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• Re-estimating models

- Occupation
- Transition
- Baum-Welch formulae
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Problem 1: Forward procedure

Consider αt(i) = P (xt = i,ot1|λ):

1. Initially,
α1(i) = πi bi(o1), for 1 ≤ i ≤ N ;

2. For t = 2,3, . . . , T ,
αt(j) =

[∑N
i=1αt−1(i) aij

]
bj(ot), for 1 ≤ j ≤ N ;

3. Finally,
P (O|λ) =

∑N
i=1αT (i).

(1)

Thus, we can solve Problem 1 efficiently by recursion.



Problem 1: Backward procedure

Define βt(i) = P (oTt+1|xt = i, λ):

1. Initially,
βT (i) = 1, for 1 ≤ i ≤ N ;

2. For t = T − 1, T − 2, . . . ,1,
βt(i) =

∑N
j=1 aij bj(ot+1)βt+1(j), for 1 ≤ i ≤ N ;

3. Finally,
P (O|λ) =

∑N
i=1 πi bi(o1)β1(i).

(2)

We now have another efficient way of computing P (O|λ).



Problem 2: Finding best state sequence
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Figure 1.6 Trellis diagram for an Isolated Word Recognition task.

From (Young et al. 1997), p. 10.



Problem 2: Viterbi algorithm

1. Initially,
δ1(i) = πibi(o1)
ψ1(i) = 0 for 1 ≤ i ≤ N ;

2. For t = 2, . . . , T ,
δt(j) = maxi

[
δt−1(i)aij

]
bj(ot)

ψt(j) = argmaxi
[
δt−1(i)aij

]
for 1 ≤ j ≤ N ;

3. Finally,
∆∗ = maxi [δT (i)]
x∗T = argmaxi [δT (i)];

4. Trace back, for t = T − 1, T − 2, . . . ,1,

x∗t = ψt+1

(
x∗t+1

)
, and X∗ = {x∗1, x

∗
2, . . . , x

∗
T}.

(3)



Problem 3: Re-estimation of λ

Using the Viterbi algorithm (eq. 3), we compute the like-

lihood of the best path through the trellis:

∆∗ = ∆(X∗) = P (O, X∗|λ)
≈ P (O|λ), (4)

which approximates the total likelihood of the observa-

tions considering all paths
∑

{all X} P (O, X|λ).

We could use the occupation of states, and transitions

between them, to train the parameters of our model

λ = {π,A,B}.



Viterbi re-estimation, aka. Segmental K-means

Hence:

(a) Initial-state probabilities,

π̂i = q1(i) for 1 ≤ i ≤ N ;

where state indicator qt(i) =

{
1
0

for i = xt;
otherwise.

(b) State-transition probabilities,

âij =
∑T
t=2 qt−1(i)qt(j)∑T
t=2 qt−1(i)

for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,

b̂j(k) =
∑T
t=1 ωt(k)qt(j)∑T

t=1 qt(j)
for 1 ≤ j ≤ N ;

and 1 ≤ k ≤ K.

where event indicator ωt(k) =

{
1
0

for k = ot;
otherwise.



Viterbi re-estimation (multiple files)

Using a set of training examples, r ∈ {1, . . . , R}:

(a) Initial-state probabilities,

π̂i =
1
R

∑R
r=1 q

r
1(i) for 1 ≤ i ≤ N ;

(b) State-transition probabilities,

âij =
∑R
r=1

∑T
t=2 q

r
t−1(i)q

r
t (j)∑R

r=1
∑T
t=2 q

r
t−1(i)

for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,

b̂j(k) =
∑R
r=1

∑T
t=1 ω

r
t (k)qt(j)∑R

r=1
∑T
t=1 q

r
t (j)

for 1 ≤ j ≤ N ;

and 1 ≤ k ≤ K.



Maximum likelihood re-estimation

Parameters of the model λ = {π,A,B} are adjusted to

maximise P (O|λ), which is as in eq. 4 from Tutorial 2:

P (O|λ) =
∑
X

P (O, X|λ). (5)

We can perform this maximisation according to the ML

criterion, which considers all possible state sequences, by

using the Baum-Welch formulae.



Baum-Welch re-estimation (occupation)

Consider

γt(i) = P (xt = i|O, λ) . (6)

By Bayes law,

γt(i) =
P (xt = i,O|λ)

P (O|λ)

=
αt(i)βt(i)

P (O|λ)
, (7)

where αt and βt are computed using the forward and

backward procedures, as in eqs. 1 & 2, and the solution

to Problem 1 gives P (O|λ).



Baum-Welch re-estimation (transition)

Define

ξt(i, j) = P
(
xt−1 = i, xt = j|O, λ

)
. (8)

Similarly, by Bayes law,

ξt(i, j) =
P

(
xt−1 = i, xt = j,O|λ

)
P (O|λ)

= [ P
(
xt−1 = i, o1, . . . , ot−1|λ

)
×

P
(
xt = j, ot, . . . , oT |xt−1 = i, λ

)
] /P (O|λ)

= [ αt−1(i) P
(
xt = j, ot|xt−1 = i, λ

)
×

P
(
ot+1, . . . , oT |xt = j, λ

)
] /P (O|λ)

=
αt−1(i) aij bj(ot) βt(j)

P (O|λ)
. (9)



Baum-Welch re-estimation formulae

(a) Initial-state probabilities,

π̂i = γ1(i) for 1 ≤ i ≤ N ;

(b) State-transition probabilities,

âij =
∑T
t=2 ξt(i,j)∑T
t=2 γt−1(i)

for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,

b̂j(k) =

∑T
t=1

∣∣∣
ot=k

γt(j)∑T
t=1 γt(j)

for 1 ≤ j ≤ N ;

and 1 ≤ k ≤ K.

For the new model λ̂, it can be shown that,

P (O|λ̂) ≥ P (O|λ), (10)

although it does not guarantee a global maximum.



Re-estimation process

Forward/Backward
Algorithm

Update HMM Parameters

Converged?
No

Yes

Estimated HMM

Initial HMM

Parameter re-estimation based on a single training example.*



Training and test procedures

P( P(P(

(a) Training

one two three

Training Examples

M1 M 2 M3

Estimate
Models

1.

2.

3.

(b) Recognition

Unknown O = 

O|M1) O|M2 ) O|M3 )

Choose Max

Training and recognition using HMMs for an IWR task.*



Tutorial 3 summary

• Recap. of likelihoods αt and βt

• Recap. of Viterbi algorithm

• Re-estimating models, Λ = {λ}

– Occupation and transition

– Baum-Welch formulae

To follow

• Worked example illustrating Baum-Welch algorithm

• Output pdfs: univariate Gaussian, multivariate Gaus-

sian, Gaussian mixtures, etc.


