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Abstract

Decomposition of speech signals into simultaneous streams of
periodic and aperiodic information has been successfully ap-
plied to speech analysis, enhancement, modification and re-
cently recognition. This paper examines the effect of different
weightings of the two streams in a conventional HMM system
in digit recognition tests on the Aurora 2.0 database. Compar-
ison of the results from using matched weights during train-
ing showed a small improvement of approximately 10 % rel-
ative to unmatched ones, under clean test conditions. Princi-
pal component analysis of the covariation amongst the periodic
and aperiodic features indicated that only 45 (51) of the 78 co-
efficients were required to account for 99 % of the variance,
for clean (multi-condition) training, which yielded an 18.4 %
(10.3 %) absolute increase in accuracy with respect to the base-
line. These findings provide further evidence of the potential
for harmonically-decomposed streams to improve performance
and substantially to enhance recognition accuracy in noise.

1. Introduction
The speech signal that emanates from a human speaker is typi-
cally the filtered combination of a number of acoustic sources:
from voicing, frication, aspiration, and plosive release. Of-
ten more than one of these occurs at the same time, and al-
though they tend to be quite different in nature, can be diffi-
cult to distinguish afterwards and to separate artificially. Their
combined effect is what produces the full sensation of natural
speech that has been a challenge for model-based speech syn-
thesis systems. In contrast, speech recognition systems aim to
take advantage of whatever useful information exists within the
acoustic signal for the sake of increasing accuracy and robust-
ness against interference. However, if we treat all sounds as
one, and generate our features from parameterising sections of
the speech signal based on the short-term magnitude spectrum,
as per Mel-frequency cepstral coefficients (MFCCs), then we
are essentially neglecting all information about the source char-
acteristics, bar the overall amplitude and broad spectral enve-
lope. While delta (aka. difference) features can help to identify
transient cues, as with plosion or voice onset, the harmonicity
of voiced speech has a quality or “acoustic texture” that sets it
apart from other sounds. This paper describes the preliminary
findings of an attempt to exploit the quasi-periodic property of
voiced speech to improve speech recognition accuracy in a con-
nected digit task.

Thanks are due to Climent Nadeu, Jaume Padrell, Matt Stuttle,
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Figure 1: PSHF overview. Using the optimised pitch estimates� opt� , the waveform ���	��
 is split by the PSHF into periodic and
aperiodic components, � �	��
 and �� �	��
 respectively, from which
features are subsequently extracted.

The decomposition of speech signals into simultaneous pe-
riodic and aperiodic components has been successfully em-
ployed for a variety of purposes in the past. In the fields of
speech modification and enhancement, examples include work
by Laroche et al. [1], and by Yoo and Lim [2], respectively. Yet,
the technique used in the present study was originally envis-
aged for acoustic analysis of speech [3], which the authors have
developed to be able practically to process an entire speech cor-
pus. Here, we report work involving the Aurora 2.0 database of
clean and noise-corrupted spoken digits.

In a conventional front end for automatic speech recog-
nition (ASR), incoming speech signals are converted into
MFCCs, before any analysis or interpretation is performed (e.g.,
by Viterbi decoding), which has defined the baseline reference
for the present study. As depicted in figure 1, we have sought
first to separate the voiced and unvoiced contributions to the
speech signal (as periodic and aperiodic components, � �	��
 and
�� �	��
 , respectively), which were then converted into MFCCs.
Thus, the acoustic models may be considered as learning the
separate characteristics of the voiced and unvoiced parts for any
given phoneme. Although many ways of extracting a single
set of features from speech have been investigated, methods of
decomposing the acoustic signal into parallel streams of infor-
mation are not so well studied. Some have shown gains from
sub-band processing [4] and mixing MFCCs with formants [5],
while others have used a single set of features with parallel mod-
els [6]. From one’s personal experience is it plain that creaky
or whispered speech is more difficult to understand in a noisy
environment than normally-phonated speech, which suggests
that exploiting the signal’s harmonicity should offer benefits in
terms of recognition accuracy and robustness to noise for ASR.

Thus, the technique used to separate the quasi-periodic



voiced component from the noise-like residual was the pitch-
scaled harmonic filter (PSHF), which was designed to split an
input speech signal into two synchronous streams: periodic and
aperiodic, acting respectively as estimates of the voiced and un-
voiced components [3]. After decomposition, features extracted
from each of the streams can be concatenated or further manip-
ulated as an extended feature vector.

Since the vocal tract will have been in the same configu-
ration at the instant that the voiced and unvoiced contributions
were produced, there will be similarities in their respective filter
characteristics. So, at least the poles of the vocal-tract transfer
function, that correspond to the formants and vocal-tract reso-
nances, would be common. Along with other factors, this im-
plies that there would be a strong correlation between the fea-
tures of the two parallel streams. The present study explores
principal component analysis (PCA) as a means of removing the
correlation and ensuring the efficacy of the diagonal-covariance
Gaussian mixture models to represent the probability distribu-
tions of the data. More sophisticated transformation schemes,
such as linear discriminant analysis or heteroscedastic LDA [7]
were not considered in the work reported here. Nevertheless,
a number of different schemes for calculating the transforma-
tion matrix were, and their analysis of the variance examined.
An issue critical to the value of the decomposed periodic and
aperiodic streams concerns the extent to which the covariation
brings new information to the recognition process, meanwhile
isolating the influences of disturbance from unwanted noise.

The pitch and feature extraction processes are described be-
low, with experimental details, and a brief discussion of the
results, which include a study of the effect of adjusting the
weights of the two streams in tests, and of using matched or
unmatched weights during training. A summary of the PCA
study is also given, before concluding.

2. Method
2.1. Pitch and feature extraction

Preparation of the training and test data consisted of three steps:
(i) estimate the fundamental frequency for voiced sections of the
speech corpus, (ii) decompose the speech files into periodic and
aperiodic components, and (iii) calculate the acoustic feature
vectors. An initial robust estimate of the fundamental frequency� raw� was made by the Entropic utility get f0, corrected, and
then optimised by the PSHF’s own cost function to give

� opt�
(4 periods, 8 harmonics, 4 ms shift). The pitch-correction pro-
gram resolved glitches in voice activity and pitch discontinuties,
e.g., octave errors (i.e., �

�
� , or � � ). The parameters of both

steps were determined empirically (minimum voiced/unvoiced
durations of 30 ms/10 ms). The clean speech files provided

� raw�
values for the entire database.

The harmonic decomposition was performed from the opti-
mised clean pitch estimates, giving a pair of periodic and ape-
riodic files for every file in the database. The algorithm and an
evaluation of its performance are described elsewhere [3, 8].

Standard 39-dimensional MFCC feature vectors (0th to
12th, plus deltas and delta-deltas) were extracted from the orig-
inal signal and from the pair of decomposed signals, using
HTK [9]. A small amount of Gaussian white noise, or dither,
was added to the periodic features during voiceless sections.1

Figure 2 illustrates the features used in the recognizer spectro-
graphically, showing the effect of the standard front end on the

1Adding dither avoided any numerical instabilities that can be in-
duced by training probability distributions with total silence.
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Figure 2: Spectrograms derived from MFCCs of “one-four-
seven-three-five” spoken by a female: (a) � , (b) � , and (c) �� .

original signal and on the periodic and aperiodic components.
It is interesting to see how decomposition highlights the voicing
transitions and distribution of spectral details during voiced seg-
ments. (Further examples are on the project website.) As well
as simple concatenation, PCA was used to make a total of six
different parameterisations of the data, as described in table 1.

Parm. Front-end processing

base: MFCC +∆, +∆∆

split: PSHF MFCC +∆, +∆∆ cat

split1: PSHF MFCC +∆, +∆∆ cat

pca26: PSHF MFCC cat PCA +∆, +∆∆

pca78: PSHF MFCC +∆, +∆∆ cat PCA

pca13: PSHF MFCC catPCA +∆, +∆∆

pca39: PSHF PCAMFCC +∆, +∆∆ cat

Table 1: Front-end parameterisations, where “ �����	���
� ” de-
notes calculation of � st- and

�
nd-order differences, and “cat”

implies concatenation of the periodic and aperiodic feature
streams. PCA-based parameterisations are distinguished by
the size of their analysis matrix, depending on operation order.
Thus all parameterisations yield feature vectors with 78 coeffi-
cients, except BASE with 39. Note that SPLIT and SPLIT1 differ
only in the stream weights used during training.

2.2. Recognition experiments

The Aurora 2.0 database comprises clean 8 kHz speech record-
ings of connected digits with noise added at seven signal-to-
noise ratios (SNRs): � , 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and
 5 dB. There are matched and unmatched noise conditions
in the test data for both additive and convolutional noise (i.e.,
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Figure 3: WER (%) for SPLIT (left pair) and SPLIT1 (right pair) versus periodic-stream weight ��� , with (left) clean and (right) multi-
condition training, averaged across each SNR: (from top):  5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and � test conditions. Thick
dot-dashed lines indicate baseline average scores, and the thinner dashed line (with � ) marks the best at each noise level.

channel distortion). Hence, a recognizer may be trained using
only clean data or multiple SNR conditions, and the word error
rate (WER) viewed according to test SNR.

Training scripts instructed HTK to generate a set of 16-state
word models for each of the digit prototypes (and a 3-state si-
lence model). After flat initialisation and 16 iterations of the
Baum-Welch algorithm, the models were tested and word accu-
racy recorded. In the SPLIT and SPLIT1 tests, likelihoods of the
two streams were weighted independently.

3. Results
3.1. Effects of stream weights

Points for equally-weighted streams, �������	�
� ���  (at the
centre of each graph in figure 3), correspond to simple con-
catenation of the periodic and aperiodic features. The improve-
ment in recognition word accuracy is considerable, especially
under noisy test conditions, suggesting that useful information
had been masked in the original speech features.

In the SPLIT experiment, the periodic-stream weight was
increased from zero to two, in steps of one tenth, and the sum
of the weights was held constant. The recognition scores with
this changing balance of the streams weights are shown in fig-
ure 3 (left pair), and define three scenarios: (i) under clean test
conditions, best performance was achieved when the aperiodic
stream carried much more weight than the periodic one; (ii) in
very noisy conditions, the best results occurred with all the
weight given to the periodic stream; (iii) at intermediate noise
levels, a combination of both streams gave the best results. This
behaviour was caused by the fact that the PSHF ascribes cor-
rupting noise mainly to the aperiodic component.

Results of the experiments summarised above have been re-
ported elsewhere [10, 11], for which all details of the front-end
processing and Viterbi alignment were identical in testing as in
training. Now, we consider the case where the weights for the
periodic and aperiodic streams, � � and � � respectively, were
held constant and set equal to one for training, but varied as
before during the testing stage. The outcome of these recogni-
tion tests is shown in figure 3 (right pair). The results indicate a
slight degradation in performance at high SNRs, and a modest
improvement otherwise. The absence of a significant decrease
in performance means that only one stream weight value need
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Figure 4: WER (%) for PCA26 versus the total number of PCs,
with (left) clean and (right) multi-condition training, as fig. 3.

be used in training, though it could potentially be varied dynam-
ically when the recognition system was operation.

3.2. Principal component analysis

PCA was used to decorrelate the dimensions of feature data,
and sort them by the proportion of variance each dimension ex-
plained, from which it could be seen what proportion of the
variation in the data was useful to the recognizer. How comple-
mentary or redundant the periodic and aperiodic streams were
could hence be estimated from the number of principal compo-
nents (PCs) that were beneficial to the recognition task.

There were generally thirteen dominant dimensions in the
data (including the deltas and delta-deltas), but the detection
of voiced segments introduced one extra to the periodic com-
ponent. With a threshold at 1 % of the total variance, the
numbers of selected PCs for original, periodic and aperiodic
streams were 13, 10 and 13 respectively, and 15 for the recom-
bined streams after concatenation. If the periodic and aperiodic
streams were completely redundant, the number of PCs after
recombination would be equal to those for the original stream
(i.e., 13); if totally independent, the number should be their sum
(i.e., 23). As the number of 15 recombined PCs lies between
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Figure 5: Proportion of variance (%) versus principal component: ( � clean, � multi, from left) PCA26, PCA78, PCA13 and PCA39.

13 and 23, it implies that complementary information was con-
tained in the streams separated through the decomposition. Fig-
ure 4 shows performance results for the recombined case, as
the number of PCs was reduced: first it improved (in the clean
training and test cases), then it deteriorated. Figure 5 shows
the analysis of variance for the four different PCA parameterisa-
tions, and table 2 summarises the best average WERs (minima
taking clean and multi averages separately.

Clean Multi Ov-
Parm. set (a), (b), (c) Ave. set (a), (b), (c) Ave. erall

base 47.6, 50.4, 41.1 47.4 21.3, 21.1, 23.8 21.7 34.6
split 23.7, 20.3, 25.2 22.6 11.4, 10.1, 12.2 11.0 16.8
split1 22.0, 19.2, 22.8 21.0 11.2, 10.2, 11.9 10.9 16.0
pca26 30.8, 26.1, 31.2 29.0 11.9, 10.4, 12.3 11.4 20.2
pca78 39.6, 35.6, 40.9 38.3 12.4, 11.1, 13.5 12.1 25.2
pca13 28.8, 26.4, 27.9 27.6 13.3, 11.6, 13.5 12.6 20.1
pca39 30.3, 27.1, 31.7 29.3 12.9, 11.4, 14.0 12.5 20.9

Table 2: Best averaged WERs (%) achieved by each front end
in table 1, with clean and multi-condition training, and Aurora
sets: (a) matched noise and channel, (b) matched channel and
unmatched noise, (c) matched/unmatched noise and unmatched
channel. The SPLIT and SPLIT1, and PCA results depend re-
spectively on the stream weights and number of selected PCs.

4. Conclusion
The PSHF was used to split each speech waveform in the
Aurora 2.0 database into two synchronous streams, periodic
and aperiodic, that act respectively as estimates of the voiced
and unvoiced components. Features were extracted from each
stream and combined (by some sequence of concatenation, PCA
and calculation of delta coefficients) to form an extended fea-
ture vector. Experiments yielded connected-digit recognition
accuracy scores for various parameterised combinations of the
streams, against a conventional one (39 MFCCs, ����������� ).
Comparison of the results from using matched weights dur-
ing training showed a small improvement of approximately
10 % relative to unmatched ones, under clean test conditions.
PCA demonstrated augmentation from their combination, but
also redundancy between streams. Analysis of the covariation
amongst periodic and aperiodic features showed that only 45
(51) of the 78 coefficients accounted for 99 % of the variance,
for clean (multi-condition) training, which yielded an 18.4 %
(10.3 %) absolute increase in accuracy with respect to the base-
line. Thus, voiced regions of a speech utterance appear to pro-

vide resilience of a message to corruption by noise. However,
no significant improvement on 99.0 % baseline accuracy was
achieved under clean test conditions. Further details of this re-
search can be found in Moreno’s thesis [10]. In the future, we
propose to explore the influence of the voicing information on
different classes of speech sound, for instance on a phoneme
recognition task using TIMIT corpus, whose 16 kHz speech
provides more aperiodic information. These promising results
indicate that it may be worthwhile to investigate applying dif-
ferent forms of front-end processing to each stream, and to con-
sider other forms of model combination, such as in [6] and [12].
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