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ABSTRACT

The pitch-scaled harmonic filter (PSHF) is a technique
for decomposing speech signals into their voiced and
unvoiced constituents. In this paper, we evaluate its
ability to reconstruct the time series of the two compo-
nents accurately using a variety of synthetic, speech-
like signals, and discuss its performance. These re-
sults determine the degree of confidence that can be
expected for real speech signals: typically, 5dB im-
provement in the signal-to-noise ratio of the harmonic
component and approximately 5 dB more than the ini-
tial harmonics-to-noise ratio (HNR) in the anharmonic
component. A selection of the analysis opportunities
that the decomposition offers is demonstrated on speech
recordings, including dynamic HNR estimation and sep-
arate linear prediction analyses of the two components.
These new capabilities provided by the PSHF can facil-
itate discovering previously hidden features and inves-
tigating interactions of unvoiced sources, such as frica-
tion, with voicing.

1. INTRODUCTION

There are many reasons for wanting to separate the
voiced and unvoiced components of speech: to allow
accurate characterization of each acoustic source [1]
(for production models and articulatory synthesis); for
modification, as used in concatenative synthesis; for
enhancement, e.g. [2]; to aid diagnosis of pathologies
through improved representation of the noise.

Our decomposition technique is based on a measure
of HNR derived by Muta et al. [3]. They applied a
pitch-scaled Hanning window, centered around time p,
to the input speech signal: s, (n) = w(n) s(n+p—N/2),
where w(n) = 0.5 (1—cos2xn/N) forn € {0,1,...,N—
1}, and the number of points, N = bTp, is an integer
multiple b of pitch periods Tp. In order to give good
time resolution and to take advantage of the window’s
spectral properties, b = 4 was chosen. Then, the spec-
trum S, (k) was computed by discrete Fourier trans-

formation (DFT) of the four whole pitch periods:

N—-1
5u0) = 3 sutmes (<i755),
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which concentrated the periodic part of the signal into
the harmonic coefficients, H = {b,2b,...,b(N — 1)},
every fourth DFT bin. Hence, the voiced component
was modeled by an adaptive series of coeflicients at the
fundamental frequency fp and its harmonics, and the
unvoiced component, assumed to be the product of a
stochastic process, was the remainder. We have ex-
tended the process to yield a full decomposition of the
speech signal into harmonic (voiced) and anharmonic
(unvoiced) time series [4], to which standard analysis
techniques can be applied subsequently. We also pro-
posed an interpolation stage [5] for improving spectral
estimation over longer time scales (i.e. finer frequency
resolution, Af < fo/2), which is a crucial step.

2. METHOD

2.1. Pitch estimation

The PSHF requires that the window length N be scaled
to the time-varying pitch period Tp(p), which was esti-
mated by sharpening the spectral peaks of the first H
harmonics, according to the cost function:

H
J(N,p) =3 SH(WN,p)° + 8y (M), (2)
h=1

where S; and S, respectively are the estimation errors
for the higher and lower spectrum spread of the har-
monics b € {1,2,..., H}, for the given window length
N (see [3] for details). For each section of voiced speech
analyzed, the pitch-tracker was initialized manually and
the optimum window size N(p) was taken at the local
minimum of the cost function. The window lets the
algorithm kernel deal with small sections of the speech
signal sequentially. Thus, the outputs can be combined



with previously processed ones to yield continuous har-
monic and anharmonic signals.
2.2. The PSHF kernel

The kernel of the PSHF, as depicted in Figure 1, op-

timally separates the harmonic and anharmonic signal

components in the frequency domain. So, having been
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Figure 1: The pitch-scaled harmonic filter (PSHF).

windowed, the speech signal s,(n) undergoes a DFT
to Sy(k). In estimating the voiced spectrum V'(k),
the harmonic filter (HF) takes the complex amplitudes
of the harmonics and doubles them (to counteract the
mean window amplitude), which leaves the unvoiced
estimate U (k):

N B 25, (k) for k € H,
Vik) = { 0 otherwise; ®)
. B S(k) —2S,(k) forkeH,
Ulk) = { S(k) otherwise. )

The harmonic signal is calculated by inverse transform-
ing (IDFT) and windowing, thus:

o\ w(n) N - 2rnk

v(n)—TZv e (1 25°). 9
and likewise for the anharmonic signal 4(n). Now, al-
though these signals are optimal in the time domain
(in a least-squares sense), the anharmonic spectrum
has gaps in it — at the harmonics — which may be
misleading for frequency domain interpretations (power
spectra, spectrograms, etc.). Therefore, for later anal-
ysis over long frame sizes (> 27T}), the harmonic bins
of the unvoiced spectrum are filled by interpolation.

First, the (rms) average of the adjacent bins is calcu-
lated, for k € H:

‘0w(k—1)‘2 + ‘ﬁw(k+1)‘2
L(k) = 5 . (6)

Then, by comparing it with the original power at each
harmonic S, (k), the factor A(k) is formed,

L(k)
\/IS B + L(K)?

(7)

which determines the division of power betyveen the
voiced and the unvoiced power estimates, V (k) and
U (k) respectively:
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V(&) otherwise;
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These modified spectra, just like those of the signal esti-
mates (Eq. 5), are finally returned to the time domain
by IDFT and windowed, resulting in the voiced and
unvoiced power-interpolated signals, #(n) and @(n).

3. EVALUATION

The performance of the PSHF was evaluated using
speech-like test signals s(n), which were made up of
a voiced part v(n) and an unvoiced part u(n):

s(n) =v(n) +u(n), (10)

at sampling rate f, = 48kHz. The voiced part was
synthesized by convolving a pulse train g(n), which was
periodic at fo = 130.8 Hz, with an appropriate impulse-
response filter ¢:

v=g%gq, (11)

where * denotes convolution. The filter ¢ was built
using the linear prediction coefficients (LPC, autocor-
relation, 50-pole) obtained from an adult male mid-
vowel [a] recording (details below). The pulses were
perturbed from their nominal amplitude and pitch pe-
riod by a specified amount of random shimmer (0dB
or 1dB) and jitter (0%, 0.5 % or 3 %), respectively [6].
The unvoiced signal was similarly created by convolv-
ing Gaussian white noise d(n) (zero mean, unit vari-
ance) with the LPC filter:

u=Ad=xgq, (12)

and the gain A was adjusted to give the desired HNR,
initially at four levels (oo, 20dB, 10dB and 5 dB), but
two more (0dB and —5dB) were included in an addi-
tional experiment.

So, using the PSHF signal estimates ¢ and 4, the
changes in signal-to-noise ratio (SNR), 5, and 7, were
calculated, as a measure of the decomposition algo-
rithm’s performance. The change in SNR for the har-
monic component 7, is defined as the ratio of the un-
voiced part’s mean power to that of the residual error;
conversely, the anharmonic performance 7, is the ratio



of voiced to error power. Both are expressed in deci-
bels:

T = Wlog, [W/N],  (13)

ne = 10logy [(v*)/(€%)] (14)
where the residual error is e = (6 — v) = — (4 — u).

J S Harmonics-to-noise ratio (dB)

% dB | o 20 10 ) 0 -5
*0 0|73 52 515 510 55 5,0
0 0|-54 6,25 5,15 510 - -
1]-22 1,20 5,14 510 - -
05 0| 28 4,24 5,15 5,10 - -
1]-20 -1,18 4,14 510 - -
3 0|13 —-6,14 3,12 48 - -
1]-14 -614 0,9 38 - -

Table 1: Harmonic and anharmonic performance of the
PSHF (1, 0y in dB) versus target values of Jitter, Shimmer
and HNR. (* Results obtained using fo = 120.0 Hz.)

The results, presented in Table 3, show that, for
perturbation and noise levels normally found in speech,
the PSHF enhanced the voiced component by 4-5dB;
the unvoiced component generally showed much greater
improvements, of approximately 5dB above the initial
HNR. For typical HNRs (—5dB to 20 dB), performance
was unaffected by fo; for other HNRs, minor changes
in the random noise and quantization can have an ex-
aggerated effect on the variance of measurements. Still,
benefits to the voiced part were obtained with severe
jitter, shimmer and noise, e.g. (J, S, HNR): (3%, 1dB,
5dB) and (3 %, 0dB, 10dB). Fluctuations in the pitch
period (jitter) tended to have a larger effect on perfor-
mance than amplitude fluctuations (shimmer), for the
range of values tested.

4. RESULTS

An adult male (PJ), a native speaker of British English
RP, recorded a speech corpus that included sustained
vowels (V=/a, i, u/) and sustained fricatives in the
form /aF:/ (F = /s, z/). The sound pressure at 1m was
measured in a sound-treated booth using a microphone
(B& K 4165), a pre-amplifier (B & K 2639) and ampli-
fier (B & K 2636, 22 Hz—22 kHz band-pass, linear filter).
It was recorded on DAT (Sony TCD-D7, f, = 48 kHz),
from which it was transfered digitally to computer.!

I Calibration tones were recorded to give an absolute reference
to pressure, and background noise was recorded to assess the
measurement-error floor.
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Figure 2: Time series from [az:] by an adult male (PJ) of
the original signal s(n) (top), the harmonic component 9(n)
(middle), and the anharmonic component ¥(n) (bottom,
quadruple amplitude scale).

Figure 2 illustrates the result of applying the PSHF
to the utterance [az:]. The majority of the signal en-
ergy is modeled by the harmonic or voiced component
0, which begins with a rapid growth of voicing that is
then sustained at a high level during the vowel. Af-
ter 200ms, it starts to fade as the transition is made
into the fricative, which appears to achieve a steady
state from c.560ms onwards. The anharmonic or un-
voiced component @ is of a much lower amplitude in
the vowel, although magnified four times in the graph,
and follows a very different pattern: loudest initially, it
quickly decays to its minimum in the latter part of the
vowel, and reverts to an intermediate magnitude for
the fricative, which reduces gradually. The signal 4 is
noisy, in contrast to ¢ which exhibits a regular pulsing
throughout. Each of these general characteristics is as
expected, including the initial surge of unvoiced noise,
which could be generated by increased airflow at voice
onset, although irregularities in phonation would also
contribute some spurious elements (as indicated by the
tests with synthetic signals).

The short-time power (STP) is a quantity derived
by calculating a moving, weighted average of the squar-
ed signal. It is defined, for any signal y(n), as:

Sy z(m)2y(p + m — M/2)?

Py(p) = ,  (15)

using a smoothing window z(m), which was set to a
fixed length (M = (N}, where () denotes the time-
average). The STP of the voiced component P,, and
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Figure 3: Short-time power (32 ms, Hanning window) of the
voiced (thick) and unvoiced (thin) components, P, and P,,
during [az:].

that of the unvoiced component P,, are plotted in Fig-
ure 3. Their trajectories agree with our earlier observa-
tions, but there is evidence of overshoot in the fricative
(630-800ms) before the final equilibrium was reached
at ¢. 860 ms.
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Figure 4: Power spectral density (85 ms, Hanning window
centered at 900 ms, x4 zero-padded, re.2 x 107%Pa) com-
puted from the original signal s(n) (top) for the sustained
fricative [z:] by an adult male subject (PJ), from the har-
monic estimate #(n) (middle) and from the anharmonic esti-
mate @(n) (bottom), whose time series are inset underneath
each graph (anharmonic signal double scale).

Short sections of the signals around 900 ms were
used to produce power spectra for the original and
the two power estimates, #(n) and %(n). The spectra,
each overlaid with a 50-pole LPC analysis, are plotted
in Figure 4 (with their time waveforms). The wave-
forms show how the voiced signal ¥ has been purged of
noise, which arises in the anharmonic part # as pitch-
synchronous packets. Most of the energy in the origi-
nal spectrum comes in the first five harmonics but, even
though the spectrum becomes more noisy at higher fre-

quencies, there is a significant proportion in the range
4-8kHz. However, the voiced spectrum maintains its
periodic structure over all the frequencies plotted, while
the unvoiced spectrum, being pervasively noisy, is de-
void of harmonics. Although the smoothed LPC spec-
tra display many similarities, there are notable differ-
ences in the resonance frequencies (e.g., peaks differ by
50Hz at Fo, by 200Hz at F3). Moreover, the first for-
mant F; is absent from the anharmonic curve, where
their relative amplitudes are >30dB apart, which is
compatible with the net low-frequency anti-resonance
excited by a frication source. At higher frequencies the
anharmonic component dominates, also as expected.

5. CONCLUSION

We have presented a signal decomposition technique,
its evaluation using synthetic signals, and results from
its application to real speech. The potential for us-
ing the PSHF to enable separate analyses of voiced
and unvoiced components in mixed-source speech was
demonstrated. The PSHF gives the best decomposi-
tion during sustained phonation, since it is based on
a harmonic model. Although jitter and shimmer in
real speech can produce artefacts in the unvoiced com-
ponent, tests indicated consistent improvements under
typical conditions, suggesting that the algorithm can
significantly aid the study of unvoiced sound produc-
tion mechanisms, and the characterization of turbu-
lence noise sources, such as frication and aspiration.
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