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ABSTRACT

In this paper, we propose a divide-and-conquer approach us-
ing two generative adversarial networks (GANSs) to explore
how a machine can draw colorful pictures (bird) using a small
amount of training data. In our work, we simulate the proce-
dure of an artist drawing a picture, where one begins with
drawing objects’ contours and edges and then paints them
different colors. We adopt two GAN models to process ba-
sic visual features including shape, texture and color. We use
the first GAN model to generate object shape, and then paint
the black and white image based on the knowledge learned
using the second GAN model. We run our experiments on
600 color images. The experimental results show that the use
of our approach can generate good quality synthetic images,
comparable to real ones.

Index Terms— Generative adversarial networks, condi-
tional, image generation

1. INTRODUCTION

Automatic generation of colorful pictures has attracted in-
creasing attentions in the last couple of years. The use of
the GAN [1] and its extensions [2, 3, 4, 5] has improved the
ability to generate good-quality pictures for different kinds of
objects. A GAN generally contains two competing neural net-
work models. One is called the generator, which takes noise
as input and generates samples. The other model is called the
discriminator, which receives samples from both the gener-
ator and the training data and distinguishes them. The two
networks are trained simultaneously, during which the gener-
ator learns to produce more and more realistic samples, and
the discriminator learns to get better and better ability to dis-
tinguish generated data from real data [6]. To generate good-
quality images, GANSs are often trained using large amounts
of data. In [7], over 3 million training examples of the LSUN
bedrooms dataset [8] were used to train a model. However, in
many cases, it is hard to collect a large number of data to train
GANSs for a specific task. In addition, some recent results
[2] have shown that the use of GAN can learn recognizable
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features of animals, such as fur, eyes, and noses, but these
features are often not correctly combined to form an animal
with realistic anatomical structure.

To tackle the challenging problem mentioned above, we
develop a divide-and-conquer approach by separately pro-
cessing shape and the other two visual features: color and
texture. In our approach, we train two GAN models (GAN1
and GAN2). GANI is for shape generation, and GAN?2 is
for color image generation using color, texture and the shape
information generated by GANI1. Our approach is based on
two factors. The first factor is that shape is the most important
element to convey the identity of an object among the three
visual features in content-based image processing [9]. When
learning new words, humans tend to assign the same name
to similarly shaped items rather than to items with similar
color, texture, or size [10]. To our knowledge, most previ-
ous studies used only GANs to tackle visual features as a
whole. However, if we do not have a large number of image
instances to train GANs, the number of samples of all visual
features combinations may be small and lead to data sparsity.
So, as a second factor, separately processing different visual
information may be useful to reduce the adverse effect of
data sparsity when training a GANs model on a small-sized
dataset.

The rest of the paper is organized as follows. We intro-
duce the overview of GAN and related work in Section 2. We
present the details of our proposed framework in Section 3.
The used data set and related evaluation metric are given in
Section 4. We analyze the obtained results in Section 5, and
finally conclude in Section 6.

2. BACKGROUND AND RELATED WORK

2.1. Generative Adversarial Networks

A generative adversarial network (GAN) consists of a genera-
tor network, G, whose goal is to learn a distribution matching
a true data distribution, and a discriminator network D, which
tries to distinguish real training data from synthetic data. G
and D compete in a two-player minimax game with the fol-
lowing formulation:

ménmgXV(G, D) (1)
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Fig. 1. A divide-and-conquer framework uses two GANs to simulate the procedure of human drawing picture. GANI1 is to
generate object contours, and GAN?2 is to paint the black-and-white image generated by GAN1.

where

V(G,D) = Epnpy,,. () [log D(z)]
+ Esnp.(»)[log(l = D(G(2)))] (2

where pgqtq(2) is the true data distribution, p,(z) is a dis-
tribution to draw samples. The generator network, G, trans-
forms a noise variable z into G(z), which is a sample from
distribution p,, and ideally distribution p, can converge to
distribution pg4s, under mild conditions (e.g. G and D have
enough capacity) [11]. The meaning of (1) is that the gener-
ator, G, tries to fool out the discriminator, D, while the dis-
criminator wants to maximize the differentiation power be-
tween the true and generated samples.

2.2. Related work

GANSs have been widely used in image generation [7, 12, 11,
13, 14, 15]. Radford et al. [7] used GANs and further devel-
oped a highly effective and stable architecture incorporating
batch normalization to achieve striking image synthesis re-
sults. Reed et al.[11] built an end-to-end system for automatic
synthesis of realistic images, from the character level to pixel
level. Pathak et al. [13] applied image-conditional models to
tackle inpainting, and Shrivastava et al. [14] also used con-
ditional GANs to predict image. In addition to typical image
synthesis mentioned above, some studies [16, 17, 18, 19, 20]
have also been developed in image-to-image translation. Isola
et al. employed a non-parametric texture model from a single
input-output training image pair for image translation [16].
A more recent approach to learning a parametric translation
function using GANs on a data set of input-output examples
was mentioned in [17]. Similar ideas have also been applied
to various tasks such as generating photographs from sketches
[18] or from attribute and semantic layouts [19]. Zhu et al.
[20] extended previous work [16, 18] to capture correspon-
dences between high-level appearance structures by learning

the mapping between two domains rather than between a pair
of specific images.

In comparison with these previous studies, our work can
be viewed as a combination of image synthesis and image
translation mentioned above. We use image synthesis to gen-
erate image containing only object contours, and then use im-
age translation to process color, texture information, and the
shape information from GAN1. The details of our proposed
framework will be discussed in the following section.

3. PROPOSED METHOD

Our approach, as shown in Fig. 1, aims to output a color im-
age y given a noise vector z (z ~ N(0,1)). We train two
GAN models. The first GAN model, GAN1, generates an im-
age, x, containing only object contours. The second GAN
model, GAN2, paints the black-and-white image, z, different
colors in order to produce the finally generated image, y. For
GANI1, we use the GANs model mentioned in [7] following
Eq. 2 as our task in GANI is only to generate object shape.
For GAN2, we employ conditional GANs [17], where both
the generator and discriminator are conditioned on extra in-
formation, z, generated by GAN1. This means = will be used
as the input of GAN2.

In GANI, the generator network is denoted G : R%Z —
RM, the discriminator as D; : RM — {0, 1}, where M is the
dimension of the image, and Z is the dimension of the noise
input to GGy. In the generator G;, we sample from the noise
prior z € RZ. Following this, we use a deconvolutional net-
work to generate a synthetic image x via G (z) — x. For the
discriminator D1, to distinguish the fake and real image, we
use convolutional layers followed by batch normalization and
the activation function. We finally implement a classification
to compute the final score from D;.

The aim of GAN2 is to learn a mapping from random
noise z and the observed image x generated by GANI to y,
represented as Gs : {z, 2} — y. We view (z, y) pairs as joint
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observations and train the discriminator to judge (z, y) as real
or fake. Suppose we have a batch (z;,y;);, of training im-
ages y; paired with conditional data x; and let z; ~ p.(z) be
noise data sampled from the noise distribution p,. The cost
equation for the discriminator Ds is a logistic cost expression.
We thus expect the discriminator to assign a positive label to
true example (z;, y;), and a negative label to generated exam-
ple (GQ(Zi, xi), xi) [21]

1 n n
Lp=-—-5- <Z log Da(yi, i) + » _ log(1 — D2(G2(l’i,2i),wi))>
i=1

i=1

3

where Lp is the discriminator loss function averaged over n
samples.

The loss function for G5 is to maximize the probability

assigned by the discriminator to samples which come from G
[21]:

1 n
Lo = =3 D loB Da(Galeu2),) @

As a whole, the objective function of the conditional GAN
used here can be expressed as [21]:

min max Voeaan(Gz, D2) =By yop(a,y [log D2 (y, )]

G2 2

+ Eprp(a),z~p(z) [log(1 — D2(Ga(x, 2),2))]  (5)

The use of z is to learn to match the distribution learned from
real data. It is generally represented by a random vector and
used as the input of GANs [7]. We follow this step in GANI1.
At the input layer of GAN2, we do not directly use vector 2z
but instead apply a dropout function to by masking some of
its values randomly. After using dropout the input dimension
is still same as x’s, less than the dimension of concatenating
z into . We can thus simplify system structure and reduce
computing cost.

4. DATA AND EXPERIMENTAL SETUP

In our work, the empirical evaluation is carried out on 600
bird images, which are extracted from Caltech-UCSD Birds
200 (CUB-200) [22], an image dataset with photos of 200 bird
species. Before training our model, we resized all images to
128 %128, smaller than their original size. This is to reduce
the number of parameters used in our framework.

We extract bird edges using the rough image segmenta-
tion of CUB-200 for GAN1, and use both color image and its
corresponding black-and-white image for GAN2. All mod-
els were trained with mini-batch stochastic gradient descent
(SGD) with a mini-batch size of 32 and the Adam solver [23].
We set the learning rate empirically to be 0.0002 with mo-
mentum 0.9 for both GAN1 and GAN2. All weights were
initialized randomly. The generator noise was sampled from
a 100-dimensional unit normal distribution. To obtain stable
results, GAN1 and GAN2 were trained with 1000 and 200
epochs, respectively. On this dataset, it took about two hours
to train GAN1 and about six hours to train GAN2 on a single
NVIDIA Pascal Titan X GPU.

We use two ways to evaluate our proposed approach.
The first way is to demonstrate the synthesized images. The
second way is to train classifiers using convolutional neural
network (CNN) built using Keras [24] to measure whether
the synthesized bird images can be categorized into a correct
class.

To train classifiers, we consider two cases: (1) Casel:
training data and test data are mismatched; (2) Case2: training
data and test data are matched. For Casel, the training data is
CIFARI10 [25], a 10-class benchmark image dataset, widely
used in image classification evaluation [26]. The CIFARI10
image styles, such as resolution and center cropping, are dif-
ferent from CUB-200’s. Casel aims to evaluate the robust-
ness of our synthesized images. For Case2, the bird images
in CIFAR10 are replaced with the images from CUB-200, to
evaluate the quality of the synthesized images generated using
our model in comparison with images from CUB-200.

5. RESULT ANALYSIS

In each of 15 blocks of Fig. 2, we show 30 synthetic im-
ages generated in different conditions. The images shown in
the first row contain only bird shapes and are generated us-
ing GANI1. As comparisons, in the other two rows, we also
show the synthetic images generated using GANI1 trained in
the other two different conditions. The first different condi-
tion (IMD1) is that we use 600 raw color images instead of
their object contours. The second different condition (IMD?2)
is that we use the same 600 raw color images, but black their
backgrounds and keep only the bird region of each image.
IMD?2 uses additional bird shape information in comparison
with IMD1. The columns, from left to right in the figure,
show an evolution procedure of generated images with in-
creasing epochs. As GANI is initialized randomly, the im-
ages in the blocks at the leftmost column show random noise.
When running more epochs, the generated images in the first
row show that clearer birds’ shapes are synthesized. How-
ever, the images generated in condition of IMDI1 shown in
the third row are only some colored squares, and the images
generated in condition of IMD2 shown in the second row are
some fuzzy and irregular colored images. It means that the
use of GAN1 on raw color image fails to generate reasonable
images. Even if IMD2 takes the bird shape information into
account, the generated images in the second row do not show
clearly recognizable bird either. As aforementioned in Sec-
tion 1, this phenomenon is probably caused by the case that a
small-sized dataset has a data sparsity problem when simulta-
neously processing a large number of visual features, which
has a poor impact on optimizing a GANs model.

To evaluate classification performance, we test three kinds
of bird images. TSGAN-IMG denotes that the images are
generated using our approach. GAN-IMG denotes that the
images are generated using GANs [7], whose training images
contain only the bird and backgrounds in images are blacked.
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Fig. 2. Comparisons of synthetic bird images generated using GANs (GAN1) on different kinds of training images at five
different epochs, epoch € {1,249, 499,749,999}. Each block contains 30 synthetic bird images.

TSGAN-IMG | GAN-IMG | Real-IMG
Casel 32.63% 0.8% 8.40%
Case2 95.90% 37.25% 98.93%

Table 1. Comparisons of image classification accuracy

Real-IMG represents images randomly selected from CUB-
200. The bird images selected from CUB-200 for classifica-
tion test have no overlap with the images for classifier train-
ing. To train the classifiers, all training images are resized to
32 X 32 in order to match the image size of CIFAR10.

In Table 1, we show classification accuracy values ob-
tained using classifiers on the three test datasets, TSGAN-
IMG, GAN-IMG and Real-IMG, respectively. In condition of
Case2, the classification accuracy on TSGAN-IMG reaches
95.90%, which is much better than GAN-IMG and is slightly
less than that obtained on the CUB-200 bird images. This
case probably means that the images of TSGAN-IMG con-
tain most distinct bird features and have a comparable quality
to the real images. The classification results, obtained in con-
dition of C'asel, are relatively low. This is maybe caused by
a factor that to train the classifier we only select 600 image
instances of each class, same as the number of instances to
train GANSs. This training number is relatively small for clas-
sification evaluation on CIFAR10 when testing mismatched
data. Even if the classification condition is poor, we still find
the classification accuracy obtained on TSGAN-IMG in con-
dition of Casel is even better than those obtained on Real-
IMG. This is maybe caused by the irrelevant features learned
from complex background of real images. They finally inter-
fere the classifier. The low classification accuracy on GAN-
IMG is caused by poor image quality.

As a comparison, from top to bottom row of Fig. 3, we
also show the examples of TSGAN-IMG, GAN-IMG and
Real-IMG, respectly. The quality of the images (TSGAN-
IMG) generated using our approach is much better than those

Fig. 3. The three rows show the synthetic bird images of
TSGAN-IMG and GAN-IMG, and the real images of Real-
IMG.

generated using GANs [7]. In comparison with the real im-
ages, the quality of images of TSGAN-IMG is close to the
real images although a bit more details appear in the real
ones.

6. DISCUSSION

Based on the idea [9, 10] that shape information plays a more
important role than color and texture for general object iden-
tification. We have presented an adversarial approach in order
to strengthen the contribution of shape information. We have
demonstrated that the use of our proposed approach can gen-
erate better bird images than a typical GANs model using and
without using shape information on a small-sized dataset, and
our classification accuracy results also show that the quality
of generate images are comparable to real ones.

In our future work, we will test our approach on some
smaller datasets in different conditions, and further test robust
more methods for image segmentation. In addition, we will
also consider perceptual testing and subjective evaluations.
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