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ABSTRACT

Virtual Reality (VR) systems have been intensely explored, with several research communities investigating the
different modalities involved. Regarding the audio modality, one of the main issues is the generation of sound that
is perceptually coherent with the visual reproduction. Here, we propose a pipeline for creating plausible interactive
reverb using visual information: first, we characterize real environment acoustics given a pair of spherical cameras;
then, we reproduce reverberant spatial sound, by using the estimated acoustics, within a VR scene. The evaluation
is made by extracting the room impulse responses (RIRs) of four virtually rendered rooms. Results show agreement,
in terms of objective metrics, between the synthesized acoustics and the ones calculated from RIRs recorded within

the respective real rooms.
1 Introduction

Nowadays, virtual reality (VR) is one of the main tech-
nological research foci [1]. Since VR is able to bring
the user into new fictional words, it is usually employed
for recreational purposes such as gaming [2] and movie
productions [3]. Nevertheless, VR can also aid health
sciences, by generating new ways of performing inva-
sive analysis and tests [4], or improving the life quality
of patients [5]. Moreover, VR can be applied to other
research areas which, at first glance, may seem to be
completely unrelated such as psychology [6], manufac-
turing [7], tourism [8], and education [9].

During the last decades, researchers mainly focused on
improving the visual side of VR experiences [10, 11].
The amount of research produced in this field has led
to great achievements, in particular regarding 3D ren-
dering and human-machine interaction [12]. However,

the ability of producing sounds that are coherent with
the virtual visual experience is a capability that must
be addressed in collaboration with the computer vision
community. In fact, a VR experience would never be
perceived as being “real” if sounds are not reproduced
in harmony with the human visual sensory system per-
ception [13, 14, 15].

It is important to distinguish between “plausible” and
“authentic” acoustic reproductions. In general, a repro-
duced sound that evokes auditory events that a listener
perceives as having occurred in a real environment is
typically defined as being plausible [16]. On the other
hand, an existing, real environment reproduction is au-
thentic where the same percepts as the real environment
are evoked [17]. Strength and precision of spatial infor-
mation vary between the audio and visual modalities,
when they are analyzed individually [18]. Nonethe-
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less, spatial information is acquired by humans as a
multimodal audio-visual combination. For example,
humans, as average, perform sound source localiza-
tion with an error of about 2° when the reproduction
is audio-only, however, for audio-visual reproductions,
this error increases to about 10° [18]. This observa-
tion is typically exploited by ventriloquists. Additional
studies, analyzing the effect of visual cues on plausibil-
ity of audio rendering, showed a dominance of vision
over acoustic cues [19]. This means that, when in the
presence of visual stimuli, the perceptual differences
between a real and a synthetic acoustic environment
are not as strictly defined as they are for unimodal sce-
narios. In VR, a visual component exists, hence, here,
audio-visual plausibility is the perceptual target.

Creating models that describe room acoustics has been
extensively investigated in the spatial audio commu-
nity [20]. Particular attention has been given to propose
RIR parameterization methods for spatial audio produc-
tion [21, 22, 23, 24]. These methods have the ability of
generating a set of parameters, able to characterize the
room acoustics. This process is typically done given
acoustic signals (i.e. room impulse responses (RIRs))
recorded in the environment under investigation. With
focus on VR, approaches focusing on the reproduction
side of the chain have been also proposed. For instance,
it has been proposed how to reproduce binaural sounds
given B-format signals [25, 26].

Recent studies demonstrated that, from vision, it is pos-
sible to determine, approximately, certain acoustic com-
ponents, such as the reverberation time (RT60) [27].
Moreover, it has been demonstrated that from a couple
of 360° cameras it is possible to estimate the acous-
tics [28]. This is done by determining the room geom-
etry and recognizing the materials. Computer vision
techniques using visual sensors have played a major
role in geometry reconstruction. Recovering geomet-
ric information from a single perspective photograph
or 360 image relies on geometrical cues such as lines
and texture [29, 30, 31]. 3D reconstruction from stereo
or multiple images is widely used for general scene
reconstruction [32, 33]. Kinect-like Red Green Blue
Depth (RGBD) sensors also provide good range infor-
mation for an indoor scene estimation [34, 35]. Re-
garding the material recognition task, several vision-
based approaches are available in the literature. In [36],
Bayesian generative models were proposed to exploit
features such as color and micro-texture. Kernel de-
scriptors were then utilized in [37], together with a

Nearest Neighbor (NN)-based approach. Later, accu-
racy was improved by employing convolutional neu-
ral networks [38]. These were also employed in [39],
where multi-class classification was proposed to iden-
tify both the object type and attributes.

In this paper, we propose a novel pipeline to reproduce,
in VR environments, the acoustics of real rooms given
visual sensors. We first perform a geometry estimation
of the room, which includes the pose of furniture and
related material labels. The main reconstruction algo-
rithm is extended from previous work proposed in [40],
for estimating reverberant spatial audio objects [41].
The estimation pipeline has been modified by applying
the new semantic segmentation algorithm and recon-
structing the final model using a cuboid fitting method
to generate more accurate room models. The VR im-
plementation applies the estimated acoustics of real
rooms into virtual environments using Google VR Res-
onance [42]. An additional novelty is the approach
used for evaluating the VR acoustics. Objective met-
rics are utilized to compare RIRs that were recorded
in the real rooms and the correspondent synthetic ones,
produced by the proposed pipeline.

The rest of the paper is structured as follows: Section 2
describes the proposed pipeline for reproducing real
world acoustics into virtual reality given spherical cam-
era images; Section 3 shows the experiments made
to evaluate the plausibility of the reproduced sounds;
finally, Section 4 draws the overall conclusions.

2 Proposed Pipeline

Fig. 1 shows the proposed pipeline to reconstruct an
acoustic VR room from a pair of 360° camera images.
A full surrounding scene is captured by a pair of ver-
tically aligned 360° cameras at two different heights.
These top and bottom images are used to estimate 3D
depth information of the scene by disparity estimation.
In addition, the top image is used for semantic scene
segmentation and object recognition using SegNet [43].
Object-labelled cuboid structure is reconstructed from
the depth estimation and semantic segmentation re-
sults. Acoustic properties for the detected objects are
assigned by mapping to the acoustic material list in
the Google Resonance Audio package. Finally, the
acoustic VR environment is modelled by setting sound
source and player models in Unity.
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Fig. 1: Block diagram of the proposed pipeline.

2.1 Visual Capture and Depth Estimation

3D geometry reconstruction from 2D photos or
Colour+Depth images has been widely investigated [44,
45, 46]. However, the limited field-of-view (FOV) of
normal perspective cameras requires a large number of
input images and long processing time. 3D reconstruc-
tion from 360° photos provides a solution to overcome
this limitation. Inexpensive commercial 360° cameras'
2 are getting popular and providing well-calibrated
equi-rectangular photos aligned to a spherical coor-
dinate. In [40], a frequency-dependent acoustic predic-
tion technique based on geometrical room modelling
using 360° cameras was proposed. Based on this ap-
proach, we introduce a cuboid-based semantic room
geometry modelling for room acoustics estimation us-
ing a pair of 360° cameras.

Two photos acquired from pre-calibrated fish-eye
lenses in a 360° camera are stitched to each other to
generate an equi-rectangular projection image as il-
lustrated in Fig. 2 (a). Equi-rectangular projection
images from two different heights are used to recover
depth information in the scene by a stereo matching
method [47]. Fig. 2 (b) shows the set up of two Ricoh
Theta S cameras used in our experiments. We used

!GoPro Fusion, https://shop.gopro.com/EMEA/
cameras/fusion/CHDHZ-103-master.html
2Ricoh Theta, https://theta360.com/en/

(a) Equi-rectangular projection image (b) Cam set up

Fig. 2: Visual capture system.

these cameras because they provide well-aligned seam-
less stitching with less distortion in mapping textures
from the fisheye lens to the Spherical coordinates.

3D depth information of the scene is estimated using
dense stereo matching with spherical stereo geometry
using a block matching method incorporating a region-
diving technique [48] which produces quick and reli-
able disparity with occlusion region detection. In the
spherical stereo geometry, the depth r; from the top
camera to the scene point P is calculated by triangula-
tion as Eq. (1):

sin@,
Iy /(tan(Gt—i—d) COSGI)) ( )

where 6, and 0, are angles of the projection of the point
P onto the 360° image pairs, d is the disparity between
two corresponding pixels, and B is the baseline distance
between the cameras’ center of projection.

2.2 Object Recognition and Room Geometry
Reconstruction

To build the acoustic room model, acoustic attributes
for all object surfaces in the scene are required. It
is well known that it is difficult to estimate acoustic
properties of the materials purely from visual inspec-
tion [49]. There have been some approaches to detect
material attributes from images [50, 28], but their ac-
curacy was typically below 50 %, for cross-dataset sce-
narios. Hence, they cannot be considered as suitable
to estimate the absorption and scattering coefficients
of objects. In this paper, we propose to use an object
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recognition method and map the object categories to
approximated acoustic properties of materials in Sec-
tion 2.3, similar to the approach used in [40].

Semantic object recognition in the scene is performed
with SegNet [43], a fully convolutional neural network
(CNN) architecture for semantic segmentation. The re-
sults are labelled into 14 object categories. The labelled
image through the SegNet is refined by morphological
opening process [51] to separate partially connected ob-
jects with the same label and smooth object boundaries.
Small regions are eliminated to generate simplified
scene structure.

Approximated 3D geometry of the scene is recon-
structed based on the semantic object segmentation
and depth estimation results. The image points with es-
timated depth information on the image are projected to
the 3D space. This point cloud is clustered into objects
with the labels assigned in SegNet. Finally the cuboid
fitting algorithm for 3D point clouds [52] is applied for
each cluster to build the cuboid-based 3D scene model.

2.3 VR Scene Rendering with Spatial Audio

The results of geometry reconstruction in Section 2.2
are saved as OBJ geometry and JSON metadata files.
The OBJ file includes 3D vertices, mesh groups, surface
normal and texture information. The JSON file includes
corresponding object information.

This output is directly imported to Unity> to build a
VR model. To do so, several SDK tools for produc-
ing 3D audio in VR environment are available. For
instance, Oculus’ [53], SteamVR [54] and Google Res-
onance [42] are widely known, and they all implement
an Ambisonics-based renderer. We chose the Reso-
nance Audio package by Google, since it is represen-
tative of the above-listed group of SDK tools, and it
fits well our needs. In Google Resonance, it is possi-
ble to have high-quality production of reverb, by pre-
computing acoustic probes. However, we chose not to
employ probes, instead, we prioritized rel-time inter-
action. Resonance provides 22 types of materials with
frequency-dependent acoustic attributes (i.e. absorp-
tion and scattering coefficients for the 9 octave bands
between 63 Hz and 16 kHz). As it is difficult to directly
detect acoustic materials from visual input, we map
the recognized object labels by SegNet in the previous
section to the material types in Resonance Audio as

3Unity, https://unity3d.com/

Table 1: Material matching to object.

Object Material Object Material
Ceiling Wood panel Furniture | Heavy curtain
Book Sheetlock Chair Wood panel

Floor Parquet Object Metal
Window | Thick Glass Wall Smooth Plaster
Sofa Heavy curtain Table Wood panel
TV Metal Unknown Transparent

Table 1. We assign to the acoustically closest material
when it was difficult to match the material for certain
objects. Finally a virtual listener and an audio source
are placed in the scene to simulate spatial audio in the
reconstructed scene.

3 Experiments

In this section, we present the experiments, with re-
lated results, that evaluate the quality of the acoustics
reproduced in VR environments. For the sake of this
evaluation, we compared RIRs recorded in the real en-
vironments with the related synthetic RIRs produced
in VR. We employed early decay times (EDTs) and
RT60s as evaluation metrics, to directly analyse both
the early reflections and the late reverberation.

3.1 Rooms and Their Reconstruction

Four rooms were employed for the analysis. Their di-
mensions as well as loudspeaker and microphone posi-
tions are reported in Table 2. The first, named as “LR”,
is a listening room at BBC R&D, in Salford, UK [55].
The second, named as “UL” [55], is a usability labora-
tory at BBC R&D. “S1” is a large recording studio at
the University of Surrey [56]. The fourth is a meeting
room “MR” at the University of Surrey [55]. RIRs
were recorded in each room by employing the swept-
sine method [57]: the rooms were excited through a
10 s swept-sine signal between 20 Hz and 24 kHz, with
a sampling frequency of 48 kHz. In every room, the
Countryman B3 Omnidirectional Lavalier microphone
was used, chosen for its combination of high-quality
and portability. For the same reasons, we also em-
ployed Genelec 8020B, as loudspeakers, in MR, UL
and LR. Being S1 a larger room, there, we used a Gen-
elec 1032B, to exploit its higher power and acoustically
excite the whole room. Two 360° Ricoh Theta cam-
eras were utilized to estimate the room geometry and
perform the material classification.
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Table 2: Properties of the recorded room setups.

Room Size (m®) Loudsp. pos. (m) Mic. pos. (m)
MR 4.25%5.61x2.33 [3.00,2.12,1.00] | [0.33,2.12,1.00]
UL 5.20x5.57x2.91 [2.24,1.31,1.07] | [2.27,3.58,1.07]
LR 5.64x5.05%2.90 [2.80,0.51,1.20] | [2.79,2.55,1.08]
S1 14.55x17.08x6.50 | [5.00,4.94,1.50] | [5.00,6.94,1.50]

Fig. 3 shows the rendered scenes of the original 360°
photos and reconstructed cuboid-based models with
colour-coded object labels in Unity*. The 360° pho-
tos are simply mapped to a large sphere to give a look
around effect on the left. The color texture is not visu-
alized in the rendered virtual view in the full 3D envi-
ronment on the right. The results for MR are shown in
Fig. 1. The cuboid primitives represent the approximate
geometrical structure of the scene.

3.2 Extracting RIRs from VR Scene

To perform the pipeline evaluation, we need to com-
pare RIRs recorded within the real environment with
the related RIRs generated within VR. Although pro-
cedures to record RIRs in real environments are well
established [58], extracting RIR information from VR
has not been extensively explored in the literature yet.
Therefore, we decided to follow an approach that treats
the virtual environment as a real one. Since Google
Resonance faces some difficulties when used for re-
producing sinusoids [42], it was not possible to em-
ploy methods such as the swept-sine [57]. Instead, the
sound of an anechoic gun-shot (normalized in the time
domain) was placed at the source position [59]. By
recording the response at the listening position, we
obtained the virtual environment’s RIR.

3.3 Evaluation Metrics

To evaluate the quality of the acoustics reproduced in
VR we analyze the EDTs and RT60s. EDT is, in fact,
a good metric to evaluate the acoustics from a point
of view that is subjectively important, by taking into
account the energy carried by the early reflections [60,
61]; on the other hand, RT60 relates to the average
absorption and size of the room, making it important
for describing the reverberance from a physical point of
view, and it mainly takes into account the late diffuse
reflections [60, 61]. EDT is calculated as the time

4The positions of sound sources and listeners in Fig. 3 are chosen
for visualization purposes. They are different from the ones used for
the RIR recordings and reported in Table 2.

(a) Studio 1 (S1).

(c) Usability lab (UL).

Fig. 3: Original 360 photos and reconstructed VR
scenes with virtual sound source and listener
(Left: 360 photo, Right: Reconstructed scene
with object labels).

required for the energy to decay 10 dB after the direct
sound, whereas RT60 defines the time employed by
the energy to decay 60 dB. Both EDT and RT60 results
are reported as the average over the 6 octave bands
between 250 Hz and 8 kHz.

To better understand the perceptual similarity between
the generated RIRs and the related recorded ones, we
define the just noticeable differences (JNDs) for the
evaluation metrics. The JND for the RT60 is chosen to
be the 20 % [62], whereas the one for the EDT is the
5 % [63]. These JNDs are adopted from the literature,
however, it is important to note that the same litera-
ture explains how these percentages vary with different
types of sound. For instance, in [62] JNDs for RT60
were found up to about 30 % for musical signals [64].
Moreover, it is important to remark what was already
discussed in Section 1: for VR purposes, authenticity
is not the benchmark to target. It is, instead, widely
recognized that plausibility should be achieved [16, 17].
However, to our knowledge, it has not been identified
yet, in the literature, any threshold which defines plausi-
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Fig. 4: Estimated EDTs for the four rooms, related to
the estimated RIRs in VR environment.

bility limens, for the objective metrics employed. Previ-
ous studies typically focused on determining plausibil-
ity by observing the overall sound perception, without
distinguishing between the perception of early reflec-
tions and late reverberation [65]. Furthermore, in the
presence of visual stimuli, the perceptual differences
between real and synthetic acoustic environment are
not as strictly defined as they are for unimodal scenar-
ios [19]. In this paper, we employ JNDs to be coherent
with the available literature. However, INDs typically
refer to authenticity in audio-only scenarios.

3.4 Results

In Fig. 4 and 5, we compare the EDTs and RT60s,
respectively, of recorded and generated RIRs. These re-
sults are reported as average among the 6 octave bands
between 250 Hz and 8 kHz. Two ways of using the
proposed visual methods for modeling the acoustics
are tested. The first one synthesizes the room acous-
tics in VR without considering any furniture: only the
room boundaries are modeled. The second way, in-
stead, calculates the acoustics of the rooms, in VR, by
also including the estimated furniture. We decided to
compare these two variants of the proposed pipeline to
analyze the importance of furniture information, while
constructing a room acoustic model for VR.

Let us start from Fig. 4. The EDT results related to
RIRs generated without modeling the furniture are, in
general, large for every dataset, a part for LR where
the estimated EDT falls close to the related JND band,
being the error equal to 8 %. S1 and UL present the
largest errors, with the EDT of the estimated RIRs be-
ing 420 % and 1183 % larger than the recorded RIRs’,
respectively. In MR, instead, the EDT error is 218 %.
Considering then the acoustic model including the fur-
niture, there is a great improvement with respect to the

1.00 Sl e R
- Py @No Furniture S1
20.75¢ /) ONo Furniture LR
3 Ky @No Furniture UL
20.50 e @ No Furniture MR
S ,’. o . 3 @®With Furniture S1
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0.00 0.50 1.00 1.50. 2.00 2.50 3.00 3.50 4.00
Estimated (s)

Fig. 5: Estimated RT60s for the four rooms, related to
the estimated RIRs in VR environment.

boundary-only-based acoustic model. In S1, MR and
UL, the errors drastically drop down to 29 %, 22 % and
609 %, respectively. The only room that seems not to
benefit from this improvement is LR, which error re-
mains 8 %. However, LR was actually an empty room,
thus there is no substantial difference between the two
tested room models. In general, the EDTs of the syn-
thetic RIRs fall now close to the IND bands, with the
average error among S1, LR and MR being 20 %. The
only outlier is UL, where the EDT is overestimated.
This is due to issues in recognizing the materials of so-
fas lying next to the listening position, hence generating
wrong early reflections.

Regarding the RT60 results in Fig. 5, there are similar
trends to the ones observed for the EDTs. Observing
first the errors produced by the model that considers
only the room boundaries, S1, UL and MR present poor
performance. Their errors are 295 %, 363 % and 239 %,
respectively. However, as for the EDTs, the RT60 er-
rors are dramatically reduced when also furniture is
modeled. Only LR does not present any improvement,
since, as described above for the EDTs, it is an empty
room. Nevertheless, for both models the synthetic RIR
RT60s fall inside the JND band, making the estima-
tions indistinguishable from the recordings. The error
percentage drops to 78 % in UL, and to 52 % in MR.
The largest error, i.e. 89 %, is seen in S1. The rea-
son for overestimating the RT60, there, is the acoustic
panels placed along the walls for acoustical treatment.
The material recognition algorithm does not recognize
them, and labels the whole planar reflectors as concrete
(see Fig. 3 (a)). To quantitatively analyze this issue, we
manually edited the wall labels from concrete to the
material considered as being the closer to groundtruth
(i.e. heavy curtains in Google Resonance). By doing so,
the absorption coefficient, averaged over all the room
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Fig. 6: Short time Fourier transform of the measured (top row) and synthesized (bottom row) RIRs, for the four
datasets. The white dashed lines indicate the middle frequencies, i.e. 500 Hz, 1 kHz and 2 kHz.

surfaces, increased 4.31 times. Due to the Sabine’s
equation [66], this led the RT60 error to drop from
89 % to 53 %. Concluding, these results prove that,
when furniture is modeled, the generated RIR RT60s
are similar to the respective recorded ones, with errors
falling close to the JND bands. Therefore, we can con-
firm that the interaction of the sound with the objects
lying inside the environment is a fundamental concept
to be considered during the definition of an acoustic
room model for VR. It is also interesting to report that
informal listening tests were undertaken, highlighting
the plausibility of the synthesized VR acoustics.

The normalized power of the short time Fourier trans-
form calculated from both recorded and synthesized
RIRs (for the model including furniture) are reported
in Fig. 6. The upper row shows the spectrograms of
the recorded RIRs, whereas the lower row that of the
synthetic RIRs. Columns from the left refer to MR,
UL, LR and S1, respectively. As it was expected from
the previous paragraphs’ discussion, the energy of the
RIRs generated through the proposed pipeline has a
similar decay to the respective recorded RIRs, espe-
cially for frequencies above 500 Hz. Fig. 6 also shows
that, in general, the low frequencies are overestimated.
Issues at these frequencies were, however, expected,
since the technology employed in Google Resonance
to produce 3D sound is based on image sources [67].
A finite difference time domain (FDTD) method could
be used, instead, to enhance the performance at the
low-frequencies. Nonetheless, as it was also discussed

in [40], FDTD has a high computational cost, making
it impractical for real-time applications, such as VR.

4 Conclusion

We proposed a novel pipeline able to generate synthetic
RIRs from 360 images, for VR productions, as approx-
imation of real environment acoustics. The first part of
the pipeline was composed of vision methods to esti-
mate the room geometry and determine the materials.
This information was used as input to the acoustic sim-
ulation stage of the pipeline, which was represented by
the Google Resonance SDK, running in Unity.

Experiments were performed for four different rooms.
The EDTs and RT60s calculated from RIRs recorded in
these rooms were compared to the EDTs and RT60s re-
lated to RIRs generated in VR by the proposed pipeline.
The results proved the importance of including furni-
ture within acoustic room models. In fact, errors drasti-
cally dropped down with respect to a situation where
only room boundaries were modeled. Furthermore, it
was also shown that, in general, the errors resulted to
be close to the JND bands. This means that, although
the reproduction cannot be defined as being authentic,
it is plausible, thus achieving the perceptual target typ-
ically defined for audio-visual reproductions, such as
VR. Furthermore, the analysis highlighted a gap in the
literature, regarding thresholds for the evaluation of
acoustics’ plausibility in VR reproductions, that could
be investigated in future work.
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Future work may also look at improving the material
recognition method. Perhaps, acoustic sensors may be
employed with this regard, to create a stronger relation-
ship between objects and related acoustic properties.
Moreover, formal listening tests may be undertaken,
to subjectively analyze the acoustic plausibility of the
proposed audio-visual method’s output.

5 Acknowledgments

This work was supported by the EPSRC Programme
Grant S3A: Future Spatial Audio for an Immersive
Listener Experience at Home (EP/LLO00539/1) and the
BBC as part of the BBC Audio Research Partnership.

References

[1] van Krevelen, D. W. F. and Poelman, R., “A Sur-
vey of Augmented Reality Technologies, Appli-
cations and Limitations,” International Journal
of Virtual Reality, 9(2), pp. 1-20, 2010.

[2] Rendon, A. A., Lohman, E. B., Thorpe, D., John-
son, E. G., Medina, E., and Bradley, B., “The
effect of virtual reality gaming on dynamic bal-
ance in older adults,” Age and Aging, 41(4), pp.
549-552, 2012.

[3] Gilbert, A., Volino, M., Collomosse, J., and
Hilton, A., “Volumetric performance capture
from minimal camera viewpoints,” in Proc. of
ECCV 2018: European Conference on Computer
Vision, Munich, Germany, 2018.

[4] Malloy, K. M. and Milling, L. S., “The effective-
ness of virtual reality distraction for pain reduc-
tion: A systematic review,” Clinical Psychology
Review, 30(8), pp. 1011-1018, 2010.

[5] Laver, K. E., George, S., Thomas, S., Deutsch,
J. E., and Crotty, M., “Virtual reality for stroke
rehabilitation,” The Cochrane Collaboration,
2015(2), pp. 1-27, 2015.

[6] Wilson, C. J. and Soranzo, A., “The Use of Virtual
Reality in Psychology: A Case Study in Visual
Perception,” Hindawi Computational and Mathe-
matical Methods in Medicine, 2015(1), pp. 1-7,
2015.

[7] Ong, S. K. and Nee, A. Y. C., Virtual and Aug-
mented Reality Applications in Manufacturing,
Springer, 2004.

[8] Guttentag, D. A., “Virtual reality: Applications
and implications for tourism,” Tourism Manage-
ment, 31(5), pp. 637-651, 2010.

[9] Freina, L. and Ott, M., “A Literature Review on
Immersive Virtual Reality in Education : State Of
The Art and Perspectives,” in Proc. of the Inter-
national Scientific Conference - ELearning and
Software Education, Bucharest, Romania, 2015.

[10] Sun, B. and Saenko, K., “From Virtual to Real-
ity: Fast Adaptation of Virtual Object Detectors
to Real Domains,” in Proc. of the British Ma-
chine Vision Conference (BMVC), Nottingham,
UK, 2014.

[11] Rix, J., Haas, S., and Teixeira, J., Virtual Pro-
totyping: Virtual environments and the product
design process, Springer International Publishing,
2016.

[12] Zhang, Z., “Microsoft Kinect Sensor and Its Ef-
fect,” IEEE MultiMedia, 19(2), pp. 4-10, 2012.

[13] Rummukainen, O., Robotham, T., Schlecht, S. J.,
Plinge, A., Herre, J., and Habets, E. A. P, “Audio
Quality Evaluation in Virtual Reality: Multiple
Stimulus Ranking with Behavior Tracking,” in
Proc. of the AES Conference on Audio for Virtual
and Augmented Reality, Redmond, USA, 2018.

[14] Stecker, G. C., Moore, T. M., Folkerts, M., Zotkin,
D., and Duraiswami, R., “Toward Objective Mea-
sure of Auditory Co-Immersion in Virtual and
Augmented Reality,” in Proc. of the AES Confer-
ence on Audio for Virtual and Augmented Reality,
Redmond, USA, 2018.

[15] McArthur, A., Sandler, M., and Stewart, R., “Per-
ception of Mismatched Auditory Distance - Cin-
ematic VR,” in Proc. of the AES Conference on
Audio for Virtual and Augmented Reality, Red-
mond, USA, 2018.

[16] Lindau, A. and Weinzierl, S., “Assessing the Plau-
sibility of Virtual Acoustic Environments,” Acta
Acustica united with Acustica, 98(5), pp. 804-810,
2012.

[17] Blauert, J., Communication Acoustics, Springer-
Verlag Berlin Heidelberg, 2005.

[18] Stenzel, H. and Jackson, P. J. B., “Perceptual
Thresholds of Audio-Visual Spatial Coherence
for a Variety of Audio-Visual Objects,” in Proc.
of the AES Conference on Audio for Virtual and
Augmented Reality, Redmond, USA, 2018.

[19] Bailey, W. and Fazenda, B. M., “The effect of vi-
sual cues and binaural rendering method on plau-
sibility in virtual environments,” in Proc. of the
144th AES Convention, Milan, Italy, 2018.

[20] Vorldnder, M., Auralization: Fundamentals of
Acoustics, Modelling, Simulation, Algorithms and

AES Conference on Immersive and Interactive Audio, York, UK, 2019 March 27 — 29
Page 8 of 10



Remaggi et al.

Reproducing Real World Acoustics in VR Using Spherical Cameras

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Acoustic Virtual Reality, Springer, 2008.

Pulkki, V., “Spatial Sound Reproduction with Di-
rectional Audio Coding,” J. of the Audio Engi-
neering Society, 55(6), pp. 503-516, 2007.
Tervo, S., Patynen, J., Kuusinen, A., and Lokki,
T., “Spatial Decomposition Method for Room
Impulse Responses,” J. of the Audio Engineering
Society, 61(1/2), pp. 17-28, 2013.

Coleman, P., Franck, A., Jackson, P. J. B., Hughes,
R. J., Remaggi, L., and Melchior, F., “Object-
Based Reverberation for Spatial Audio,” J. of the
Audio Engineering Society, 65(1/2), pp. 6677,
2017.

Politis, A., Tervo, S., Lokki, T., and Pulkki, V.,
“Parametric multidirectional decomposition of mi-
crophone recordings for broadband high-order
ambisonic encoding,” in Proc. of the 144th AES
Convention, Milan, Italy, 2018.

T. McKenzie, D. M. and Kearney, G., “Direc-
tional Bias Equalisation of First-Order Binaural
Ambisonic Rendering,” in Proc. of the AES Con-
ference on Audio for Virtual and Augmented Re-
ality, Redmond, USA, 2018.

Binelli, M., Pinardi, D., Nili, T., and Farina, A.,
“Individualized HRTF for playing VR videos with
Ambisonics spatial audio on HMDs,” in Proc.
of the AES Conference on Audio for Virtual and
Augmented Reality, Redmond, USA, 2018.

Kon, H. and Koike, H., “Deep neural networks for
cross-modal estimations of acoustic reverberation
characteristics from two-dimensional images,” in
Proc. of the 144th AES Convention, Milan, Italy,
2018.

Kim, H., Campos, T., and Hilton, A., “Room
Layout Estimation with Object and Material At-
tributes Information using a Spherical Camera,”
in Proc. 3DV, 2016.

Yan, X., Yang, J., Yumer, E., Guo, Y., and Lee, H.,
“Perspective Transformer Nets: Learning Single-
View 3D Object Reconstruction without 3D Su-
pervision,” in Proc. NIPS, 2016.

Su, H., Fan, H., and Guibas, L., “A Point Set Gen-
eration Network for 3D Object Reconstruction
from a Single Image,” in Proc. CVPR, 2017.

Xu, J.,, Stenger, B., Kerola, T., and Tung,
T., “Pano2CAD: Room Layout from a Single
Panorama Image,” in 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pp- 354-362, 2017.

Scharstein, D. and Szeliski, R., “A Taxonomy

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

and Evaluation of Dense Two-frame Stereo Cor-
respondence Algorithms,” International Journal
of Computer Vision, 47(1), pp. 7-42, 2002.
Seitz, S. M., Curless, B., Diebel, J., Scharstein, D.,
and Szeliski, R., “A Comparison and Evaluation
of Multi-View Stereo Reconstruction Algorithms,”
in Proc. CVPR, pp. 519-528, 2006.

Chen, K., Lai, Y.-K., and Hu, S.-M., “3D in-
door scene modeling from RGB-D data: a survey,”
Computational Visual Media, 1(4), pp. 267-278,
2015.

Choi, S., Zhou, Q.-Y., and Koltun, V., “Robust
Reconstruction of Indoor Scenes,” in Proc. CVPR,
2015.

Liu, C., Sharan, L., Adelson, E. H., and Rosen-
holtz, R., “Exploring features in a Bayesian frame-
work for material recognition,” in Proc. CVPR,
pp- 239-246, 2010.

Hun, D., Bo, L., and Ren, X., “Toward Robust
Material Recognition for Everyday Objects,” in
Proc. of the British Machine Vision Conference
(BMVC), pp. 48.1-48.11, 2011.

Bell, S., Upchurch, P., Snavely, N., and Bala, K.,
“Material Recognition in the Wild With the Mate-
rials in Context Database,” in The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), 2015.

Kim, H., de Campos, T., and Hilton, A., “Room
Layout Estimation with Object and Material At-
tributes Information Using a Spherical Camera,”
in Fourth International Conference on 3D Vision
(3DV), pp. 519-527, 2016.

Kim, H., Hough, R. J., Remaggi, L., Jackson,
P. B. J.,, Hilton, A., Cox, T. J., and Shirley,
B., “Acoustic Room Modelling using a Spherical
Camera for Reverberant Spatial Audio Objects,”
in Proc. 142nd AES, Berlin, Germany, 2017.
Remaggi, L., Jackson, P. J. B., and Coleman, P.,
“Estimation of Room Reflection Parameters for a
Reverberant Spatial Audio Object,” in Proc. of the
138th AES Convention, Warsaw, Poland, 2015.
Google, “Google VR SDK,” https:
//developers.google.com/
resonance—audio/, 2017.

Badrinarayanan, V., Kendall, A., and Cipolla,
R., “SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Image Segmentation,”
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2017.

Sinha, S. N., Steedly, D., Szeliski, R., Agrawala,

AES Conference on Immersive and Interactive Audio, York, UK, 2019 March 27 — 29
Page 9 of 10



Remaggi et al.

Reproducing Real World Acoustics in VR Using Spherical Cameras

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

M., and Pollefeys, M., “Interactive 3D Architec-
tural Modeling from Unordered Photo Collec-
tions,” in Proceedings of SIGGRAPH ASIA, 2008.
Furukawa, Y., Curless, B., Seitz, S. M., and
Szeliski, R., “Reconstructing building interiors
from images,” in Proc. ICCV, 2009.

Newcombe, R., Izadi, S., Hilliges, O., Molyneaux,
D., Kim, D., Davison, A., Kohli, P., Shotton, J.,
Hodges, S., and Fitzgibbon, A., “KinectFusion:
Real-Time Dense Surface Mapping and Tracking,”
in Proceedings of ISMAR, 2011.

Kim, H., Remaggi, L., Jackson, P. J. B., Fazi,
F. M., and Hilton, A., “3D Room Geometry Re-
construction Using Audio-Visual Sensors,” in
2017 International Conference on 3D Vision
(3DV), Qingdao, China, 2017.

Kim, H. and Sohn, K., “3D reconstruction from
stereo images for interactions between real and
virtual objects,” Signal Processing: Image Com-
munication, 20(1), pp. 61-75, 2005.

Jeong, C.-H., Marbjerg, G., and Brunskog, J.,
“Uncertainty of input data for room acoustic sim-
ulations,” in Proc. of bi-annual Baltic-Nordic
Acoustic Meeting, 2016.

Zheng, S., Cheng, M.-M., Warrell, J., Sturgess, P.,
Vineet, V., Rother, C., and Torr, P. H. S., “Dense
Semantic Image Segmentation with Objects and
Attributes,” in Proc. CVPR, 2014.

Gonzalez, R. C. and Woods, R. E., Digi-
tal Image Processing, Pearson, 2017, ISBN
9781292223049.

Kwon, S.-W., Bosche, F., Kim, C., Haas, C., and
Liapi, K., “Fitting range data to primitives for
rapid local 3D modeling using sparse range point
clouds,” Automation in Construction, 13(1), pp.
67-81, 2004.

Oculus, “Oculus SDK,” https://
developer.oculus.com/, 2017.
Valve, “SteamVR SDK.,” https:

//steamcommunity.com/steamvr,

2017.

Kim, H., Remaggi, L., Jackson, P. J. B,
and Hilton, A., “S3A audio-visual -cap-
tures,” https://doi.org/10.15126/
surreydata.00812228,2017.

Coleman, P., Remaggi, L., and Jackson,
P. J. B, “S3A room impulse responses,’
http://dx.doi.org/10.15126/
surreydata.00808465, 2015.

Farina, A., “Simultaneous measurement of im-

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

pulse response and distortion with a swept-sine
technique,” in Proc. of the 108th Audio Engineer-
ing Society Convention, 2000.

Stan, G. B., Embrechts, J. J., and Archambeau, D.,
“Comparison of different impulse response mea-
surement techniques,” J. of the Audio Engineering
Society, 50(4), pp. 249-262, 2002.

Cox, T., “Gun shot in anechoic chamber,’
Freesound: https://freesound.org/
people/acs272/sounds/210766/,

2013.

Bradley, J. S., “Review of objective room acous-
tics measures and future needs,” Applied Acous-
tics, 72(10), pp. 713-720, 2011.

Rossing, T. D., Springer Handbook of Acous-
tics - 2nd Ed., Springer-Verlag Berlin Heidelberg,
2014.

Meng, Z., Zhao, F., and He, M., “The Just No-
ticeable Difference of Noise Length and Rever-
beration Perception,” in Proc. of the International
Symposium on Communications and Information
Technologies, Bangkok, Thailand, 2006.
Vorldnder, M., “International round robin on room
acoustical computer simulations,” in Proc. of the
15th ICA, Trondheim, Norway, 1995.

Wendt, T., de Par, S. V., and Ewert, S. D.,
“A Computationally-Efficient and Perceptually-
Plausible Algorithm for Binaural Room Impulse
Response Simulation,” J. of the Audio Engineer-
ing Society, 62(11), pp. 748-766, 2014.
Neidhardt, A., Tommy, A. 1., and Pereppadan,
A. D., “Plausibility of an interactive approaching
motion towards a virtual sound source based on
simplified BRIR sets,” in Proc. of the 144th AES
Convention, Milan, Italy, 2018.

Kuttruff, H., Room Acoustics - 5th Edition, Spon
Press, 2009.

Allen, J. B. and Berkley, D. A., “Image method
for efficiently simulating small-room acoustics,”
The Journal of the Acoustical Society of America,
65(4), pp. 943-950, 1979.

AES Conference on Immersive and Interactive Audio, York, UK, 2019 March 27 — 29

Page 10 of 10



