
Start- and End-node Segmental-HMM Pruning

Y. Shiga and P. J. B. Jackson ∗

Abstract

An efficient decoding algorithm for segmental HMMs (SHMMs) is pro-

posed with multi-stage pruning. The generation by SHMMs of a feature

trajectory for each state expands the search space and the computational

cost of decoding. We reduce it in three ways: pre-cost partitioning, start-

node (SN) beam pruning, and conventional end-node (EN) beam prun-

ing. Experiments show that partitioning cuts computation by 20–25% for

supervised training, and 40–50% for phone classification, without degra-

dation in recognition accuracy; SN and EN beam pruning together give

80% reduction for embedded recognition on triphone SHMMs, with less

than 0.1% degradation.

∗Centre for Vision, Speech and Signal Processing, School of Electronics and Physical Sci-

ences, University of Surrey, Guildford, GU2 7XH, United Kingdom, email: Y.Shiga@surrey.ac.uk

1



Introduction. In generating a feature-vector trajectory for each state, segmen-

tal HMMs (SHMMs) can represent speech dynamics and so outperform conven-

tional HMMs, whose independence assumption limits their treatment of acoustic

transitions, both for automatic speech recognition (ASR) and parametric speech

synthesis [1, 2]. The HMM’s success stems from its efficient recursive decoding

algorithms, though embedded training and recognition (without phone bound-

ary constraints) require far more computation than supervised training or phone

classification. The search space expands further with combinations of context-

sensitive models (e.g., triphones). Typical solutions are depth-first search [3, 4]

and beam search for breadth-first decoding [5].

In Viterbi-style SHMM decoding [6], output probability bi for state i is com-

puted over observation sequences (segments) of various duration. So, the search

problem re-emerges for SHMMs because multiple segment hypotheses must be

evaluated at each time t; whereas, for HMMs, the output probability is evaluated

only once per state for each observation yt. It is essential to develop efficient

decoders to save time for experimenting, as well as to develop real-time appli-

cations. Russell [6] proposes beam pruning and duration pruning for SHMMs,

showing their effectiveness experimentally. Our aim is to study various pruning

strategies to improve the computational efficiency of SHMM decoding.

We propose an efficient Viterbi-style SHMM algorithm that decomposes de-

coding into two operations: find best state transition, and select best segment

2



duration. Beam pruning is applied separately at each stage to cut the exploding

search space, which offers a synergistic approach to computational reduction.

We focus on minimizing the number of output probability calculations, which

consume over 97% of computation in recognition, even with single multivariate

Gaussian probability density functions (pdfs) per state. Other HMM pruning

methods, e.g., on partial output probabilities, could be used with SHMMs, yet

we concentrate here on more general strategies for segmental models. The next

section outlines the decoding algorithm that underlies our pruning strategies.

Then we describe the strategies, report their effect in experiments and conclude.

Two-step decoding algorithm. We introduce two probabilities for each node

in the trellis, at time t in state i: start-node probability (SNP) and end-node

probability (ENP). Let the ENP, δt(i), denote the probability of the best path

to this node, given the observations up to t, y
t
1 = y1..yt, which is expressed

recursively for maximum segment duration D [1], then factored:

δt(i) = max
j

max
d=1..D

δt−d(j) aji bi(y
t
t−d+1)

= max
d=1..D

νt−d+1(i) bi(y
t
t−d+1), (1)

where aji denotes the transition probability from states j to i; bi(y
t
t−d+1)

is output probability of the segment (of duration d) for state i. The SNP,

νt(i) = maxj δt−1(j) aji, is the maximum product of the ENP and state-

3



transition probability from all predecessors to that node, depicted in Fig. 1 (left).

The ENP in eq. (1) is the maximum product of SNP and output probability over

all segment durations, as in Fig. 1 (right). Our implementation passes tokens,

storing SNP for D frames, current ENP, best predecessor and duration for each

node. The decomposition in eq. (1) cuts the number of multiplications by 1/D.

However, the algorithm alone cannot reduce the search space when embedded

training/recognition is performed, or context-sensitive models decoded; pruning

is needed.

Pruning. Our recognizer uses four types of pruning: (1) pre-cost partitioning,

(2) SN beam pruning, (3) EN beam pruning, and (4) duration pruning [6]. Here,

we examine (1), (2) and (3).

Pre-cost partitioning: First, permitted paths are propagated backward

through the trellis, separately activating start and end nodes. Later in the for-

ward decoding pass, segment and transition probabilities are accumulated to

compute SNPs and ENPs only at valid SNs and ENs. Thus, likelihoods for nodes

that cannot be occupied are not computed, exploiting the topology of permis-

sible state transitions and maximum segment duration D, without any loss of

recognition accuracy. It is effective in supervised (e.g., phone-level) training and

classification. Fig. 2 illustrates a 3-state model aligned to a 7-frame utterance

4



starting at tS and ending at tE, with D = 3: (a) the backward pass starts from

the final null node and activates two ENs at tE, and hence 6 SNs; (b) those SNs

activate new ENs; (c) activation propagates back to the initial null node; (d) the

decoder’s forward pass removes inaccessible SNs. Partitioning eliminated 14 out

of 21 nodes, leaving 7 SNs and 7 ENs.

Beam pruning: After partitioning, the decoder independently prunes SNs

and ENs. It prunes nodes for paths that could later attain a higher likelihood, but

is particularly effective at reducing the computational load for embedded training

and recognition. In end-node pruning, ENs are pruned at each time t using the

EN beam threshold θE and the highest ENP for all states i, δ̂t:

if ln δt(i) < (ln δ̂t − θE), then kill EN of state i at t.

EN pruning of δt(i) corresponds to standard beam pruning [6]. Many candidate

segments evaluated in ENP calculation are pruned after output-probability com-

putation. In start-node pruning, the SN beam threshold θS is applied wrt. ν̂t, the

best SNP at t ∀i:

if ln νt(i) < (ln ν̂t − θS), then kill SN of state i at t.

SN pruning applies immediately before output-probability computation, and di-

rectly reduces computation using θS.

5



Experiments. To assess the reduction in computational load of our SHMM

decoder for each pruning strategy, we conducted experiments on the male-speaker

training set of the TIMIT database: 3180 sentences (318 spkr.) for training; 80

sentences (8 spkr.) for evaluation. Acoustic features were computed with HTK:

13 MFCCs including C0, 25-ms window, 10-ms step. Each SHMM state had a

linear segment trajectory and gamma duration model. We used 49 monophone

SHMMs and 1400 triphone SHMMs, a phone-level bigram language model, and

simple back-off for training and recognition with triphones.

Effect of partitioning: Reductions in output-probability calculation from

pre-cost partitioning were: 21.8 % and 24.4 % for supervised training with mono-

phones and triphones respectively; 6.3 % and 6.0 % for embedded training; 42.2 %

and 47.6 % for supervised recognition (i.e., classification); 0.4 % and 0.1 % for

embedded recognition. The 6 % reduction for embedded training is notable, and

partitioning was especially effective in supervised training and recognition with

both model types. These gains come without any loss of recognition accuracy.

Effects of beam pruning: Fig. 3 compares effectiveness of SN and EN

beam pruning with monophone and triphone models, in terms of accuracy and

load with respect to the beam threshold. As pruning increases (threshold drops),

the accuracy shows a critical point at which it fell away for both SN and EN prun-

6



ing, although the threshold is higher for SN pruning here. So, SNP should not

be pruned as severely as ENP, despite the greater computational benefits it can

bring. The choice of θS and θE is a trade off between lower computational com-

plexity and higher recognition performance, whose optimal adjustment further

investigation. Table 1 shows the result of combining SN and EN pruning with

selected values of θS and θE, which yields extra computational reduction: 9.7%

and 79.8% cuts in output-probability calculation for monophones and triphones,

respectively.

Conclusions. To reduce computation in SHMM decoding, we introduced an

efficient algorithm with pre-cost partitioning and two types of beam pruning.

The experimental results using these pruning strategies showed that partitioning

can reduce the computation by 20–25% in supervised training, by 40–50% in

phone classification, and by 6% in embedded training, for both monophone and

triphone models without degrading recognition accuracy. Combination of SN

and EN beam pruning reduced computation by 80% overall (by 3–4% compared

with only EN beam pruning, as in conventional beam pruning [6]), at a cost of

≤ 0.1% decrease in accuracy. We plan to use this segmental recognizer for future

studies on ASR and synthesis.

7



Acknowledgements. Thanks to EPSRC for funding the Dansa project

(GR/S85511/01), and to Martin Russell for sharing an implementation of the

segmental decoder (v.3.4, Balthasar project).

References

[1] V. V. Digalakis, “Segment-based stochastic models of spectral dynamics for

continuous speech recognition,” Ph.D. dissertation, Boston Univ., MA, 1992.

[2] M. J. F. Gales and S. J. Young, “Segmental hidden Markov models,” in Proc.

Eurospeech ’93, Berlin, Sep. 1993, pp. 1579–1582.

[3] F. Jelinek, “A fast sequential decoding algorithm using a stack,” IBM J. Res.

and Dev., Nov. 1969.

[4] D. Paul, “Algorithms for an optimal A∗ search and linearizing the search in

the stack decoder,” in Proc. ICASSP, Toronto, 1991, pp. 693–996.

[5] R. Haeb-Umbach and H. Ney, “Improvements in time-synchronous beam

search for 10000-word continuous speech recognition,” IEEE Trans. on

Speech and Audio Processing, vol. 2, pp. 353–356, 1994.

[6] M. J. Russell, “Reducing computational load in segmental hidden Markov

model decoding for speech recognition,” IEE Electronics Letters, vol. 41,

no. 25, pp. 1408–1409, Dec. 2005.

8



Authors’ affiliations: Y. Shiga and P. J. B. Jackson (Centre for Vision, Speech

and Signal Processing, School of Electronics and Physical Sciences, University of

Surrey, Guildford, GU2 7XH, United Kingdom, email: Y.Shiga@surrey.ac.uk)

9



Figure captions:

Fig. 1 Calculation of SNP (left) by finding the best predecessor, and of ENP

(right) by selecting the best segment duration.

Fig. 2 Identification of valid start and end nodes by partitioning.

Fig. 3 Phone recognition accuracy (left) and computational load (right) versus

beam threshold for SN and EN pruning.

Table captions:

Table 1 Recognition accuracy (%) and computational load (output probability

calculations) with SN and EN pruning.

10



Figure 1:

t1−t

state
i

timet1−t

state
i

time timet1+−Dt

state
i

valid SN
valid END

timet1+−Dt

state
i

valid SN
valid EN
valid SN
valid ENDD

11



Figure 2:

(a)

D
St Et

(a)

D
St Et

(c)

St Et

(c)

St Et

(b)

St Et

(b)

St Et

(d)

St Et

(d)

St Et

12



Figure 3:

0 20 40 60 80 100
48

50

52

54

56

58

beam threshold (log prob.)

ph
on

e 
ac

cu
ra

cy
 (

%
)

 

 

0 20 40 60 80 100

10
8

10
9

10
10

beam threshold (log prob.)
nu

m
be

r 
of

 o
ut

pu
t p

ro
b.

 c
al

cu
la

tio
ns

 

 

SN pruning (triphone)

EN pruning (triphone)

SN pruning (monophone)

EN pruning (monophone)

13



Table 1:

monophone triphone
strategy accuracy load accuracy load

no pruning 51.8 7.96 ×107 57.5 33.4 ×109

SN (θS=40) 51.8 7.24 ×107 57.6 9.45 ×109

EN (θE=30) 51.7 7.51 ×107 57.6 6.96 ×109

SN + EN 51.7 7.19 ×107 57.6 6.75 ×109

14


