

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method correlations algorithm Evaluation

Modal analysis

Conclusion

References

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Centre for Vision, Speech and Signal Processing (CVSSP) University of Surrey, UK.

July 2, 2008

Acoustics'08 Paris

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Outline

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method

algorithm

Evaluation

Modal analysis

Conclusion

References

- What do we know about articulation?
- Determining articulatory responsibilities
 - inter-articulator correlations
 - critical articulator identification
- Evaluation of results
 - comparison with phonetics (IPA)
 - benchmark against exhaustive search

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Investigation of modes by PCA
- Conclusion

Statistical identification of critical, dependent

and redundant articulators

Philip Jackson

Singampalli

Motivation

About speech articulation

What we know:

- abstraction of phones as phonemes
- Physiology of muscle groups
- ophysical dynamics of articulators
- critical articulators' $(1^y/2^y)$ task dynamics
- Soarticulation causes
 - $\ensuremath{\,\bullet\,}$ asymmetric smoothing and target undershoot
 - ${\scriptstyle \bullet}$ spreading of distinctive articulatory features
- asynchrony of articulatory events (landmarks)
 anageh is afficient, adaptive verentile, rehvet
- \bigcirc speech is efficient, adaptive, versatile, robust

Statistical identification of critical,

dependent and redundant

About speech articulation

What we don't know:

- I how to specify phoneme-to-phone conversion
- I how motor commands are organized
- I how dynamical properties vary during utterance
- oprecisely which articulator is responsible for what
- I how to incorporate within a coarticulation model
 - learning of actual articulatory targets
 - effects of feature spreading
- I how to detect and parameterize events
- how to build a comprehensive model of speech articulation within the communicative loop

articulators Philip Jackson & Veena Singampalli

Outline

Motivation

Method correlations algorithm

Evaluation

Modal analysis

Conclusion

References

Critical articulator identification

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method

algorithm

Evaluation

Modal analysis

Conclusion

References

Constraints on gestures determined by rôle:

• critical, dependent or redundant

Our algorithm [Singampalli and Jackson, 2007]:

- is entirely statistical and data driven
- captures constraints from
 - correlated movement of every articulator in space
 - correlations amongst articulators
- identifies articulatory responsibilities
 - i.e., changes in mean and variance
- provides information about the structure underlying gestural dynamics of speech articulation

Articulatory data

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method correlations algorithm Evaluation

Conclusion

References

• Electro-magnetic articulography (EMA) data for two speakers (1 M, 1 F)) from MOCHA database [Wrench, 2001], low-pass filtered and resampled at 10 ms frame rate

Figure: Midsagittal views of human speech production system [Saltzman and Munhall, 1989].

(日)

Articulatory correlations

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method

correlations

Evaluation

Modal analysis

References

|r| < 0.1 $0.1 \le |r| < 0.45$ $0.5 \le |r| < 1$ r = 1

	ULy	ULx	LLy	LLx	Lly	LIx	TTy	TBy	TDy	TTx	TBx	TDx	Vy	Vx
ULy	1.00	0.10	-0.28	-0.23	0.20	-0.03	0.32	0.18	-0.02	0.05	-0.07	-0.13	-0.02	-0.10
ULx	0.53	1.00	-0.34	0.56	-0.14	0.00	-0.10	0.02	0.03	-0.23	-0.28	-0.21	-0.05	-0.03
LLy	-0.31	-0.15	1.00	-0.31	0.53	-0.22	0.27	-0.04	-0.14	0.03	0.10	0.06	0.02	0.00
LLx	0.27	0.34	-0.70	1.00	-0.43	0.51	-0.29	-0.04	0.10	-0.09	-0.04	0.10	-0.06	-0.04
Lly	0.05	-0.17	0.65	-0.55	1.00	-0.34	0.56	0.32	0.03	-0.13	-0.14	-0.18	0.02	0.00
Llx	-0.04	0.03	-0.49	0.61	-0.71	1.00	-0.30	-0.05	0.07	0.13	0.32	0.37	-0.15	-0.34
тту	0.29	0.02	0.32	-0.31	0.60	-0.43	1.00	0.41	0.00	0.16	0.00	-0.11	0.14	0.14
тву	0.19	-0.04	0.06	-0.08	0.42	-0.36	0.53	1.00	0.73	0.05	-0.10	-0.05	0.07	0.16
TDy	0.08	-0.08	-0.10	0.14	0.09	-0.02	0.08	0.75	1.00	0.04	-0.08	0.10	0.24	0.30
ттх	-0.10	-0.18	0.01	-0.06	-0.01	0.03	0.06	0.06	-0.01	1.00	0.84	0.74	0.19	0.14
твх	-0.08	-0.16	0.14	-0.19	0.12	-0.05	0.18	-0.03	-0.24	0.90	1.00	0.91	-0.04	-0.08
TDx	-0.15	-0.22	0.10	-0.17	0.04	0.03	0.11	-0.02	-0.21	0.82	0.92	1.00	-0.03	-0.08
Vy	0.02	-0.08	-0.09	0.02	-0.05	0.05	-0.06	0.08	0.23	0.19	0.06	0.01	1.00	0.70
Vx	0.13	0.05	-0.18	0.11	-0.12	0.12	-0.05	-0.04	0.06	0.24	0.14	0.05	0.81	1.00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Articulatory correlations

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method

correlations

Evaluation

Modal analysis

References

ullet Statistically significant ($\alpha=$ 0.05) correlation matrix

	ULy	ULx	LLy	LLx	Lly	LIx	TTy	TBy	TDy	TTx	TBx	TDx	Vy	Vx
ULy	1.00	0.10	-0.28	-0.23	0.20	-0.03	0.32	0.18	-0.02	0.05	-0.07	-0.13	-0.02	-0.10
ULx	0.53	1.00	-0.34	0.56	-0.14	0.00	-0.10	0.02	0.03	-0.23	-0.28	-0.21	-0.05	-0.03
LLy	-0.31	-0.15	1.00	-0.31	0.53	-0.22	0.27	-0.04	-0.14	0.03	0.10	0.06	0.02	0.00
LLx	0.27	0.34	-0.70	1.00	-0.43	0.51	-0.29	-0.04	0.10	-0.09	-0.04	0.10	-0.06	-0.04
Lly	0.05	-0.17	0.65	-0.55	1.00	-0.34	0.56	0.32	0.03	-0.13	-0.14	-0.18	0.02	0.00
LIx	-0.04	0.03	-0.49	0.61	-0.71	1.00	-0.30	-0.05	0.07	0.13	0.32	0.37	-0.15	-0.34
тту	0.29	0.02	0.32	-0.31	0.60	-0.43	1.00	0.41	0.00	0.16	0.00	-0.11	0.14	0.14
тву	0.19	-0.04	0.06	-0.08	0.42	-0.36	0.53	1.00	0.73	0.05	-0.10	-0.05	0.07	0.16
TDy	0.08	-0.08	-0.10	0.14	0.09	-0.02	0.08	0.75	1.00	0.04	-0.08	0.10	0.24	0.30
TTx	-0.10	-0.18	0.00	-0.06	0.00	0.03	0.06	0.06	0.00	1.00	0.84	0.74	0.19	0.14
твх	-0.08	-0.16	0.14	-0.19	0.12	-0.05	0.18	-0.03	-0.24	0.90	1.00	0.91	-0.04	-0.08
TDx	-0.15	-0.22	0.10	-0.17	0.04	0.03	0.11	-0.02	-0.21	0.82	0.92	1.00	-0.03	-0.08
Vy	0.02	-0.08	-0.09	0.00	-0.05	0.05	-0.06	0.08	0.23	0.19	0.06	0.00	1.00	0.70
Vx	0.13	0.05	-0.18	0.11	-0.12	0.12	-0.05	-0.04	0.06	0.24	0.14	0.05	0.81	1.00

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆□ > ◆□ >

Articulatory correlations

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method

correlations

Evaluation

Modal analysis

References

• Significant and strong ($|r_{ij}| > 0.1$) correlation matrix, R^*

	ULy	ULx	LLy	LLx	Lly	LIx	TTy	тву	TDy	TTx	TBx	TDx	Vy	Vx
ULy	1.00	0.10	-0.28	-0.23	0.20	0.00	0.32	0.18	0.00	0.00	0.00	-0.13	0.00	-0.10
ULx	0.53	1.00	-0.34	0.56	-0.14	0.00	0.00	0.00	0.00	-0.23	-0.28	-0.21	0.00	0.00
LLy	-0.31	-0.15	1.00	-0.31	0.53	-0.22	0.27	0.00	-0.14	0.00	0.10	0.00	0.00	0.00
LLx	0.27	0.34	-0.70	1.00	-0.43	0.51	-0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lly	0.00	-0.17	0.65	-0.55	1.00	-0.34	0.56	0.32	0.00	-0.13	-0.14	-0.18	0.00	0.00
LIx	0.00	0.00	-0.49	0.61	-0.71	1.00	-0.30	-0.05	0.00	0.13	0.32	0.37	-0.15	-0.34
тту	0.29	0.00	0.32	-0.31	0.60	-0.43	1.00	0.41	0.00	0.16	0.00	-0.11	0.14	0.14
тВу	0.19	0.00	0.00	0.00	0.42	-0.36	0.53	1.00	0.73	0.00	0.00	0.00	0.00	0.16
TDy	0.00	0.00	-0.10	0.14	0.00	0.00	0.00	0.75	1.00	0.00	0.00	0.00	0.24	0.30
ттх	0.00	-0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.84	0.74	0.19	0.14
твх	0.00	-0.16	0.14	-0.19	0.12	0.00	0.18	0.00	-0.24	0.90	1.00	0.91	0.00	0.00
TDx	-0.15	-0.22	0.10	-0.17	0.00	0.00	0.11	0.00	-0.21	0.82	0.92	1.00	0.00	0.00
Vy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.19	0.06	0.00	1.00	0.70
Vx	0.13	0.00	-0.18	0.11	-0.12	0.12	0.00	0.00	0.00	0.24	0.14	0.00	0.81	1.00

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Algorithm (1)

・ロット (雪) ・ (目) ・ (日)

Conclusion

References

Algorithm (2)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣 ○

Identification divergence

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method correlations

algorithm

Evaluation

Modal analysis Conclusion

References

Assuming the articulatory distributions are normal, we have

$$\begin{aligned} \stackrel{\phi}{}_{k} &= \frac{1}{2} \left[\operatorname{tr} \left(s_{k} - \sigma_{\phi} \right) \left(\sigma_{\phi}^{-1} - s_{k}^{-1} \right) \right. \\ &+ \operatorname{tr} \left(s_{k}^{-1} + \sigma_{\phi}^{-1} \right) \left(m_{k} - \mu_{\phi} \right) \left(m_{k} - \mu_{\phi} \right)^{\mathsf{T}} \right] \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

where m_k and s_k are the mean and variance of model at level k, μ_{ϕ} and σ_{ϕ} are the mean and variance of the phone pdf

Algorithm (3)

・ロト・西ト・山田・山田・山口・

Velar consonant: initialisation

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ○□ ● ● ● ● ●

Statistical identification

Algorithm (4)

・ロット (雪) ・ (目) ・ (日)

D. (......

Algorithm (5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Velar consonant: first identification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Algorithm (6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

References

Statistical

Algorithm (7)

_ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Algorithm (8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○ ◆ ○

Velar consonant: dependencies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Algorithm (9)

・ロット (雪) ・ (目) ・ (日)

References

Velar consonant: second identification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fit in comparison with IPA

- Modal analysis Conclusion References
- Algorithm achieved more accurate fit to data than IPA
- θ_C ensures consistent precision across phone set
- Critical articulators similar to IPA (cf., velum, 3^y artic)

A D > A P > A D > A D >

-

Exhaustive search trials

Philip Jackson & Veena Singampalli

Outline

- Motivation
- Method correlations
- Evaluation
- Modal analysis Conclusion References

- Can we improve fit?
- Will it lead to different sets of critical articulators?
- Does the improvement justify extra computation?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exhaustive search results

- Evaluation
- Modal analysis Conclusion
- Although ES reduced the identification divergence, did not lower evaluation divergence
- Most changes were correlated articulator substitutions
- Computation time $10^6 \times$ slower at level k = 6

PCA modes – male

10

-10 0 10 20 30 40 50 60

Statistical identification of critical, dependent and redundant articulators Philip Jackson

Philip Jackso & Veena Singampalli

Outline

Motivation

Method correlations algorithm

Modal analysis Conclusion References

Disp. (mm)

10

900

PCA modes – female

Statistical identification of critical, dependent and redundant articulators Philip Jackson

Philip Jackso & Veena Singampalli

Outline

Motivation

Method correlations algorithm

Modal analysis Conclusion References

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Fit with PCA

- Evaluation
- Modal analysis Conclusion
- References

- Evaluation divergence reduced from 60/40 to ~ 20 :
 - because PCA optimized to fit data in LS sense
 - because different muscle grous act separately (e.g., intrinsic and extrinsic tongue muscles as superposed modes)

・ロト ・ 同ト ・ ヨト ・ ヨト

Summary

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

Method correlations

Modal analysis

Conclusion

References

- To model articulation and coarticulation, we need to determine responsibilities of articulator during speech
- Algorithm identified critical, dependent and redundant articulators from EMA data
- Greedy search was faster and as good as exhaustive search
- PCA used to diagonalised articulatory covariance
- Improvements in fit attributed to
 - alignment of objective function with data pdfs
 - independent control of articulatory modes
- Phonetic interpretation of algorithm's output at ISSP '08
- More: subjects, fleshpoints, languages, utterances, etc.

http://www.ee.surrey.ac.uk/Personal/P.Jackson/Dansa/

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

References

Statistical identification of critical, dependent and redundant articulators

Philip Jackson & Veena Singampalli

Outline

Motivation

- Method
- correlations
- Evaluation
- Modal analysis
- Conclusion
- References

- R. Bakis. Coarticulation modeling with continuous-state HMMs. Proc. IEEE Workshop Automatic Speech Recognition, Harriman, New York, 1991.
- S.C. Blackburn and S. Young. A self-learning predictive model of articulator movements during speech production. JASA, 103(3):1659–70, March 2000.
- R. Daniloff and R. Hammarberg. On defining coarticulation. J. Phon., 1:239-248, 1973.
- Ellen Eide. Distinctive features for use in an automatic speech recognition system. Proc. Eurospeech '01, Aalborg, Denmark, 2001.
- Kevin Erler and George H. Freeman. An HMM-based speech recognizer using overlapping articulatory features. JASA, pages 2500–2513, 1996.
- W. L. Henke. Dynamic articulatory model of speech production using computer simulation. PhD thesis, MIT, Cambridge, MA, 1965.
- K. Kirchhoff. *Robust speech recognition using articulatory information*. PhD thesis, University of Bielefeld, 1999.
- D. Recasens, D.M. Pallarés, and J. Fontdevilla. A model of lingual coarticulation based on articulatory constraints. JASA, 102:544–561, 1997.
- Matthew Richardson, Jeff Blimes, and Chris Diorio. Hidden-articulatory Markov models for speech recognition. Proc. Int. Conf. on Spoken Lang. Proc., Beijing, 2000.
- E.L. Saltzman and K. Munhall. A dynamic approach to gestural patterning in speech production. *Ecology* Psychology, 1:333–82, 1989.
- V. D. Singampalli and P. J. B. Jackson. Statistical identification of critical, dependent and redundant articulators. In Proc. Interspeech '07, Antwerp, volume 1, pages 70–73, 2007.
- A.A. Wrench. A new resource for production modelling in speech technology. *Proc. Inst. of Acoust.,* Stratford-upon-Avon, UK, 2001.

PCA modes -male

Statistical identification of critical, dependent and redundant articulators Philip Jackson

& Veena Singampalli

Outline

Motivation

Method correlations algorithm Evaluation Modal analy: Conclusion

References

500

PCA modes - female

Statistical identification of critical, dependent and redundant articulators Philip Jackson

& Veena Singampalli

Outline

Motivation

Method correlations algorithm Evaluation Modal analy Conclusion

References

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Alternative principal component analyses

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで