]. After decomposition,
res extracted from each of the streams may be
tenated or further manipulated into an extended
re vector, as required. The feature extraction pro-
s are described below, with experimental details,
brief discussion of the results, which demonstrate
apability of the PSHF for enhancing the digit-
nition accuracy of an ASR system in tests on the
ra 2.0 database.

2 METHOD

aration of the acoustic features from Aurora had
main stages: (i) estimating the fundamental fre-

cy for voiced sections of the speech corpus, (ii) de-
osing the speech files into periodic and aperiodic
onents, and (iii) calculating the feature vectors.
aining and test utterances are processed alike, as
ure 1.
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Figure 1: Front-end overview. The waveform is split by
the PSHF into periodic and aperiodic compo-
nents, from which features are extracted.
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Figure 2: The PSHF (from top): optimal pitch and pe-
riod, fopt

0 and Nopt, are calculated, harmonic
decomposition estimates the periodic contribu-
tion, which is subtracted from the original sig-
nal to give the aperiodic estimate.

2.1 Pitch extraction
An initial estimate of each file’s fundamental fre-
quency f raw

0 was made, then optimised by the PSHF,
which scales the window size to the pitch period as
part of the decomposition. After robust pitch extrac-
tion by the Entropic utility get f0, our own pitch-
correction script was applied to resolve glitches in
voice activity and pitch discontinuties, e.g., octave er-
rors. The parameters of both steps were determined
empirically (minimum voiced/unvoiced segment dura-
tions of 30ms/10 ms, respectively). The clean files
were processed automatically to produce f raw

0 values
for the entire database, which the PSHF optimised
with a matched cost function to yield f opt

0 (4 periods,
8 harmonics, 4 ms shift, [5]).

2.2 Periodic-aperiodic decomposition
The harmonic decomposition was performed using the
optimised clean pitch estimates, giving a pair of peri-
odic and aperiodic files for every file in the database.
Figure 2 shows the windowing and decomposition of a
frame of speech, which is by selection of harmonics in
the frequency domain. Successive shift and respilicing
of the outputs yields complete periodic and aperiodic
signal, synchronised with the input. The algorithm
and an assessment of its performance are described
elsewhere [4, 6]; software and examples are online, [7].

2.3 Feature extraction
Standard MFCC features (0–12, plus deltas and delta-
deltas) were extracted from the original signal and
from the pair of decomposed signals, using HTK [8].
A small amount of Gaussian white noise, or dither,
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re 3: MFCC-derived spectrograms of the utterance
“zero-two-six-zero”: (a) s, (b) v̂, and (c) û.

dded to the periodic features during voiceless sec-
.1 As well as concatenation, the technique of prin-
component analysis (PCA) was employed to offer
arameterisations of the data,
m. front-end processing

e: MFCC +∆, +∆∆

t: PSHF MFCC +∆, +∆∆ cat

26: PSHF MFCC cat PCA +∆, +∆∆

78: PSHF MFCC +∆, +∆∆ cat PCA

13: PSHF MFCC catPCA +∆, +∆∆

39: PSHF PCAMFCC +∆, +∆∆ cat

e “+∆, +∆∆” denotes calculation of 1st- and 2nd-
differences (aka. velocities and accelerations),

“cat” implies concatenation of the periodic and
odic feature streams. PCA parameterisations are
guished by the size of matrix in the analysis,
depends on the operations’ order. Thus all fea-

vectors had 78 coefficients, except base with 39.

Recognition experiments
Aurora 2.0 database comprises clean 8 kHz speech
dings of connected digits with noise added at
signal-to-noise ratios (SNRs): ∞, 20 dB, 15 dB,
, 5 dB, 0 dB and −5 dB. There are matched and
tched noise conditions in the test data for both
ive and convolutional noise (i.e., channel distor-
. Hence, a recognizer may be trained using only
data or multiple SNR conditions, and the results
d according to test SNR.

dding dither avoided numerical instability in training prob-
distributions that may be induced by total silence.



Training scripts instructed HTK to generate a set of
16-state word models for each of the digit prototypes
(and a 3-state silence model). After flat initialisation
and 16 iterations of the Baum-Welch algorithm, the
models were tested and word accuracy recorded. In
the split tests, likelihoods of the two streams could be
weighted independently. For all results reported here,
the same weighting was used during training, thanks
to minor adjustment of HTK [9].

3 RESULTS

Figure 3 gives a spectrographic example of the fea-
tures used in the recognizer, showing the effect of the
standard front end on the original signal and on the
periodic and aperiodic components. Although no new
information was introduced by the decomposition, it is
interesting to observe the prominence of voicing tran-
sitions and the distribution of spectral details during
voiced segments. From listening, the aperiodic esti-
mate sounds similar to whispered speech (as expected
for an absent voice source); though the periodic es-
timate contains only voiced segments, it is perfectly
recognizable, due to language and coarticulation cues
that remain. Under noisy conditions, the incoherent
aperiodic contribution accrues most distortion and is
much more easily masked than the periodic one.

3.1 Effect of decomposition
Points for equally-weighted streams, γp = γa = 1.0
(centre of each graph in figure 4), correspond to direct
concatenation of the periodic and aperiodic features.
The improvement in recognition word accuracy is re-
markable, especially under noisy test conditions, sug-
gesting that useful information had been masked in the
features extracted from the original speech.

3.2 Influence of stream weights
Changing the balance of the streams weights defines
three scenarios: (i) under clean test conditions, best
performance was achieved when the aperiodic stream
carried much more weight than the periodic one; (ii) in
very noisy conditions, the best results arose with all the
weight given to the periodic stream; (iii) at interme-
diate noise levels, a combination of both streams gave
best results. This behaviour is due to the PSHF mainly
ascribing corrupting noise to the aperiodic component.

3.3 Principal component analysis
PCA was used to decorrelate the dimensions of fea-
ture data, and sort them by the proportion of variance
each dimension explains. It enabled us to determine
which part of the variation in the data was useful to
the recognizer. How complementary, or redundant, the
periodic and aperiodic streams were can be measured
by the number of dimensions, or PCs, beneficial to the
recognition task.

Typi
the d
the d
for th
conta
of th
origin
and 1
perio
dant,
equa
indep
As th
23, it
tract

The
the A
perio
mate
tures
(by s
lation
ture
conn
bustn
tiona
each
only
pared
gethe
demo
but a
PCA
form
rately
culat
With
by 7.
(78 M
MFC
ment
teran
corru
ment
clean
to-da

In th
the v
sound
ing T
turbu
estin
ing t
mode
cally there were only 13 dominant dimensions in
ata (including the deltas and delta-deltas) but
etection of voiced segments introduced one extra
e periodic component, so we would expect it to
in one more useful PC. With a threshold at 1 %
e total variance, the numbers of selected PCs for
al, periodic and aperiodic streams were 13, 10
3, and 15 for the recombined streams (split). If
dic and aperiodic streams were completely redun-
the number of PCs after recombination would be

l to those for the original stream (viz. 13); if totally
endent, the number should be their sum (i.e., 23).
e number of recombined PCs fell between 13 and
implies that complementary information was ex-

ed through the decomposition.

4 CONCLUSION

PSHF was used to split each speech waveform in
urora 2.0 database into two synchronous streams,
dic and aperiodic, acting respectively as esti-
s of the voiced and unvoiced components. Fea-
were extracted from each stream and combined

ome sequence of concatenation, PCA and calcu-
of delta coefficients) to form an extended fea-

vector. Experiments yielded accuracy scores for
ected-digit recognition, and tested the noise ro-
ess of our parameterisations against a conven-
l one (39 MFCCs+∆,+∆∆). Used separately,
of the streams gave recognition accuracy that was
slightly degraded (by less than 1% absolute, com-

to the baseline using the original speech); to-
r, accuracy was increased under noisy conditions,
nstrating not only redundancy between streams
lso complementary information. Tests applying
to the concatenated feature set tended to per-
better than applying PCA to the streams sepa-
, and PCA of the static coefficients, before cal-
ion of the deltas, was better than afterwards.
multi-condition training, the accuracy improved

8 % under 5 dB SNR using concatenated streams
FCCs); whereas with PCA of the combined static
Cs, and derivatives (48 coefficients), the improve-
was 5.6 %. Thus, voiced regions of a speech ut-
ce appear to provide resilience of a message to
ption by noise. However, no significant improve-
on 99.0 % baseline accuracy was achieved under
test conditions. Complete details of this research
te are reported in Moreno’s thesis [9].

e future, we propose to explore the influence of
oicing information on different classes of speech
, for instance on a phoneme recognition task us-
IMIT corpus, whose 16 kHz speech provides more
lence-noise information. It would also be inter-

g to apply different forms of front-end process-
o the two streams, and to consider other forms of
l combination.



Figure 4: Split test results of word accuracy (%) versus periodic
(a) clean and (b) multi-condition training. Solid lines are
−5 dB SNR test conditions. Thick horizontal lines indica
�) indicates the best at each noise level.

Clean Signal-to-Noise Ratio (dB) M
∞ 20 15 10 5 0 −5 Ave. ∞

base 99.0 91.9 77.7 54.0 28.4 11.4 5.8 52.6 98

split 99.2 96.8 94.1 88.4 77.6 56.0 33.1 77.9 98

pca26 99.0 95.8 92.0 82.6 64.2 40.8 23.8 71.2 98
pca78 98.9 94.2 87.5 70.9 44.4 23.2 14.3 61.9 98
pca13 98.5 96.5 93.3 85.5 68.0 43.3 23.0 72.6 98
pca39 98.4 95.9 91.9 83.1 64.3 39.7 23.2 70.9 97

Table 1: Best word accuracy (%) achieved by the each front end in
on the stream weights and number of principal component
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