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- Continuous output pdfs
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Discrete & continuous HMMs



Types of HMM: Discrete λ = {π, A, B}

(a) Initial-state probabilities,
π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

(b) State-transition probabilities,
A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,
B = {bi(k)} = {P (ot = k|xt = i)} for 1 ≤ i ≤ N

and 1 ≤ k ≤ K.
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Discrete output pdfs

P(o)

1 2 3 K
k

. . .

Discretised observations

2c

c1

k =3

k =1 =2k



Types of HMM: Continuous λ = {π, A, B}

(a) Initial-state probabilities,
π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

(b) State-transition probabilities,
A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

(c) Continuous output probabilities,
B = {bi(ot)} = {P (ot|xt = i)} for 1 ≤ i ≤ N ,

where the output probability for each state,

bi(ot) = f (ot;κi) , (11)

is a function of the observations f(ot) that depends on

some model parameters κi.



Gaussian output pdfs

Univariate Gaussian (scalar observations)
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Multivariate Gaussian (vector observations)
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where K is the dimensionality of the observation space.



Parameter estimation examples

Example 0: LS estimate of the mean

We have a set of measurements O = {o1, o2, . . . , oT},
from which we would like to estimate the mean, µ.

Starting with a least-squares approach, we can write an

expression for the squared distance of the samples from

the mean:

E =
T∑

t=1

(ot − µ)2

=
T∑

t=1

(
o2t

)
− 2µ

T∑
t=1

(ot) + Tµ2. (12)



Example 0 (continued)

To find the minimum, the derivative is set to zero:

∂E

∂µ
= 2T µ̂− 2

T∑
t=1

(ot)

⇒ 2T µ̂LS − 2
T∑

t=1

(ot) = 0

⇒ µ̂LS =
1

T

T∑
t=1

(ot) , (13)

giving the usual formula for evaluating the sample mean.



Example 1: ML estimate of the mean

Assuming that observations are continuous and normal,

ot = µ + nt for t ∈ {1,2, . . . , T},

where nt ∼ N (0,Σ) are independent Gaussian random
variables with zero mean and variance Σ, estimate the
value of µ from a set of T observations.

The likelihood function is of univariate form (i.e., scalar):

p(O|λ) =
T∏

t=1

1√
2πΣ

exp

[
−

(ot − µ)2

2Σ

]
.

Taking the logarithm and solving the ML equation, gives

µ̂ML =
1

T

T∑
t=1

ot.



Example 2: ML estimate of the variance

Estimate the variance Σ, assuming µ to be known.

It can be shown that the ML estimate of variance is

Σ̂ML =
1

T

T∑
t=1

(ot − µ)2.



ML estimates for a univariate Gaussian

Thus, we have derived the maximum likelihood estimates

of the mean µ and the variance Σ from their moments:

µ̂ML =
1

T

T∑
t=1

ot (14)

and

Σ̂ML =
1

T

T∑
t=1

(ot − µ)2. (15)



ML estimates for a multivariate Gaussian

Similarly, we can derive maximum likelihood estimates

of the mean vector µ and the covariance matrix Σ using

their respective moments, for the multivariate case:

µ̂ =
1

T

T∑
t=1

ot (16)

and

Σ̂ =
1

T

T∑
t=1

(ot − µ)(ot − µ)′, (17)

where ′ denotes the vector transpose.



B-W re-estimation of Gaussian state parameters

Assuming that the observations come from an HMM with

a continuous multivariate Gaussian distribution, i.e.:

bj (ot) = N
(
ot;µj,Σj

)
, (18)

we can make a soft (i.e., probabilitistic) allocation of

the observations to the states. Thus, if γt(j) denotes

the likelihood of being in state j at time t then eqs. 16

and 17 become weighted averages,

µ̂j =

∑T
t=1 γt(j)ot∑T
t=1 γt(j)

(19)

and

Σ̂j =

∑T
t=1 γt(j)(ot − µj)(ot − µj)

′∑T
t=1 γt(j)

, (20)

normalised by a denominator which is the total likelihood

of all paths passing through state j.



Tutorial 4 summary

• Recap. of likelihoods αt and βt

• Recap. of Viterbi algorithm

• Re-estimating models, Λ = {λ}

– Occupation and transition

– Baum-Welch formulae

• Gaussian pdf examples, N (µ,Σ)

– Univariate

– Multivariate

– B-W re-estimation

Next: More on output pdfs, grammars. . .


