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• Cepstral analysis
- Real & complex cepstra

• Homomorphic decomposition
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Cepstral analysis (1)

Sometimes referred to as “homomorphic decomposition”,

this technique is designed to separate convolved signal

components by transforming the signal into a domain

where the convolution become a simple summation. Let

s(t) = x(t)⊗ y(t), (1)

where ⊗ denotes convolution. Then, taking Fourier

transforms of both sides, we have

S(ω) = X(ω)Y (ω), (2)

where the uppercase variables represent the complex spec-

tra of the lowercase variables in time.



Cepstral analysis (2)

The magnitude (or root-power) spectrum of the signal
can be written

|S(ω)| = |X(ω)| |Y (ω)| , (3)

and taking logarithms of both sides gives

ln |S(ω)| = ln |X(ω)|+ ln |Y (ω)| . (4)

Thus, a convolution in time has been transformed into
a sum of log-magnitude components in the frequency
domain.

One final stage is required if we want to separate the x

and y components.

However, it should be noted that the phase information
from the original signal has been lost, as a result of the
magnitude operation on the complex spectrum.



Cepstral analysis (3)

Applying the inverse Fourier transform to the log spec-

trum gives

F−1 {ln |S(ω)|} = F−1 {ln |X(ω)|}+F−1 {ln |Y (ω)|} , (5)

where F {·} denotes the Fourier transform (FT), and

F−1 its inverse (IFT).
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This last transform takes the signal back into a time

domain representation, but not the same as the time

axis of the original waveform; in fact, it is a measure

of the rate of change of the spectral magnitudes. This

domain is called the cepstrum, and the time axis is often

referred to as the lag or “quefrency”.



Real cepstrum

Letting cs(τ), cx(τ) and cy(τ) be the cepstra of signals

s, x and y, respectively, it can be seen that

cs(τ) = cx(τ) + cy(τ). (6)

This function is called the real cepstrum because it is

derived from the power spectrum of the signal, which is

always a real function of frequency. The cepstrum is also

real and is an even function of the independent variable,

lag or quefrency.

Note that, because the log-magnitude spectrum is real

and symmetrical (i.e., even) for real signals, the final IFT

can be replaced with a cosine transform.



Complex cepstrum

One difficulty with the real cepstrum concerns the loss

of phase information. However, a similar quantity can

be formed without the magnitude operation, and hence

using the complex logarithm:
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As before, the signals’ complex cepstra, c∗s(τ), c∗x(τ) and

c∗y(τ), are superposed,

c∗s(τ) = c∗x(τ) + c∗y(τ). (7)



Real cepstrum applied to speech

Cepstral analysis has found many applcations in such

areas as seismic exploration and speech processing, for

which an example is given.

The sequence of plots below shows the cepstral analysis

procedure applied to two frames of voiced speech data:

• a vowel [a] (vowels are high in amplitude and have

strong periodicity),

• a voiced fricative consonant [z] (fricatives tend to

have a strong high-frequency noise component).



Examples of cepstral analysis, [a] and [z]
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Homomorphic decomposition



Decomposition by cepstral liftering

Provided that the spectral properties of the two signals,

x(t) and y(t), are distinct, then cx(τ) and cy(τ) will oc-

cupy distinct regions of the quefrency domain. Using a

suitable cepstral filter (or lifter), the components may be

separated from each other, and then they can be trans-

formed back into log-magnitudes or magnitudes in the

frequency domain, as required.



Source-filter theory of speech

It is assumed that the recorded speech signal is the out-

put from a linear system which consists of a source of

filter excitation (a series of periodic pulses) convolved

with the impulse response of a filter (Fant 1960). The

filter represents the acoustic effect of the vocal tract,

which depends on the positions of the articulators (jaw,

tongue, lips, etc.) and corresponds to the uttered vowel

([i] from the word “linear”).

Cepstral analysis allows both an accurate estimation of

the periodicity of the excitation and the extraction of

the frequency response, and hence the impulse response

of the vocal-tract filter.



Example spectral envelope of [i] in “linear”
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Example pitch extraction from [i] in “linear”
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Summary

• Cepstral analysis
− Calculating the real cepstrum
− Calculating the complex cepstrum

• Real cepstrum

− Examples of cepstra computed from speech

• Homomorphic decomposition of speech
− Spectral envelope
− Pitch tracking


