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Recapitulation: fundamentals

Maximum likelihood estimation

p(o)

Bayesian estimation

p(o.i)




Markov Model, M

(a) Initial-state probabilities,
m= {m} ={P(z1 =1} for 1 <i < N;

(b) State-transition probabilities,
A= {CLZ]} ={P(azt=j|xt_1=z')} for 1 <4,57 <N,
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Hidden Markov Model, )\

(a) Initial-state probabilities,
m= {m} ={P(z1=1)} for 1 <i < N;

(b) State-transition probabilities,
A= {CLZJ} ={P(:ct=j|act_1=i)} for 1 <4,57 <N,

(c) Discrete output probabilities,
B = {b;(k)} ={P(ot =k|lxy =1)} for1<i<N
and 1 < k< K.
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Three problems for HMMs

1. Compute likelihoods P(O|\);

2. Find best state sequence X*;

3. Re-estimate model parameters A = {A}.
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Likelihood for HMM state sequence

Output probabilities: B = [bl(k) ] — [
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Problem 1: Computing P(O|))

Joint probability of the observations and state sequence,
for a given model A:

P(O,X]\) = P(O|X,\)P(X|))
= m1b1(01) a11b1(02) a12b2(03) ... (23)

To get the total probability of the observations, we must
sum across all possible state sequences:

P(OIX) = > P(O|X,\)P(X]|\)
X

= > P(O,X|)). (24)
X



Forward procedure

Consider a¢(i) = P(01,02,...,0t, xt = i|\):
1. Initially,
a1 (i) = m; b;(01), for 1 <i < N,

2. Fort=2,3,...,T,
ar(5) = |y o 1(8) agj| (o), for 1<j < N;

(25)

3. Finally,
P(OIA) = N ar(d).

Thus, we can solve Problem 1 efficiently by recursion.



Worked example of the forward procedure

State

SRR

Time (frame)



Backward procedure
Define 3;(i) = P(0441,0¢42,.-.,07|Tt =1, \):

1. Initially,
Br(i) =1, for 1 <i < N;

2 Fort=T-1T-2,....1,
B(i) = Zé\le a;;bi(op41) Bey1(3),  for 1 <i <N,

(26)

3. Finally,
P(O|X) = S mibi(o1) B1(4).

We now have another efficient way of computing P(O|)).



Worked example of the backward procedure

State
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Time (frame)



Problem 2: best state sequence

Given observations O = {o01,...,o07}, find the state se-
quence X = {x1,...,x7} with greatest likelihood:

X* = arg m)?xP((’),XM)

= arg m)?xA(X) (27)
where
T
A(X) — Tz bﬂﬁ'l(ol)' H a$t—1wt bxt(()t)- (28)
t=2

The Viterbi algorithm is an inductive algorithm that al-
lows us to find the optimal state sequence X* efficiently.



Step 1

State

Time (frame)

1. Initially,

61(2) = m;b;(01)
P1(i) =0 for 1 <i < N;



Step 2

State

Time (frame)

2. Fort=2,...,T,
51(5) = max; |8;—1(i)a;] b;(or)
¥(j) = arg max; |6;1(i)aj] for 1 <j < N;



Steps 3 and 4

State

Time (frame)

3. Finally,
A* = max; [67(7)]
x7 = arg max; [07(4)];
4. Trace back, fort=T-1,T—-2,...,1,
Ty = Ppyq (a?j;_H) , and X*={z7,z5,...,z7}. (29)



Viterbi by numbers

State

Time (frame)



Reformulating the optimisation

Recall the likelihood calculation,

P(O, X|\) P(O|X, ) P(X|)\)

m1b1(01) a11b1(02) a12b2(03) . ..

Now, taking the negative logarithm of eq. 28 gives

T
Q(X) = — |In (7, by, (01)) + 3 In (axt_lmt bxt(ot)) .
t=2
(30)

Hence, eq. 27 becomes

X* =arg m)gn Q(X). (31)



Summary of the Viterbi algorithm

1. Initially,
q1(2) = —Inm; — In (b;(01))
P1(i) =0 for 1 <i < N;

2. Fort=2,...,T,
gt(3) = min; |q;—1(i) — Inag;| — In (b;(or))
Yi(7) = arg min; [Qt—l(i) —In az’j] for 1 <j <N,

3. Finally,
Q* = min; [q7(7)]
T = arg min; [qr(7)];
4. Trace back, fort=T-1,T—-2,...,1,

Ty = 41 <$Zk+1) , and X" = {x7,25,... ,w*T}(-SQ)



Tutorial 2 summary

e Recap. of MMs and HMMs

e Computing likelihoods, P(O|X)
— for Markov models

— for Hidden Markov models

e Finding the best state sequence, X*
— Viterbi algorithm

— Trellis diagrams



Next

e Setting the parameters in the models A = {\}
— Baum-Welch re-estimation
— Forward-backward algorithm

— Continuous output pdfs

Further reading

L. R. Rabiner. A tutorial on HMM and selected applica-
tions in speech recognition. In Proc. IEEE, Vol. 77,
No. 2, pp.257—286, 1989.



