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ABSTRACT
Audio production is moving towards an object-based approach, where content is represented as audio together
with metadata that describe the sound scene. From current object definitions, it would usually be expected
that the audio portion of the object is free from interfering sources. This poses a potential problem for object-
based capture, if microphones cannot be placed close to a source. This paper investigates the application of
microphone array beamforming to separate a mixture into distinct audio objects. Real mixtures recorded
by a 48 channel microphone array in reflective rooms were separated, and the results were evaluated using
perceptual models in addition to physical measures based on the beam pattern. The effect of interfering
objects was reduced by applying the beamforming techniques.

1. INTRODUCTION
Object-based audio gives advantages over the tradi-

tional channel-based approach in terms of creative con-
trol, scalability across various rendering systems, and in-
teractivity with audio content [1]. A sound scene would
ideally be captured in such a way that it could be rep-
resented arbitrarily in space (driven by the producer in-
tent), and transmitted without knowledge of the repro-
duction system (which would decode the scene in the
way most appropriate to the context). This is referred

to as a format-agnostic system.

There are currently two main approaches for recording
multiple active sources for audio production: close cap-
ture and spatial capture. Close capture aims to maximise
the signal-to-noise ratio (SNR) of the source by placing
a microphone as close to it as possible. In addition to
achieving a high SNR (which is beneficial for separa-
tion from other sources and in terms of reducing the ef-
fects imposed by the recording space itself), close cap-
ture recordings can very easily be converted into con-
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ventional audio objects with the addition of metadata de-
scribing the position. However, they contain no inher-
ent spatial information. Spatial microphone techniques,
which use multiple microphone capsules and therefore
contain some spatial information about the scene (includ-
ing the performance and the room), are therefore often
used. Examples of spatial microphone techniques in-
clude stereo or multichannel arrangements (which cor-
respond directly to loudspeaker channels) [2], binaural
recording using a dummy head, room ambience capture
(e.g. Hamasaki squares [3]), and using a soundfield mi-
crophone which gives 3-D information encoded on to or-
thogonal basis functions (usually B-format). However,
these techniques carry two main disadvantages. First, the
audio for individual sound sources is not available. Sec-
ond, with the exception of the soundfield microphone,
each technique is directly related to a specific channel-
based reproduction system, limiting the general applica-
tion of such techniques. In principle, the spatial infor-
mation from the soundfield microphone can be recovered
and processed, although there is an inherent physical lim-
itation given the small spatial extent of the microphone.

A dense microphone array [4] has the potential to cap-
ture a sound scene in a format-agnostic manner. The
microphone array receives spatial information about the
scene, and gives the opportunity to apply spatial filtering
or other signal processing (e.g. to improve the SNR) by
having a relatively large number of capsules with dense
spacing. The concept of spatial filtering, or beamform-
ing, is well established. The purpose of a beamformer
is to estimate the signal arriving from a certain direc-
tion, usually in the presence of noise and interference [5].
Beamforming algorithms applied to microphone arrays
can be categorized into three approaches: additive (the
signals are filtered and summed to achieve the output);
differential (the microphones are closely spaced and so
the array is sensitive to the derivative of the sound pres-
sure); and eigenbeamforming (based on decomposing
the sound field onto orthogonal basis functions) [6]. Ad-
ditionally, optimal beamformers such as the minimum
variance distortionless response (MVDR) can be formu-
lated in the spherical harmonics domain [7]. For au-
dio capture, a cylindrical harmonic description has previ-
ously been used to create coincident directive virtual mi-
crophones [8]. Here we consider additive beamformers
as they are generally applicable without requiring spe-
cific array geometries.

The above approaches are conventionally referred to as

beamforming, but they do not encompass the full range
of techniques that can be applied to a microphone ar-
ray for object separation. Blind source separation (BSS)
techniques can be applied to a microphone array, and the
additional spatial resolution gained with a microphone
array has been considered explicitly by defining a space-
time-frequency transform [9]. This processing has po-
tential for a rather sparse representation of the received
signals at the array, being able to separate sources that
are active in the same time-frequency bin but are spa-
tially separated.

In addition, the microphone array signals may be used to
estimate some of the metadata used to populate the ob-
ject metadata, including currently standardised metadata
(e.g. source position) and other potentially useful infor-
mation (e.g. room information [10]). In particular, the
microphone array can be used to determine the direction
of arrival (DOA) of the sources. If a microphone array
is positioned in a recording session with the perspective
of a listener (similar to recording with a stereo micro-
phone pair or binaural dummy head), then knowledge of
the DOA could be adequate to suggest prototype meta-
data for the content producer (or, in principle, in a fully
automatic manner). Otherwise, multiple microphone ar-
rays with known geometry could be used to fully deter-
mine the source position. Methods for determining the
DOA can be broadly catergorized into time-delay esti-
mation (see [11]), spatial spectral estimation (see [12]),
and sound field analysis (see [13]).

Some recent work has considered the issue of format-
agnostic audio capture. Audio objects derived di-
rectly from multiple microphone signals have previously
been captured using a number of shotgun microphones,
soundfield microphones, and an Eigenmike, and applied
to a football match [14]. In particular, the Eigenmike was
used for ambient sounds, and 12 shotgun microphones
placed around the pitch were used to detect ball kicks and
the referee’s whistle blows. Salient audio was identified
from the shotgun microphone feeds, and where a single
event was detected on multiple microphones the geomet-
rical information was further used to localise the event to
a position on the pitch. Capture of format-agnostic audio
has also been considered in relation to MPEG-H [15, 16].
In this case, most objects were derived from clean mono
and stereo microphone feeds, and an eight-cardioid 3-
D array was used to capture the ambience. The authors
comment that the 3-D array provided an increased sense
of immersion, but they experienced some issues with
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spill on the ambience recordings. Application of spatial
filtering and source separation techniques may therefore
enhance the approach taken.

This paper is structured as follows. In Sec. 2, spatial
filtering techniques for audio object separation are in-
troduced, and in Sec. 3 metrics for evaluation of ob-
ject separation are described. Then, recordings made
with higher-order microphone arrays are processed for
format-agnostic capture. Two experiments, whereby
speech and music data were recorded in real-world re-
flective acoustic environments, are described in Sec. 4.
In Sec. 5 results obtained by applying beamforming al-
gorithms to the speech and music signals are presented.
Finally, the outlook of the work is discussed in Sec. 6 and
summarized in Sec. 7.

2. SPATIAL FILTERING
A number of classical beamformers are very well es-

tablished and still useful in modern applications. In
particular, the delay and sum (DS) and MVDR beam-
formers, included in a 1988 review article [5], are still
widely used [17, 18, 19]. These algorithms also repre-
sent the data-independent (DS) and statistically optimum
(MVDR) approaches to beamforming. Data-independent
beamformers are based purely on the microphone array
geometry (and in some cases the room response, if cal-
ibrated in a real room), whereas statistically optimum
beamformers exploit the signals received at the micro-
phones. In the following the DS and MVDR beam-
formers are introduced, together two further methods:
the superdirective array (SDA), a high resolution data-
independent beamformer, and the linearly constrained
minimum variance (LCMV) beamformer, which is a gen-
eralization of MVDR.

2.1. Signal model
Consider an array of M microphones. The signal xm(n)
received at the mth sensor may be transformed into
the frequency domain via discrete-time Fourier trans-
form and written as Xm(ω), belonging to a vector of
length M, x(ω) = [X1(ω),X2(ω), . . . ,XM(ω)]T . A com-
plex filter weight wm(ω) can be applied at each mi-
crophone to perform spatial filtering, with w(ω) =

[w1(ω),w2(ω), . . . ,wM(ω)]T , and the output of the
beamformer can be written as

Y (ω) = wH(ω)x(ω), (1)

with frequency dependence omitted for clarity in the fol-
lowing. It is often useful to explicitly consider x as com-

prising signal and (uncorrelated) noise components, such
that

x = as + n, (2)

where a is the array manifold vector describing the
acoustic paths (transfer function) between the source s
and each microphone, and n describes the uncorrelated
background noise at each microphone. The array mani-
fold vector a in principle incorporates room reflections,
although beamformers are often calculated based on the
assumption of free-field conditions.

2.2. Beamforming algorithms
In the following sections the DS, SDA, MVDR, and
LCMV beamformers are formally introduced. In this
paper the beams are steered in azimuth only, although
the methods readily extend to three dimensions. Further-
more, the sources are assumed to be static, with their po-
sitions known a priori.

2.2.1. Delay and sum beamformer
The DS beamformer exploits the known array geometry
to align the received signals such that they constructively
interfere towards the target direction. The output signal
is conventionally written in the time domain as

y(n,θt) =
M

∑
m=1

xm(n−∆m(θt)), (3)

where y(n) is the inverse Fourier transform of Y (ω), ∆m
is a delay calculated based on look direction θt (from
which the desired sound will impinge on the array). Nar-
rowband filter weights w(θt) can equivalently be calcu-
lated in the frequency domain as a frequency-dependent
phase shift.

2.2.2. Superdirective array
The superdirective array (SDA) minimizes the isotropic
acoustical noise at all directions other than the target, and
can include a diagonal loading term to regularize the so-
lution magnitude. In this case, the SDA weights for each
frequency are calculated by [20]

w(θt) =
(Rvv + εI)−1a(θt)

a(θt)
H(Rvv + εI)−1a(θt)

, (4)

where

Rvv =
1
L

L

∑
l=1

a(θl)aH(θl), (5)

with θl denoting the lth look angle, ε is a weighting
parameter which, physically, trades white noise gain
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against directivity (see Sec. 3), and I is the identity ma-
trix with dimensions M×M.

2.2.3. MVDR and LCMV beamformers
The MVDR and LCMV beamformers both utilize linear
constraints, and rely on an estimate of the data covari-
ance matrix. The principle of the MVDR beamformer is
to minimize the overall output power of the array, sub-
ject to keeping unity gain in the target direction. The
optimization problem can be written as

min
w

wHRxxw s.t. wHa(θt) = 1, (6)

where Rxx = E[xxH ] denotes the spatial correlation ma-
trix, θt denotes the target angle of incidence, and E[·] is
the expectation operator.

Adding diagonal loading as for the SDA above, the solu-
tion to the cost function is [18]

w(θt) =
(Rxx + εI)−1a(θt)

a(θt)
H(Rxx + εI)−1a(θt)

. (7)

The solution in Eq. 7 attempts simultaneously to perform
dereverberation and noise reduction. The beamformer
is very often used for noise reduction only, i.e. wHRnw
is minimized subject to the distortionless constraint (as
Eq. 6), where Rn = E[nnH ]. Further forms may make use
of the estimated spatial correlation matrix of the noise-
free term in Eq. 2 [21]. In practice, this means that
some noise-only portions of the signal must be identified,
which implies a high level of supervision. If both signal
and noise components can be estimated, the MVDR be-
comes the max-SNR beamformer [5].

The MVDR beamformer is a special case of the linear
constrained minimum variance (LCMV) beamformer,
which gives the opportunity to impose additional con-
straints on the solution. For instance, if an interferer is
known to exist at a certain location θi, the LCMV cost
function could be formulated as

min
w

wHRxxw s.t. wHa(θt) = 1; wHa(θi) = 0, (8)

and writing the constraints in a compact form as CHw =
g, the regularized solution is given by [18]

w(θt ,θi) = (Rxx + εI)−1C[CH(Rxx + εI)−1C]
−1

g. (9)

A study of the MVDR and LCMV performance was pre-
sented in [22]. Of particular note was the varying per-
formance of the two approaches under different types of

noise. For instance, they performed better under spa-
tially white noise (e.g. from sensor noise) than under spa-
tially diffuse noise (e.g. late reverberation). The LCMV
approach is very flexible and has been applied to rele-
vant situations, in particular the extraction of the direct
sound from multiple sources [23] and extracting the dif-
fuse sound from a room [24].

3. EVALUATION
Evaluation metrics for microphone array-based object

separation fall into three broad categories: those based
on the beamformer weights, those based on an objective
evaluation of the signals, and those based on higher level
features of the processed audio. Some commonly used
evaluation metrics are introduced in the following sub-
sections.

3.1. Beamformer weights
The task of beamforming is essentially to apply a filter

to each microphone signal, and basic metrics can there-
fore be defined based on the filter weights themselves.
These are mainly based around the directivity pattern,
which may also be visualized to clarify the operation of
the beamformer. The directivity pattern is simply con-
structed by evaluating the response of the filter weights
in each direction [6].

Accordingly, measures of beamwidth (BW) and side-
lobe suppression (SLS) have been proposed. The BW
is here defined as the angle between the −3 dB energy
points [25] (i.e. the half-power BW). SLS is the attenua-
tion of the highest sidelobe, in decibels relative to the on-
axis response [6]. Together, these metrics give an indica-
tion of how likely an interfering source is to be captured
as part of the main lobe, and the worst-case attenuation
if it does not fall into the main lobe.

The directivity index (DI) is widely used (e.g. [20, 7]), to
quantify the overall proportion of energy present in the
filtered signal that originates from the look direction [20]

DI = 10log
|wHa(θt)|

2

wHRvvw
. (10)

The white noise gain (WNG) is also widely stated.
This indicates the beamformer’s sensitivity to small mis-
matches in sensor positioning, estimation of the array
manifold vector, and sensor gain and phase characteris-
tics. The WNG can be written as [20]

WNG = 10log
|wHa(θt)|

2

wHw
. (11)
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The WNG is closely related to the control effort
evaluated for robustness in loudspeaker array systems
(e.g. [26]). Large values of WNG are advantageous.

Additionally, given the presence of one or more known
interferers, one can calculate the acoustic contrast (AC)
between the target and interferer directions. The AC
should give an indication of the signal-to-interferer ratio
(SIR) at the output of the beamformer. It can be defined
as [26]

AC = 10log
|wHa(θt)|

2

1
N Σ

N
i=1|w

Ha(θi)|
2 , (12)

where there are N interfering sources.

3.2. Perceptual evaluation
While measures of directivity give an indication of the
beamformer performance, they do not necessarily quan-
tify the suitability for the target application. Rather, the
actual noise reduction, dereverberation, or source separa-
tion when the array is deployed are of interest. A number
of physical measures have been derived with various mo-
tivations.

When the array is applied to reduce background noise,
the noise reduction factor [17] gain be used, or sim-
ilarly the SNR gain [19], both of which compare the
estimated amount of noise contaminating the signal at
the array output compared to the reference microphone
signal. In ref. [27], four metrics are proposed for a
comprehensive evaluation of source separation methods.
Alongside the SNR and SIR, the signal-to-distortion ra-
tio (SDR) and signal-to-artifact ratio (SAR) were evalu-
ated. Thus the noise reduction (SNR), distortions caused
by the beamforming (SDR), artifacts present in the non-
target portions of the signal (SAR; e.g. musical noise af-
ter source separation) and contamination by interfering
sources (SIR) were evaluated. However, these scores do
not necessarily indicate the perception of the two signals.

Instead, models trained to closely match perceptual test
results, and other end usage applications for the beam-
former (e.g. speech recognition rate or speech intelligi-
bility), can be used. Various perceptual models have
been proposed to evaluate the quality of audio. Per-
haps the most pertinent for evaluating object separation
is the perceptual evaluation methods for audio source
separation (PEASS) model [28], which combines coef-
ficients estimated based on the perceptual distance be-
tween the estimated signal and the reference signal, the
estimated distortion, the estimated interference, and the

estimated artifacts, respectively. The non-linear weight-
ing of these coefficients was established based on formal
listening tests. For this reason, PEASS is here adopted
instead of the signal evaluation metrics. PEASS is par-
ticularly interesting for audio object separation because
it was trained on a range of stimuli, including music,
and it gives insights into the source separation perfor-
mance in terms of the target quality, artifacts and interfer-
ence. Other useful models include perceptual evaluation
of speech quality (PESQ) [29], and perceptual evaluation
of audio quality (PEAQ) [30], which, unlike PEASS, do
not require a recording of every interferer to be available.

4. SOUND SCENES
Two sound scenes were recorded to facilitate the inves-

tigation into object separation by beamforming. Both
scenes were captured with a 48 channel dual-circular
microphone array. In the following sub-sections, the
recording hardware and sound scenes are described.

4.1. Microphone array
The microphone array consisted of two concentric circu-
lar arrays, each with 24 omnidirectional capsules (Coun-
tryman B3) spaced evenly around the circle. The radii
of the inner and outer circles were 85 mm and 107 mm
respectively. This configuration was adopted to allow
for robust beamforming with equal resolution in all az-
imuths [31]. The array can be seen in Figs. 1 and 2.
Level calibration was performed by recording a 1 kHz
tone at 94 dB SPL, and scaling the recordings for each
channel in software.

4.2. Speech scene
The speech scene consisted of two female talkers in a
small room (2.44 × 3.96 × 2.42 m) within a larger lab,
with a total of four reflecting surfaces (the ceiling and
the end wall were both missing) and reverberation time
of 0.43 s. The actors were masters students at the Guild-
ford School of Acting. The array was used to record the
actors speaking simultaneously, with each 1 m from the
array centre and separated by azimuths of 15–90 degrees.
Countryman B3 omni lapel microphones, mounted on a
piece of wire to be approximately 5 cm from the actors’
mouths, were used to make close recordings (to be used
as the separation reference). A total of 30 s speech mate-
rial was recorded for each position. A photograph of the
room is shown in Fig. 1. Results for an angular separa-
tion of 45 degrees are reported in this paper.

4.3. Music scene
The music scene was recorded in a large recording stu-
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Fig. 1: Microphone array (circled) in the small set used
to record the speech recordings.

Fig. 2: Microphone array (circled) in the large studio
used to record the jazz ensemble.

dio (17.08 × 14.55 × 6.5 m) with a reverberation time
of 1.1–1.5 s. The ensemble recorded was a jazz group
consisting of a piano, two electric guitars, a bass guitar,
and drums. Close microphone signals were available for
the piano, bass guitar and one of the electric guitars. This
scene presents a challenging scenario for source separa-
tion due to the reverberation time, the number of sources,
and the importance of the reproduced sound timbre and
quality. A diagram of the relative source positions is
shown in Fig. 3. ‘Guitar 2’ (6 degrees) was used as
the target for separation, with all other instruments ac-
tive during the clips used for testing. In the segment
analysed, the guitar was playing a lead line, which is a
good example of something that a content producer may
wish to re-spatialise or manipulate when producing the
recording.

5. RESULTS
The recordings of the scenes described above were seg-

mented and the DS, SDA, MVDR, and LCMV beam-
formers were applied to the signals. In the following
sub-sections, the performance of each beamformer is dis-

0!

90!

Piano!

Guitar 1! Bass!

Drums!

Guitar 2!

Array!

Stage area!

Fig. 3: Layout of the jazz ensemble and coordinate sys-
tem.

cussed, first considering the physical performance of the
beamformer in terms of the beampattern, then evaluating
the properties of the processed audio signals.

5.1. Implementation
To produce the output audio, finite impulse response
(FIR) filters were applied to each channel, and the result-
ing audio was summed at the output (i.e. a filter-and-sum
structure). The array manifold vector a was calculated,
in each case, based on the free-field delays expected be-
tween the source position and the microphone array. Fil-
ter coefficients were calculated in the frequency domain
for 255 frequency bins, and FIR filters of 512 coefficients
were obtained by complex conjugation, inverse Fourier
transform and the introduction of a modelling delay. Ex-
periments were conducted with a sampling frequency of
16 kHz. A frequency-dependent diagonal loading pa-
rameter ε was applied to the SDA, MVDR, and LCMV
methods, calculated so that the ratio between the largest
eigenvalue of the inverted matrix and ε was 10. This is
related to the approach in [32], and adjusted by experi-
mentation. Importantly, it gives a frequency-dependent
parameter. Coefficients for the DS method were calcu-
lated as narrowband delays. For the MVDR and LCMV
methods, the covariance matrices Rxx were calculated by
splitting a clip into non-overlapping segments of 20 ms,
taking the discrete-time Fourier transform, and averag-
ing the resulting frequency domain coefficients over all
segments.

5.2. Evaluation of source weights
The first indication of the beamformer performance is
given by analysing the beam pattern, using the metrics
described in Sec. 3.1. As the filter coefficients were
obtained using an ideal array manifold vector, their di-
rect evaluation would lead to results that implied better
performance than is practically realisable, due to issues
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including non-ideal microphone placement and noise.
Therefore, to give an impression of the directivity un-
der experimental conditions, the array manifold vector a
was modified by moving each microphone in the x and
y directions by a random amount drawn from a normal
distribution with standard deviation 5 mm, prior to the
directivity pattern being calculated [26].

As a starting point for understanding the operation of the
different approaches, consider Fig. 4, which shows di-
rectivity maps for each method across azimuth and fre-
quency, for the 94 degree speech target. The main fea-
tures are the amount of energy in directions other than the
target azimuth (quantified by DI), the width of the main
lobe (BW), the level of the first sidelobe (SLS), and the
energy at the interferer locations (AC).

The SDA exhibits the noteworthy properties of the other
beamformers. There is good energy rejection from the
rear of the array, the main lobe is fairly narrow and sym-
metric about the target direction, and there is good SLS.
At higher frequencies, spatial aliasing artifacts can be
noted above 6 kHz due to the half-wavelength becoming
shorter than the microphone spacing. It can be seen that
DS is less directive than the other methods, exhibiting a
broader BW (particularly below 1 kHz) and more promi-
nent spatial aliasing effects. The MVDR and LCMV
directivity maps have noisier responses compared with
the DS and SDA, due to their weights being calculated
based on measured data. The MVDR offers slightly im-
proved directivity over DS, and the beam pattern is not
symmetric about the target location, compared to DS and
SDA. In fact, the MVDR response suppresses more en-
ergy in the direction of the interfering source (139 de-
grees), while allowing more energy to pass in the op-
posite direction. The notch designed in the LCMV re-
sponse can be noted across the frequency range, and the
null placement significantly alters the LCMV directivity
at azimuths other than the target and interferer locations.

The objective measures quantify the differences between
the methods, and are shown in Tab. 1, considering the
speech data (with errors in the microphone positions),
and averaging over both target directions and 10 trails
using different 3 s segments. SDA is seen to be the op-
timal method in terms of DI, BW and SLS, whereas DS
is guaranteed to give the best WNG [18] and the LCMV
gives the overall best contrast. The DI and BW scores
compare favourably to first-order cardioid and hypercar-
dioid responses, which have DIs of 4.8 dB and 6 dB, and

DI BW SLS AC WNG
(dB) (deg.) (dB) (dB) (dB)

DS 9.36 45.4 −6.44 13.3 16.8
SDA 10.6 32.2 −11.9 17.7 15.3

MVDR 9.37 34.5 −6.18 15.5 15.6
LCMV 9.21 42.6 −6.96 28.0 14.8

Table 1: Objective measures of DI, BW, SLS, and
WNG, averaged over 0.1–8.0 kHz, derived from the ar-
ray weights in the presence of microphone position er-
rors.

BWs of 131 degrees and 105 degrees, respectively [33,
p.59].

The beampattern-derived scores for the music scene were
comparable for DS and SDA, with small deviations due
to the random microphone error. The MVDR and LCMV
responses changed due to the increased number of in-
terfering sources and reverberation. The MVDR per-
formed comparably with the speech data, with scores of
9.4 dB, 36.9 deg., −7.2 dB, 16.9 dB and 15.5 dB for
DI, BW, SLS, AC and WNG, respectively. On the other
hand, the LCMV created a large null directed towards the
other instruments, at a cost of broadened main lobe and
decreased WNG. The scores were 8.55 dB, 68.1 deg.,
−8.81 dB, 23.9 dB, and 12.7 dB for DI, BW, SLS, AC
and WNG, respectively.

5.3. Perceptual evaluation
The perceptual scores for the speech data were evaluated
by taking ten non-overlapping segments (each of length
3 s) from the 30 s available corresponding to a separation
of 45 degrees. A 512 coefficient Wiener post-filter was
applied to the beamformer output, and the PEASS and
PESQ metrics were calculated against the close micro-
phone reference recording. These results are recorded in
Tab. 2.

The best overall performance (indicated by PEASS over-
all perceptual score (OPS) and PESQ) is given by DS.
However, DS is the worst performing among the beam-
formers under the interference perceptual score (IPS),
which quantifies the perceptual effect of interference. It
is noteworthy that the ranking among methods for the ar-
tifact perceptual score (APS), is opposite that for the IPS,
implying that the additional performance of the beam-
formers in producing greater AC results in audible arti-
facts on the beamformer output. For all set of PEASS
scores, the APS is the only score where the beamformers

AES 138th Convention, Warsaw, Poland, 2015 May 7–10

Page 7 of 10



Coleman et al. Audio object separation

Angle (deg)

F
re

q
u
e
n
c
y
 (

k
H

z
)

DS

 

 

90 180 270 360

1

2

3

4

5

6

7

8

Angle (deg)

SDA

 

 

90 180 270 360

Angle (deg)

MVDR

 

 

90 180 270 360

Angle (deg)

LCMV

 

 

90 180 270 360

R
e
s
p
o
n
s
e
 (

d
B

)

−30

−25

−20

−15

−10

−5

0

Fig. 4: Directivity maps of the DS, SDA, MVDR and LCMV beamformers, for target 94◦ and interferer 139◦. A
microphone position error with standard deviation 5 mm was applied prior to calculating the array response.

do not all improve upon the omnidirectional microphone
reference. The target perceptual score (TPS), is compa-
rable among DS, SDA and MVDR methods, and slightly
lower for LCMV. The mean scores and 95% confidence
intervals (CIs) are plotted in Fig. 5. Most notably, the
differences between the OPS and IPS scores are statis-
tically significant, with the exception of DS and SDA,
whose CIs overlap in each case.

For the music scenario, the perceptual scores were calcu-
lated using a Matlab implementation [34] of PEAQ. The
PEAQ scores were all severely degraded, giving degrada-
tion scores below −3.5 in each case (where 0 represents
no perceptible degradation, and−4 is the lower endpoint
of the degradation scale). Using a clean guitar signal
as the reference for PEAQ, the degradation scores in-
clude reverberation effects (temporal and spectral), inter-
ference, noise, and filter artifacts (temporal and spectral).
Therefore, any differences between the omni reference
microphone and the beamformer output are compressed
into the lower end of the scale. However, a reduction in
the level of the interfering sources was noted from infor-
mal listening, with the ranking among methods matching
the speech results reported above.

6. DISCUSSION
Two kinds of directivity pattern can be obtained when

using spatial filtering to perform object separation. The
first is simply to focus the energy of the microphone ar-
ray towards the target, which can be achieved with min-
imal WNG using the DS beamformer, or with improved
BW and SLS using the SDA. Alternative, the data-based

OPS TPS IPS APS PESQ

Omni 28.1 41.3 53.0 39.7 1.99
DS 46.2 62.8 62.8 52.7 2.35

SDA 44.0 58.1 64.9 49.4 2.28
MVDR 38.0 59.9 69.0 40.1 2.29
LCMV 32.6 53.4 72.4 32.3 2.14

Table 2: Mean perceptual scores of the separated audio
calculated using PEASS OPS, TPS, IPS, & APS (0–100)
and PESQ (0–5) for the speech material, averaged across
two simultaneous speakers separated by 45 degrees.

MVDR and LCMV filters account for the second order
statistics of the observed signals, with LCMV provid-
ing an explicit opportunity to place a null towards the
interferer. In general, additional directivity appears to
trade off against robustness and sound quality. This can
be noted by comparing the OPS, IPS and APS gener-
ated by PEASS. In fact, although all beamforming meth-
ods improve the OPS, even more significant gains could
be achieved by minimizing any perceptible filtering arti-
facts.

It is important to note that the perceptual models adopted
for this work were not trained based on the kinds of arti-
facts introduced by beamforming. Additionally, the close
microphone recordings provided as a reference were not
perfectly clean, and it is unclear how this might affect the
scores. Finally, the models are not perfectly suited to the
subsequent adoption of the separated signals as part of a
produced mix. It is likely that in such a scenario, some
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Fig. 5: Perceptual scores and 95% confidence intervals of the separated audio calculated using PEASS OPS, TPS,
IPS, & APS (0–100) and PESQ (0–5) for the speech material, averaged across two simultaneous speakers separated
by 45 degrees.

interference and artifacts could be masked and the over-
all effect achieved by re-mixing the stems could have a
significant impact by giving greater control to the pro-
ducer. Future perceptual models designed for re-mixing
may take these effects better into account.

The beamforming approaches go some way to isolat-
ing individual sound objects from the scenes, especially
in terms of reducing the interference due to non-target
sources. In addition to reducing the beamforming arti-
facts, improvements may be derived by adopting higher-
order statistics to better exploit the number of capsules in
the array.

7. SUMMARY
Acquisition of audio signals for object-based production
is a relatively new topic. In this paper, we proposed spa-
tial filtering techniques applied to a higher-order micro-
phone array as a potential method for object separation,
i.e. segmenting a scene into a number of individual au-
dio streams. DS, SDA, MVDR and LCMV filters were
applied to a 48 channel array, with recordings of speech
and music signals. The beamformers were found to im-
prove the overall perceptual impression compared to a
reference omnidirectional microphone, although the iso-
lation of the target sounds was limited compared to the
reference signals captured with close microphones.
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