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Abstract: The mechanism for the emergence of breaking water waves in deep
water, based on the superharmonic instability of periodic Stokes waves, is
tested for the effect of real-world perturbations (dissipation, approximation
error, changes in depth, nonzero air density, fluctuations in wave and frame
speed). An implicit perturbation is added to a large-amplitude unstable Stokes
wave, which is then taken as initial data in a direct numerical solution of the
Navier-Stokes equations, using the Basilisk numerical software package. An
SVD-based filtering algorithm is used to extract the shape of the unstable
wave that grows on the background Stokes wave. We find a dipole shape in
the filtered wave that correlates with the superharmonic unstable mode. Our
findings show that the inclusion of real-world effects has little qualitative effect,
when they are kept small, on the emergence of breaking. We conclude that
the mechanism of crest instability of Stokes waves leading to wave breaking is
a robust mechanism that is likely to occur in nature.
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1 Introduction

One of the first theoretical explanations for the breaking of water waves in deep water
was based on the superharmonic instability, which arises when a travelling Stokes wave
has a sufficiently large amplitude. In the superharmonic unstable regime, the form of the
eigenfunction has a dipole shape that is concentrated around the crest. This shape, when
added to the basic state, lowers the amplitude in front of the crest and raises it behind,
creating a mechanism for overtopping. Unstable large-amplitude solitary waves are also
susceptible to a similar wave-breaking mechanism.

This scenario was first confirmed in the seminal paper of Tanaka et al. [54]. They
integrated the initial value problem for two-dimensional inviscid water waves, with initial
data taken to be a large-amplitude unstable solitary wave, perturbed by the addition
of the unstable eigenfunction. Most of the amplitude of the unstable eigenfunction is
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concentrated around the crest, having a dipole-like shape. Figure 1, reproduced from
[54], shows a schematic of the initial data used for their direct numerical simulations. The
amplitude of the basic solitary wave is of O(1) and the amplitude of the perturbation
is O

(
10−2

)
. With the initial data as in Figure 1 the initial value problem is integrated

Figure 1: The initial data for direct numerical simulation in Tanaka et al. [54] where a
superharmonic unstable eigenfunction is added to a basic solitary wave. This figure is
reproduced from Figure 1 of [54].

forward in time. The direction of travel of the wave is right to left. Adding the dipole-
shaped eigenfunction to the solitary wave decreases the overall amplitude ahead of the
crest, and enhances the overall amplitude behind the crest. The combined action creates
an overtopping effect that grows during the time integration. One example of this form
of wave breaking is shown for a sequence of times in Figure 2, reproduced from [54].
The growth of the crest instability and overtopping is clearly visible. The initial-value
problem in [54] is integrated using a boundary-integral method based on the inviscid and
irrotational Euler equations (the details of the numerical algorithm are in Dold [18]).

In this paper we focus on the superharmonic instability of large-amplitude periodic
Stokes travelling waves. The terminology was coined by Longuet-Higgins in the seminal
paper [36]. The distinguishing feature of this instability is that it is co-propagating ;
that is, it has the same wavelength and speed as the Stokes wave. This feature is to
be contrasted with subharmonic instabilities and the Benjamin-Feir instability where the
perturbation has a different wavelength and speed. For the case of unstable periodic
Stokes waves, the above wave-breaking scenario was first observed in a paper of Longuet-
Higgins & Cokelet [38], then later in the numerical simulations of Jillians [31], with the
most complete results to date in the paper of Longuet-Higgins & Dommermuth [39].

The question we address in this paper is how robust is this mechanism to real-world
conditions? To get as close to real-world conditions as possible we study the initial-
value problem via direct numerical simulation of the Navier-Stokes equations using the
Basilisk software package [1]. In this package, a Stokes wave is not an exact solution.
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Figure 2: Integration of the initial value problem for a solitary wave perturbed by a crest
instability as depicted in Figure 1. This figure is reproduced from Figure 5 of [54].

Therefore we take a Stokes periodic travelling wave – in the superharmonic unstable
region of parameter space – as initial data. Since it is not an exact solution, there is an
implicit perturbation due to the approximation error. Hence a priori we do not know
the shape of the perturbation and how it correlates with the dipole shape of the unstable
eigenfunction. Note that Grue [24] suggests that the third-order Stokes wave provides a
better approximation for the kinematics of steep wave events observed in laboratory wave
tanks compared to fully nonlinear wave solutions. Regarding energy dissipation, Deike et
al. [16] indicate that the third-order solution aligns well with experimental data. Here, we
aim to strike a balance between the third-order solution, which accurately describes real-
world events, and a highly nonlinear solution (5th order) that includes higher harmonics,
crucial for capturing the superharmonic instability. This trade-off allows us to achieve
both the practical accuracy needed to represent real-world phenomena and the theoretical
depth required to account for complex nonlinear interactions.

To address the correlation issue, we first calculate the exact (to numerical approxi-
mation) eigenfunctions associated with the superharmonic unstable Stokes waves in §3.
Secondly, we develop a filtering algorithm, using a singular value decomposition (SVD),
to decompose the perturbation into modes. We then identify the modes that have a
dipole structure and correlate with the exact eigenfunction. It is these modes that are re-
sponsible for the overtopping leading to breaking. In addition to dissipation, the Basilisk
algorithm has a non-zero upper fluid density, nonzero surface tension, and approximates
infinite depth by a very large depth. Moreover, the Stokes wave itself is approximate, and
by embedding it in Basilisk it changes speed. Remarkably, we find that the addition of
all these perturbations, as long as they are kept small, do not prevent the wave breaking
mechanism due to superharmonic instability, which is based predominantly on the dipole
shape of the perturbation.

An outline of the paper is as follows. The theory of the superharmonic instability
has been developed in several directions, including other water wave contexts, and its
implication for wave breaking has also been studied. In Section 2, we give a review
of past work in this area. In Section 3, the eigenfunctions associated with an unstable
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superharmonic mode are here calculated afresh as they are needed for comparison purposes
in the direct numerical simulation. In Section 4 we present the numerical strategy for
solving the initial value problem for the full Navier-Stokes equations with viscosity, based
on the Basilisk algorithm. Results on integration using Basilisk are discussed in Section
5. A summary and future directions are discussed in Section 6.

2 Literature review

The superharmonic (SH) instability of periodic travelling Stokes waves was first discovered
in numerical calculations of Longuet-Higgins [36], some ten years after the discovery
of the Benjamin-Feir (BF) instability. In the case of BF, the instability arises at low
amplitudes, even for weakly nonlinear Stokes waves (as long as kh > 1.363), and the
unstable eigenfunction is “modulated”, that is, the wavelength differs from the wavelength
of the Stokes wave. On the other hand, SH instability does not arise until the Stokes wave
is of sufficiently high amplitude, and the wavelength of the unstable SH eigenfunction is
the same as the basic Stokes wave.

A few years later, Tanaka [52] set about to repeat the results of Longuet-Higgins on the
SH instability. He confirmed the results both qualitatively and quantitatively, and also
discovered something new. He found that as the amplitude of the Stokes wave increased,
the primary SH instability arose at precisely the point where the curve of energy versus
wavespeed reached a maximum. A plot of the energy versus wavespeed along a branch of
Stokes waves, newly computed using the algorithm of Section 3.1, is shown in Figure 3.
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Figure 3: A plot of the energy versus wavespeed for a Stokes periodic travelling wave,
computed using the algorithm in Section 3.1. The solid line represents SH stable solutions,
while the dashed line represents SH unstable solutions.

Figure 3 is interesting for several reasons. Firstly, it is clear that the highest Stokes
wave is not the wave of highest energy, since the amplitude continues to increase after
the energy-speed maximum. Secondly, Tanaka’s calculations in [52, 53] show that the
SH instability arises at the maximum, and so the branch to the right of the maximum is
SH unstable. The solid curve in the figure represents SH stable waves, but they may be
unstable to other perturbations. Thirdly, the diagram in Figure 3 shows that for energy
values just below the maximum there are two distinct periodic Stokes waves with the same
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energy: a slow wave and a fast wave, with the slow wave SH stable and the fast wave SH
unstable. These two waves will be important in the time integration of the initial value
problem.

The connection between the energy maximum and the SH instability was confirmed
numerically by Longuet-Higgins [37]. Shortly thereafter, Saffman [49] proved that a max-
imum in a plot of the energy versus wavespeed corresponds precisely to a transition of SH
stability to instability. This result was further refined by taking Saffman’s theory to the
next order in amplitude in Bridges [7], and the Hamiltonian structure was used to give a
more general result, with application to SH instability of Stokes waves with vorticity in
Sato & Yamada [50].

Longuet-Higgins & Tanaka [41] were the first to discover that as the branch of periodic
Stokes wave is continued to higher amplitude, a second point of SH instability change
occurs. They show that this is also true in the SH instability of solitary waves. The
implication in Figure 3 is that the curve will have a vertical tangency at some higher
amplitude of the Stokes wave, and then a minimum at a yet higher value. In [41] only two
such points were found. These results have been taken to the next level by Deconinck et
al. [14], finding several more points numerically and using asymptotic theory to predict
that there is likely to be an infinite number of new SH unstable eigenvalues emerging
at each extrema of the energy. Korotkevich et al. [35] go further in finding another
class of instabilities, also with real eigenvalues, but the eigenvalues are associated with
eigenfunctions that have double the wavelength of the basic Stokes wave. These two
instabilities alternate in importance as the highest wave is approached. In either case,
the eigenfunctions that dominate the dynamics are localized near the crest of the wave.

The linearization about a Stokes wave with superharmonic perturbations has an infi-
nite number of eigenvalues. A schematic is shown in Figure 4. In addition to the primary
SH instability, associated with a zero eigenvalue transitioning from a purely imaginary
pair to a purely real pair, there is a countable set of modes with non-zero frequency. Some
of the higher-frequency modes can be unstable, but in this paper we assume the config-
uration shown in Figure 4 where all the higher modes are stable and on the imaginary
axis. When we refer to a “second point of SH instability” as above, we are referring to
the primary unstable mode at different parameter values.

Adding surface tension to the problem results in travelling waves that can differ quite
significantly from the Stokes periodic wave. The exact solution of Crapper [12] shows that
the highest wave may not even be single-valued, leading to uniformly travelling waves that
are overhanging (see [12] and its citation trail). Hogan [26] was the first to undertake a
linear stability analysis, for SH modes, of the Crapper waves at high amplitudes (at low
amplitudes, where the wave height is a single-valued function, results on linear stability
were reported by Chen & Saffman [11]). Hogan finds SH unstable modes, but at higher
frequencies. The primary SH instability associated with a maximum of the energy is
absent for Crapper waves. Indeed, calculations of Hogan [25] show that the energy is
a monotone function of the wave speed. Explicit formulas for c2 and energy are given
on page 176 of [25] from which one can infer that dE/dc is never zero. The absence of
the primary SH instability associated with E ′(c) = 0, for Crapper waves, is confirmed
by Tiron & Choi [55]. However, recalculation of the higher frequency SH instabilities in
[55] found that the SH modes were stable for all values of the amplitude, right up to the
maximum, in contrast to [26]. Tiron & Choi attributed this discrepancy to the need for
higher precision calculations, and a disagreement in how the Krein signature is calculated
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Figure 4: Schematic of the eigenvalues in the linearization about a Stokes waves with
superharmonic perturbations. The primary SH mode transition from stable to unstable
(or vice versa) passing through zero, and the SH modes with non-zero frequency are
assumed to be purely imaginary.

in [26].
Restricting to infinite depth, and the primary SH mode, the above results on the role

of capillarity indicate that gravity waves, with small surface tension, will be SH unstable
at large amplitude. However, if the surface tension dominates gravity, the SH instability
will disappear. This latter observation will be important in numerical simulations, if the
Bond number (ratio of the gravity forces to surface tension forces), which is a variable
parameter in Basilisk, is made too small, the mechanism for wave breaking may disappear.

Adding finite depth changes the picture. Continuing the above thread on capillary
waves, Blyth & Parau [5] study the linear stability of SH modes for the finite-depth
version of Crapper waves (Kinnersley waves). They found values of parameters where SH
instability does occur. Hence there will be a critical value of the depth, for each value of
the surface tension, below which SH instability can be expected. On the other hand, pure
gravity waves travelling in finite depth were first studied, with respect to SH modes, by
Zufuria & Saffman [58], and then more comprehensively by Kataoka [33]. Both papers
show that an SH instability occurs at large amplitude. An interesting feature, discovered
by Kataoka, is that the change of SH instability no longer occurs at the maximum of
the energy, but is shifted by an amount determined by the mass integral. The mass
integral only comes into play at finite depth. Figure 5, reproduced from [33], shows
definitively that the behavioural change of the SH instability is shifted away from the
energy maximum.

The effect of vorticity on the superharmonic instability of periodic travelling waves, in
infinite depth, has been studied by Blyth & Parau [6]. They add a background shear flow
to the periodic travelling wave, and set gravity to zero. Stability is studied analytically
for small amplitude, and numerically for large amplitude. The main conclusion is that
instability is shown to occur for any non-zero amplitude wave of this type. A Hamiltonian-
based theory for SH instability of travelling waves with nonzero vorticity is developed in
Sato & Yamada [50], for the case of finite and infinite depth. Their theory shows that,
for fixed values of the vorticity, the SH stability transition still occurs at the maximum
of the energy. However, they do not present any results, and their analysis of the finite
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Figure 5: Plot reproduced from Figure 1 of Kataoko [33] showing that the SH instability
change does not occur at the energy maximum ∂E/∂c = 0, but is influenced by the mass
integral η .

depth case does not agree with Kataoka [33].
On the other hand a special case of travelling waves with vorticity is periodic travelling

waves near the Kelvin-Helmholtz instability, where the velocity profile is a Heaviside
function. In this case, the SH instability occurs already for weakly nonlinear waves and it
can be obtained analytically. This latter result is given in Benjamin & Bridges [2], and it
is also confirmed analytically there that the change of stability is synchronised with the
maximum of the energy, E ′(c) = 0. In [2] the fluid depth is infinite in both the lower and
upper layers. In the absence of shear, but still interfacial waves, the SH instability is not
found at low amplitudes, but is found at high amplitude, by Kataoka [34], for the pure
gravity case. Again the fluid depth is infinite in the lower and upper layers. He points out
that mathematically the SH instability result for two layer flow is similar to the one layer
pure gravity case, showing moreover that the change of stability is synchronised with the
change of the sign of E ′(c) .

2.1 Wave breaking

The idea that an unstable periodic travelling wave could lead to wave breaking was first
pointed out by Longuet-Higgins & Cokelet [38]. They integrated the equations for the
inviscid and irrotational water-wave problem and found that SH unstable Stokes waves
would overturn and break. However, their results were limited to a few examples without
a clear understanding of the mechanism involved. The two main papers on the connection
between SH instability and wave breaking are Tanaka et al. [54] and Longuet-Higgins &
Dommermuth [39], the former for a solitary wave basic state, and the latter for a periodic
basic state.

A key issue that was first observed in the paper [54] is the importance of the “right
sign” in the initial data. The wave height perturbation is of the form

η(x, t) = H(x− ct) + δη̃(x− ct, t) , (2.1)

with H(x− ct) the uniformly travelling solitary wave, and η̃(x− ct, t) the eigenfunction
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associated with the unstable SH mode, both relative to a frame of reference moving at
speed c . This expression with t = 0 is used to initialise the time integration.

The small parameter δ can be of either sign. In [54], it was found that with δ = −0.01
all initial data led to wave breaking. On the other hand, when taking δ = +0.01 the
evolution was bounded, and indeed, the solution was attracted to a slower solitary wave,
with the same energy, but lower amplitude. This scenario is consistent with the energy
viewpoint as shown in Figure 3. For each unstable solitary wave, there is a stable solitary
wave, of lower amplitude, at the same energy. It appears that when δ = +0.01, the
faster unstable solitary wave is attracted to the slower wave, whereas when δ = −0.01
the faster solitary wave is outside the basin of attraction of the slower solitary wave,
and becomes more nonlinear instead, and with no other solution to be attracted to, it
generates an infinite slope in the wave height and then overturns. Some analysis justifying
both scenarios is in §4.2 of [54].

The second paper to study the initial value problem for the full water wave equations,
with initial data including a SH unstable mode, is the paper of Jillians [31]. His paper
was also the first to consider a periodic basic state. His results are similar to those found
for unstable solitary waves by Tanaka et al. [54] in the case of δ = −0.01. He uses the
form (2.1) with H(x − ct) a periodic Stokes wave which is SH unstable. For negative
δ he finds the initial value problem evolves into a breaking wave. On the other hand
the case of positive δ is inconclusive. Overall the results of Jillians are incomplete. In
their commentary, Longuet-Higgins & Dommermuth [39] speculate that the calculations
of Jillians have lower precision, and the value of |δ| is greater, thereby missing the basin
of attraction.

In the calculations of Longuet-Higgins & Dommermuth [39], a higher accuracy was
used and a scenario that is closer to [54] was found. In their formulation the sign of
δ is reversed. Hence in their case positive δ corresponds to the breaking case, and
negative δ corresponds to the case where the perturbation is attracted to the slower
periodic travelling wave at the same energy. They used more recent calculations of the
SH unstable eigenvalues and their eigenfunctions due to Longuet-Higgins & Tanaka [41].
In the case of negative δ , [39] find a result similar to [54], where the solution is attracted
to a slower periodic travelling wave. This scenario is shown in Figure 6 which reproduces
Figure 11 of [39]. They also continue the integration in time and find a form of recurrence;

Figure 6: Plot reproduced from Figure 11 of [39] showing a negative perturbation leading
to the wave settling down to a slower wavetrain of the same energy.
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that is, after a sufficiently long time, the solution cycles back to the neighbourhood of
the unstable periodic travelling wave. This scenario is consistent with a homoclinic orbit
as shown schematically in Figure 7 which is reproduced from Figure 3 of [7]. Figure 7 is

Figure 7: Schematic of the recurrence phenomena observed in the numerics of [39]. The
left depicts the energy (or momentum) versus wavespeed showing the curve of periodic
travelling waves, while the right picture shows a schematic of a projection onto a plane
of the phase-space. This figure is reproduced from Figure 3 of [7].

obtained by projecting the infinite-dimensional space onto a two-dimensional subspace in
which there is a saddle and a centre, with a homoclinic orbit. In the infinite dimensional
space, the homoclinic orbit will not exactly close up, but the recurrence phenomena will
still be evident. In Figure 8, from Longuet-Higgins & Dommermuth [39], the development
of a microbreaker emerging from a crest instability in the case of a positive perturbation
is shown. In summary, the evolution of an SH unstable basic state into a microbreaker is

Figure 8: A microbreaker emerging from the superposition of a periodic travelling wave
and a SH unstable eigenfunction, reproduced from Figure 9 of [39].

very similar in both the case of a solitary wave basic state and a periodic travelling wave.

2.1.1 Wavelength doubling and potential wave breaking

The dipole structure of the eigenfunction of the SH instability occurs in other instabilities,
and may provide alternative scenarios for wave breaking. An example is the case of
perturbations with twice the wavelength of the underlying Stokes wave. It is shown by
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Deconinck et al. [14] that if one chooses a Stokes wave with an energy value just below the
maximum, the solution is stable with respect to the SH instability, but is unstable with
respect to perturbations with any nonzero Floquet parameter. In the case of an unstable
perturbation that has a wavelength that is twice the wavelength of the underlying Stokes
wave, the part of the perturbation in one wavelength has a shape that corresponds to
a dipole-like structure. Hence unstable wavelength doubling provides another potential
scenario for wave breaking, at a lower energy value.

2.1.2 SH instability and wave breaking in the Whitham equation

The connection between SH instability and wave breaking has also been found in the
Whitham equation. In dimensionless form the Whitham equation is given by

ut +K ⋆ ux +
3

2
uux = 0 , (2.2)

where K is the kernel of a convolution operator defined in Fourier space by

K̂(κ) =

√
tanh(κ)

κ
, (2.3)

and κ is the wavenumber. u(x, t) represents the dimensionless surface displacement. This
equation is Hamiltonian. In Carter et al. [9], periodic travelling waves of this equation
are constructed and it is found that plots of the energy (Hamiltonian function) versus the
wave speed have a maximum, and at this maximum there is a transition of SH instability.
Remarkably the eigenfunction of the unstable SH mode has precisely the dipole structure
found in the full water-wave problem and described above. They then reproduce the
Tanaka et al. [54] experiment, by perturbing the basic state with this dipole eigenfunction.
A form of wave breaking emerges, but it is not of the form witnessed in the water-wave
problem since the solutions of the Whitham equation are constrained to be single-valued
functions of x . Nevertheless, the key features of SH instability, dipole structure, and a
form of wave breaking do arise in the model equation. Further results of Carter [8] show
that as the amplitude of the basic state is increased further, a second critical point of the
energy is found with the emergence of a second SH unstable mode, again very similar to
the water wave problem as found in [41].

2.1.3 Summary

The key observations emerging from the above literature review are that, in both the
case of periodic travelling waves and solitary waves, in two space dimensions, the SH
instability produces an eigenfunction with a dipole structure, emphasising the crest, and
called a crest instability, and addition of this eigenfunction as a small perturbation to the
basic state, with the right sign, leads to the formation of a microbreaker. It appears to
be sufficient that the perturbation amplitude is of the order of 1% of the amplitude of
the basic state. The value of 1% is empirically chosen. Any small value will do, but too
small a value will require a longer time to generate sufficient growth for breaking.
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3 Computation of unstable superharmonic modes

The eigenfunctions associated with an unstable SH mode are newly calculated here as they
are needed for compatibility with the Basilisk direct numerical simulations. In addition,
the basic state will need to be computed in compatible coordinates, for feeding into the
linear stability calculation. In two space dimensions it is conventional to use a conformal
mapping of the water wave problem to compute Stokes waves, either by using conformal
mapping with the velocity potential and stream function as independent coordinates (e.g.
[36]) or using general conformal mapping coordinates (e.g. [35]). However, the initial value
problem using Basilisk is in primitive coordinates, with (t, x) as independent variables
and the velocity field as dependent variables. For compatibility we work directly in these
variables. To this end, we use a two-space-dimensional version of Okamura [45], which is
formulated with velocity potential and free surface as dependent variables.

An independent Matlab code has been constructed to perform the calculations, fol-
lowing the theory of Okamura [45] for the basic state, and the two-dimensional version of
the theory for the linear stability problem following Ioualalen & Kharif [27]. The results
for the basic state have have been validated against the numerical results presented in
[52], and the results for the linear stability problem are validated against the calculations
of [36].

3.1 Computing the basic state

The basic state is the classical non-dimensional two-dimensional periodic Stokes wave
in infinite depth. The non-dimensional spatial coordinates (x, z) are oriented so that z
points vertically upwards and x is a horizontal variable in the direction of the travelling
wave. The free-surface of the wave is represented by the function single-valued z = η(x, t) ,
although an overhanging free surface can still emerge in the Basilisk numerical scheme.

The flow is assumed to be inviscid, incompressible and irrotational, with velocity
potential ϕ(x, z, t) which satisfies the following set of equation

∇2ϕ = 0 , for z < η(x, t) , (3.1)

ηt + ϕxηx − ϕz = 0 , on z = η(x, t) , (3.2)

ϕt +
1

2
∇ϕ · ∇ϕ+ η = Be , on z = η(x, t) , (3.3)

ϕz → 0 , as z → −∞ , (3.4)

where Be is the Bernoulli constant. The wave propagates without change of shape, hence,
in non-dimensional variables, we introduce the new variable

X = x− ct, (3.5)

where c is the phase speed of the wave which is determined as part of the solution. In
X, z coordinates the velocity potential satisfies

ϕXX + ϕzz = 0 for z < η(X), (3.6)

which is solved together with the dynamic boundary condition on the free surface

0 = P (X, z) := −cϕX +
1

2

(
ϕ2
X + ϕ2

z

)
+ z on z = η(X), (3.7)
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and kinematic boundary condition

0 = Q(X, z) := c2ϕXX + ϕX [−2cϕXX + ϕXϕXX + ϕzϕXz] ,

+ϕz [−2cϕXz + ϕXϕXz + ϕzϕzz + 1] , on z = η(X), (3.8)

with the same bottom boundary condition (3.4).
Equation (3.8) is more complicated than the usual kinematic boundary condition (3.2),

but is useful in dealing with basic flows near to the steepest wave where a sharp crest
forms, as it does not contain any spatial derivatives of the free surface [44]. This version
of the kinematic condition is equivalent to

DP

Dt
= 0 on z = η(X). (3.9)

The following periodicity and symmetry conditions are imposed on the velocity potential

ϕ(X, z) = ϕ(X + 2π, z), and ϕ(X, z) = −ϕ(−X, z) .

We also introduce the wave steepness parameter

ϵ =
1

2
[η(0)− η(π)] , (3.10)

which is defined to be half the peak to trough height for the waves. The numerically-
obtained limiting steepness is ϵ = 0.4436.

The algorithm proceeds by expressing the velocity potential in a finite Fourier series
of the form

ϕ(X, z) =
Ñ−1∑
j=1

Aj sin(jX) exp(jz) , (3.11)

where Aj are unknown coefficients, which together with the phase speed c make up the

Ñ unknowns for the problem. The Ñ unknowns are calculated using a nested Newton’s
method. Let (A(n), c(n)) be the nth iteration of the vector of unknowns, where here A is

the (Ñ − 1)−dimensional vector of Aj coefficients. Given the nth vector of iterates, we

find the free surface η(X) = η(X;A(n), c(n)) by satisfying (3.7) at the M̃ + 1 collocation
points

Xk =
(k − 1)π

M̃
for k = 1, ...,M + 1 . (3.12)

Then substituting this form for η along with the velocity potential (3.11) into (3.8) gives
the equations

0 = Fm(A
(n), c(n)) :=

∫ π

0

Q(X, η(X,A(n), c(n));A(n), c(n)) sin(mX) dX , (3.13)

for m = [1, M̃ ] . These integrals are evaluated using an M̃ -point Fourier transform, which

gives M̃ independent relations, since η is evaluated at the points (3.12). To evaluate the

integral accurately we require M̃ > 2Ñ .
By considering only the equations for m ∈ [1, Ñ − 1] we then arrive at Ñ − 1 inde-

pendent relations for the Ñ unknowns, and so we need one final equation which comes
from (3.10) as

W (A(n), c(n)) := 2ϵ− η(0;A(n), c(n)) + η(π;A(n), c(n)) = 0 . (3.14)
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These Ñ equations are then updated using Newton iterations of the form

(
A(n+1)

c(n+1)

)
=

(
A(n)

c(n)

)
−

 ∂F

∂A

∂W

∂A
∂F

∂c

∂W

∂c


−1(

A(n)

c(n)

)
,

where F is the vector of Fm values for m ∈ [1, Ñ − 1] , defined in (3.13), and the entries
of the Jacobian J are given in Appendix A.

Examples of the calculated free surface using the code are shown in Figure 9, for a
sequence of wave steepness values.
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Figure 9: The calculated free surface of the basic state for wave steepness values ϵ = 0.085,
0.135, 0.185, 0.235, 0.285, 0.335, 0.385 and 0.435, using the algorithm of Section 3.1.

3.2 Linear stability problem

The linear stability problem is derived by adding a perturbation to the basic state and
linearising. For the base flow calculated in Section 3.1 to be stationary relative to the
moving frame we need to define a new velocity potential

Φ = ϕ− cx .

We introduce small perturbations to the base flow from Section 3.1,

η(X, t) = η(X) + η′(X, t), (3.15)

Φ(X, z, t) = Φ(X, z) + Φ′(X, z, t), (3.16)

where an overbar denotes the basic state and the primes denote small perturbations, such
that |η′| ≪ |η| and |Φ′| ≪ |Φ| .

Substituting these expansions into (3.1)-(3.4) and linearising leads to the following
equations for the perturbation quantities,

∇2Φ′ = 0 z < η(X), (3.17)

η′t =
(
Φzz − ηXΦXz

)
η′ − ηXΦ

′
X − ΦXη

′
X + Φ′

z, (3.18)

Φ′
t = −ΦXΦ

′
X − ΦzΦ

′
z −

(
1 + ΦXΦXz + ΦzΦzz

)
η′, (3.19)

Φ′ → 0 as z → −∞ , (3.20)
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with (3.18) and (3.19) evaluated at z = η(X) . For the far field equation we have just
stipulated that Φ′ tends to zero which is equivalent to the normal velocity tending to zero
as z → −∞ . In fact it ensures that all perturbation velocity components tend to zero in
this limit.

For SH modes of the linear stability problem we seek Fourier series expansions of
(3.17)-(3.20) of the form

η′ = e−iσt

∞∑
j=−∞

aje
ijX , (3.21)

Φ′ = e−iσt

∞∑
j=−∞

bje
ijXe|j|z . (3.22)

The forms (3.21) and (3.22) automatically satisfy (3.17) and (3.20) and so we need to
determine aj and bj such that the two free-surface equations are satisfied. Truncating

the infinite summation to the finite sum j ∈ [−M̂, M̂ ] and substituting into the free-
surface equations results in a generalized eigenvalue problem of the form

Aζ = σBζ, (3.23)

where ζ = (aj, bj)
T . The matrices A and B are of size (2M̂ + 1) × (2M̂ + 1), and we

solve this eigenvalue problem by utilising the Galerkin method first laid out by Zhang
& Melville [57]. To do this we take Fourier transforms of (3.18) and (3.19) and then
approximate the integrals on the grid

Xu =
2πu

ν
u = 0, ..., ν − 1 . (3.24)

Doing this, and exchanging the j summation with the u summation, leads to the following
system of equations

M̂∑
j=−M̂

Fj−s

[
R

(1)
j

]
aj +

M̂∑
j=−M̂

Fj−s

[
S
(1)
j

]
bj = σ

M̂∑
j=−M̂

Fj−s

[
T

(1)
j

]
aj, (3.25)

M̂∑
j=−M̂

Fj−s

[
R

(2)
j

]
aj +

M̂∑
j=−M̂

Fj−s

[
S
(2)
j

]
bj = σ

M̂∑
j=−M̂

Fj−s

[
T

(2)
j

]
bj, (3.26)

where

R
(1)
j = −Φzz + ijΦX + ηXΦXz, (3.27)

S
(1)
j = (ijηX − |j|) e|j|η, (3.28)

T
(1)
j = i, (3.29)

R
(2)
j = 1 + ΦXΦXz + ΦzΦzz, (3.30)

S
(2)
j =

(
ijΦX + |j|Φz

)
e|j|η, (3.31)

T
(2)
j = ie|j|η, (3.32)
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and

Fj−s [fj] =
ν−1∑
u=0

fje
i(j−s)Xu . (3.33)

To compute the eigenvalues σ and eigenvectors ζ in (3.23) we use the MATLAB

eigs command. The value of M̂ is increased until the eigenvalues converge, and we are

restricted to M̂ < ν/2. Here ν is a parameter which controls the accuracy of the discrete

Fourier Transform above, and we increase this value until the M̂ Fourier coefficients we
require have converged.

Example computations which show the change in shape of the eigenfunction as σ goes
from stable to unstable are shown in Figure 10. In this figure, the eigenfunction free
surface η′ is plotted at a sequence of wave steepness values, given in the caption. The
eigenfunctions have been normalised such that maxX(|η′|) = 1 and each plot has been
separated by a constant so they can be all included in the same plot. The wave steepness
of the basic state increases going upwards in the figure.

The bottom plot in Figure 10 is the lowest frequency eigenfunction of the system
when the basic state is at low amplitude and the flow clearly is SH stable. Following the
progression of this eigenfunction as the wave steepness increases we see the localisation of
the eigenfunction near the crest, and in the top plot, which is close to the steepest wave,
we see the pronounced dipole structure in the eigenfunction. The stability threshold
occurs at ϵ ≈ 0.4292, and this is where the structure of the eigenfunction undergoes a
qualitative change and corresponds to the maximum of the wave energy as depicted in
Figure 3. Longuet-Higgins & Tanaka [41] show that as the wave steepness is increased,
other higher frequency eigenfunctions can also transition into unstable SH modes, and
show these modes too have a dipole structure.

-3 -2 -1 0 1 2 3

0

2

4

6

8

X

η′

Figure 10: The free surface η′ , associated with the lowest frequency eigenfunction and
eigenvalue computed from (3.23), plotted at wave steepness values ϵ = 0.2, 0.4285,
0.4290, 0.4295, 0.4300, 0.4305, 0.4310, and 0.4377. Each eigenfunction is normalised so
that maxX(|η′|) = 1.
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4 Direct numerical simulation via Basilisk

In this section we begin to test the emergence of wave breaking to the presence of real-
world perturbations. For the direct numerical simulation, we use the Basilisk software
package [46, 47, 1]. It is the incompressible two-phase version, with the upper fluid set to
be air and the lower fluid set to be water. The use of potential solutions with different
formulations and approximations as initial conditions for the two-phase flow problem
has shown to provide a good description of the basic properties of wave breaking such
as the overturning of the water jet, splash-up and gas entrainment, induced vortex-like
motion around surface and energy dissipation, examples are Chen et al. [10], Iafrati [28],
Iafrati [29], Deike et al. [16], Deike et al. [17] and Mostert at al. [43].

The governing equations are the Navier-Stokes equations with surface tension, written
here in dimensional form,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇ ·

(
∇u+ (∇u)T

)
+ ρge3 + γκδsÑ , (4.1)

together with the conservation of mass

∇ · u = 0 , (4.2)

with density a Lagrangian invariant

∂ρ

∂t
+ u · ∇ρ = 0 , (4.3)

where u is the fluid velocity, ρ the fluid density, µ the dynamic viscosity, p the pressure,
g the acceleration due to gravity, and e3 the unit vector in the vertical z−direction, γ
denotes the surface tension coefficient, κ represents the curvature of the interface, and
Ñ the unit normal vector to the interface. The Dirac delta function δs captures the
localization of the surface tension term at the fluid interface. The boundary conditions
at the interface are the vanishing of the tangential and normal stresses, with the latter
balanced by the surface tension force (cf. Scardovelli & Zaleski [51]). As in the previ-
ous sections, the coordinate system is oriented so that z points vertically, and x is the
horizontal coordinate.

The Bell–Colella–Glaz scheme [4] is used for the nonlinear advection term, and the
diffusion is treated implicitly. The volume of fluid (VOF) method is used to describe the
interface between air and water using a momentum-conserving implementation [48]. The
surface fraction f(x, t) indicates the fraction of a cell containing water and air. If there
is only water, f = 1. If there is only air, f = 0. Intermediate values 0 < f < 1 denote
a mixture. The surface fraction f is a Lagrangian invariant and so satisfies an equation
similar to (4.3).

The direct numerical simulations are initiated with initial data that approximate a
SH unstable periodic travelling Stokes wave (the precise form of the initial data is given
below). In principle, we would add an eigenfunction from §3, with small amplitude, to the
basic state and then set it in motion. However, this is not necessary as the Stokes wave is
not an exact solution of the Navier–Stokes equations, so implicit perturbations are added
automatically. As long as there is a component of the unstable eigenfunction in the implicit
perturbation the observed effects are the same, as this eigenfunction is the most unstable
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mode and hence will grow fastest, thus becomming the largest correction to the basic
Stokes wave. A key part of this paper is to introduce an SVD-based algorithm precisely
for this filtering. The difference between the basic Stokes wave and the computed solution
is filtered, using a singular value decomposition (SVD), and we look for components that
have the dipole structure seen in breaking waves. This dipole structure then turns out to
be an approximation to the dipole structure in the exact eigenfunction (see Figure 10).

The real-world phenomena present in the perturbations are:

� presence of dissipation,

� presence of surface tension,

� approximation error in the basic Stokes wave,

� depth is finite but very large, an approximation to infinite depth,

� inclusion of a non-zero density for the upper fluid,

� fluctuations in the speed of the Stokes wave and perturbation.

4.1 Initial conditions

As mentioned in the introduction, the choice of the 5th-order solution for our two-phase
simulations, instead of the fully numerical solution computed herein, was motivated by
balancing the proximity to real-world events offered by low-order analytical theories with
the inclusion of higher-order harmonics provided by the 5th-order solution, which, as will
be shown, are necessary for producing sufficiently steep nonbreaking waves.

A fifth-order asymptotic Stokes wave solution due to Fenton [23] for the surface pro-
file and velocity potential is used as initial condition for our simulations. The analytical
formula computed by Fenton, for the case of inviscid, irrotational, periodic waves propa-
gating without change of form over a fluid layer of depth h0 , is given by

kη(x) = kh0 + ϵ cos(kx) + ϵ2B22 cos(2kx) + ϵ3B31(cos(kx)− cos(3kx))

+ ϵ4 (B42 cos(2kx) +B44 cos(4kx))

+ ϵ5
(
− (B53 +B55) cos(kx) +B53 cos(3kx) +B55 cos(5kx)

)
+ O(ϵ6).

(4.4)

The dimensionless velocity potential of the traveling wave in a fixed frame of reference is

ϕ(x, z, t) =

√
g

k3
C0

5∑
i=1

i∑
j=1

ϵiAij cosh(jkz) sin(jkx) + O(ϵ6). (4.5)

Here, x and z denote the horizontal and vertical coordinates, respectively. The parameter
ϵ = ka/2, with k being the wavenumber and a the trough-to-crest wave height, is the
non-dimensional steepness parameter from (3.10) and is the small expansion parameter.
C0 = tanh(kh0) is the non-dimensional linear wave speed. The coefficients Aij and Bij ,
which are functions of kh0 only, are given in Fenton [23].

The use of the following analytical expression enables a straightforward and compact
initialization of the air-water interface location and the velocity components in water.
Additionally, it avoids the uncertainties associated with adapting the numerical solution
to fit the required input format for the DNS and estimating the velocity components using
the numerical method described in §3.1.
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4.2 Numerical configuration

The wave propagates from left to right along the x -axis, in a square box of length L = λ =
1, where λ denotes the wavelength, allowing us to impose periodic boundary conditions in
the direction of propagation, along with free slip conditions at the top and bottom walls.
The simulation is conducted using non-dimensional parameters: ϵ = kH/2, the non-
dimensional crest-to-trough steepness parameter and small expansion parameter; ρa/ρw =
1/850, the density ratio between air and water; µa/µw = 17.4 × 10−6/8.9 × 10−4 , the
viscosity ratio; Re = cλ/νw , the Reynolds number in water, with νw is the kinematic
viscosity of water, c =

√
g/k is the deep-water linear phase speed, and k = 2π/λ = 2π

the wavenumber ; and Bo = ∆ρg/γk2 with ∆ρ = ρw − ρa , the Bond number. The water
depth is set to h0/λ = 1/2, which is just at the threshold of deep water conditions.

A fixed 2D Cartesian mesh is used where the number of cells per dimension is expressed
as N = 2l . For the simulations presented in this work, we set l to values l = 9, l = 10,
and l = 11 to verify convergence.

In this configuration, two definitions of the physical length scale of the Stokes wave can
be established based on the Reynolds number, which characterizes the balance between
viscous and inertial forces, and the Bond number, which defines the balance between sur-
face tension and gravitational forces. This study will explore how these two dimensionless
parameters influence the onset of wave breaking.

The total number of simulations conducted is summarized in Table 1.

Table 1: Summary of simulation runs.

Set ϵ Re Surface tension (Bo) Order Refinement level

S1 0.3–0.39 4× 104 Off (Bo → ∞) 1–5 9, 10, 11
S2 0.15, 0.25, 0.42 4× 104 Off (Bo → ∞) 5 11
S3 0.39 1, 2, 4, 8× 104 Off (Bo → ∞) 5 11
S4 0.39 4× 104 100, 500, 1000, 2000 5 11

The set S1 consists of 3× 50 simulations, each varying the initial steepness incrementally
by ∆ϵ = 0.01 across the range [0.3, 0.39] . These variations were applied to each order of
approximation of the initial solution (4.4)–(4.5), and for each refinement level. Results
concerning the breaking threshold will be presented in Section 5.2. The set S2, which
consists of 3 simulations, was used together with simulations from S1 to assess the role
played by the initial steepness on the development of the instability; it will be discussed in
Section 5.3. The set S3, which includes 4 simulations, is focused on exploring the effects of
viscosity in Section 5.5. Here, the Reynolds number was set to values of 104 ,2×104 ,4×104

and 8 × 104 . The set S4 consists of simulations conducted to investigate the effects of
surface tension on the development of the instability by varying the Bond number, Bo,
across the values 100, 500, 1000, and 2000. Here small surface tension corresponds to
high Bond number and vice versa. In all simulations from the previous sets, the surface
tension contribution was disabled in the two-phase Navier-Stokes solver to isolate other
factors, while results from S4 will be qualitatively compared with the case where surface
tension is absent.
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4.3 Instability quantification

We quantify the evolution of instabilities by defining the variable I(x, t)

I(x, t) = ηstat(x, t)− η(x, 0), (4.6)

where ηstat(x, t) = η(x− U(t)t, t) is an approximation to the stationary wave, and repre-
sents the wave profile translated by the instantaneous crest velocity U(t) . This velocity is
determined by fitting a third-order polynomial to the crest’s location over time and then
differentiating it to obtain the velocity.

While more sophisticated methods exist for instantaneous analysis in space and time,
such as those employing the Hilbert transform or the wavelet transform to estimate phase
velocity, our approach has yielded a relatively satisfying stationary wave propagation for
the purposes of identifying the unstable eigenfunction.

5 Results of the simulations

In this section we look at the correlation between wave breaking and key input parameters.
We classify a wave as breaking if the free surface develops a local vertical interface within
the first three linear time periods [0, 3T0] , where T0 = 2π/

√
gk . Extensive testing has

confirmed that extending this observation period up to the first seven time periods, 7T0 ,
does not alter the classification of a wave from non-breaking to breaking.

5.1 Effect of the grid resolution

We initially examine the effect of numerical resolution by employing different numbers of
grid points per wavelength: N = 29 , N = 210 , and N = 211 . A proper simulation of
surface waves requires a fine space resolution, particularly at the interface and within the
boundary layer at the bottom of the domain where energy dissipation occurs. In their
study, Deike et al. [16] achieved numerical convergence in terms of total energy integrated
over the entire domain with a Reynolds number of Re = 4× 104 using l = 9.

However, as noted by Iafrati et al. [30], wave breaking does not consistently occur under
the same initial conditions when different resolutions are employed. This inconsistency
was confirmed in our work, where the investigated numerical resolutions showed that wave
breaking is either not detected or delayed when the resolution is doubled. This delay is
likely due to improved resolution of the initial higher order harmonics. Consequently, we
have chosen to focus on runs with the highest resolution, N = 211 , for a more accurate
analysis.

5.2 Effect of the approximation order of the initial condition

We then examine the effect of the order of approximation of the initial conditions (4.4)
and (4.5) on wave breaking. For each order of approximation, as defined by the power
of the expansion parameter ϵ in (4.4) for the free surface elevation and the value of i in
(4.5) for the velocity potential expressed as a series expansion, the series are truncated to
the corresponding order and then input into the Navier-Stokes solver. The results, shown
in Table 2, indicate that breaking is first detected at a steepness value of ϵ = 0.33 for
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the linear wave (first order). The threshold increases with the order of approximation:
ϵ = 0.34 for the second order, ϵ = 0.36 for the third, ϵ = 0.38 for the fourth, and finally
ϵ = 0.39 for the fifth order approximation. This pattern confirms that higher-order
harmonics, despite their small amplitudes in the initial solution, enable the formation of
steeper non-breaking waves. It suggests that using higher-order solutions, such as the fully
nonlinear one computed in §3.1, might allow waves to approach the theoretical steepness
limit of ϵ ≈ 0.43 where the linear theory predicts breaking should occur, as discussed in
Section 3.2.

ϵ E O1 O2 O3 O4 O5
0.30 0.0431 ◦ ◦ ◦ ◦ ◦
0.31 0.0458 ◦ ◦ ◦ ◦ ◦
0.32 0.0486 ◦ ◦ ◦ ◦ ◦
0.33 0.0514 ✕ ◦ ◦ ◦ ◦
0.34 0.0542 ✕ ◦ ◦ ◦ ◦
0.35 0.0569 ✕ ✕ ◦ ◦ ◦
0.36 0.0597 ✕ ✕ ◦ ◦ ◦
0.37 0.0624 ✕ ✕ ✕ ◦ ◦
0.38 0.0651 ✕ ✕ ✕ ✕ ◦
0.39 0.0676 ✕ ✕ ✕ ✕ ✕

Table 2: Breaking threshold after 3T0 using l = 11. (◦) represents a non-breaking event,
while (✕) represents a breaking event. The value of the energy E is taken from Figure 3.

Figure 11 displays the free-surface profiles up to and beyond the wave breaking time
for different nondimensional times t∗ = t/T0 with T0 = 2π/

√
gk , alongside the evolution

of I(x, t) which is only shown up to a few time steps before wave breaking occurs. Across
all orders of approximation, there is a noticeable transformation from an initially nearly
symmetric instability concentrated at the wave crest into a dipole-like form similar to
that seen in Figure 10. This transformation features increasing instability at the wave’s
rear and a decrease at the front, highlighting the dynamic changes leading up to wave
breaking.

In Figure 12, we present the wave profiles at the point of breaking, along with the
computed instabilities. For comparison, these instabilities are scaled to the range [−1, 1] .
A key observation is the correlation between the order of approximation and both the
time t∗ required for the instability to reach its maximum amplitude, and the amplitude
of the peak value prior to wave breaking. Notably, except for the 3rd order solution,
which deviates from this pattern, higher accuracy in the solution generally results in a
longer duration before the instability achieves its dipole-like form prior to breaking. This
trend suggests that more precise initial conditions delay the onset of significant instability,
which is not altogether surprising as a more accurate initial wave approximation to the
Stokes wave would have a significantly smaller amount of noise added to it, and it is this
noise which grows in time, leading to wave breaking.

Figure 12(c) displays the instability scaled to [−1, 1] . The first and third order solu-
tions exhibit similar characteristics, specifically a decrease in amplitude at the left bound-
ary, whereas the amplitudes in the other orders of approximation increase in this region.
The fifth order solution’s instability, in comparison, is more localized near the crest and
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Figure 11: Evolution of the wave profile (left) and the corresponding computed instability
I(x, t) (right) at the breaking threshold for each order of approximation to the initial
Stokes wave. The results are presented for: (a)-(b) O1 with ϵ = 0.33, (c)-(d) O2 with
ϵ = 0.35, (e)-(f) O3 with ϵ = 0.37, (g)-(h) O4 with ϵ = 0.38, and (i)-(j) O5 approximation
with ϵ = 0.39.
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forms the most pronounced dipole shape among the examined solutions. These variations
in instability structure, leading up to the dipole formation, can be attributed to different
types of nonlinear interactions among the wave components, including three-wave, four-
wave, and higher order interactions. Consequently, we have chosen to concentrate on the
fifth-order solution to explore how changes in the initial steepness and Reynolds number
influence the development of the instability.

Figure 12: (a) Wave profile and (b) corresponding instability profile at the time of break-
ing. (c) Instability profile from (b) scaled to the range [−1, 1] for comparison.

5.3 Effect of initial steepness

Now that we have characterized the effect of the order of approximation on the develop-
ment of the instability, for a range of breaking cases, a legitimate question is: How does
this compare to the theoretical description of the SH instability phenomenon and its role
in triggering wave breaking in the actual configuration?

To address this question, we compute the instability signal using the 5th order ap-
proximation initial condition for a set of initial steepness values. Figure 13 shows the
instability signals obtained with the 5th order solution using different initial steepness
values.

In panel (a), corresponding to ϵ = 0.15 (thus low amplitude), we observe a sudden
evolution of the spatial form of the instability from initially null to a signal resembling a
sinusoid, with an amplitude relatively small compared to those obtained for higher am-
plitudes. This is consistent with the wave propagating stably. As the steepness increases
to ϵ = 0.25 (panel (b)), the amplitude of the instability is more significant, and the
maxima and minima of the sinusoid are more pronounced. For ϵ = 0.3 (panel (c)), the
signal still retains its sinusoidal structure but begins to show undulations that may stem
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from another type of instability. At ϵ = 0.37 (panel (d)), the contributions of the signal
containing undulations and the sinusoid are almost equally influential.

At ϵ = 0.39 (panel (e)), which corresponds to the steepness at which the wave breaks,
the structure of the instability is strongly marked by a dipolar structure. For ϵ = 0.42
(panel (f)), where the development from the initial wave to breaking is relatively imme-
diate, the dipolar structure is still present, more pronounced but seems modulated by a
signal resembling the opposite of what is obtained for lower ϵ values. This suggests that
there might be two types of nonlinearly interacting instabilities, differing in their spatial
forms, steepness at which they are dominant but especially in their evolution times and
growth rates.

To verify this hypothesis, in the subsequent section, we attempt to decompose the
instability signal to identify the shapes of instabilities capturing specific amounts of energy.
This analysis will be conducted using a filter based on the SVD.

5.4 Mode decomposition using the Singular Value Decomposi-
tion (SVD)

SVD is used to split the instability signal into distinct modes, each representing coher-
ent structures that capture a specific amount of energy. This powerful statistical tool
is widely used for dimensionality reduction across various applications, including image
compression, recommendation systems, and forecasting [32].

In this study, SVD is applied to the snapshot data matrix I , which is constructed from
the vertical coordinates of the instability signal at each spatial point uniformly distributed
across the x−domain. The rows of I represent the evolution of these coordinates at each
time step up to tf = 3T0 if no vertical interface was detected, or up to tf = tBR if the
wave breaks earlier:

I =


I1,1 I1,2 . . . I1,Mt

I2,1 I2,2 . . . I2,Mt

...
...

. . .
...

INx,1 INx,2 . . . INx,Mt

 .

Here, Nx is the number of spatial points distributed across the x -domain, and Mt

is the total number of time steps recorded during the simulation. The SVD factorizes I
into three matrices:

I = U · S ·VT ,

where U consists of the left singular vectors representing the spatial modes, S is a
diagonal matrix containing the singular values that represent the captured variance of each
mode, and VT is the transpose of the right singular vectors representing the temporal
evolution of these modes. Both U and V are unitary matrices comprised of orthogonal
space and time singular vectors, respectively [21].

The instability vertical coordinate at spatial point xi and time tj is represented as
Ii,j . This can be expressed as

Ii,j = I(xi, tj) =

NComponents∑
k=1

skUk(xi)V
T
k (tj), (5.1)
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Figure 13: Time evolution of instabilities obtained with the 5th order initial condition
using different steepness values. In (a) ϵ = 0.15, (b) ϵ = 0.25, (c) ϵ = 0.3, and (d)
ϵ = 0.37, the same time steps are shown for non-breaking cases. In (e) ϵ = 0.39 and
(f) ϵ = 0.42, the time steps are uniformly distributed between t = 0 and the time when
breaking occurs.

where NComponents = 4 limits the number of modes retained in this analysis. The SVD was
performed using the numpy.linalg.svd function from Python’s NumPy library. Figures
14, 15, and 16 show the shape (left singular vector) and amplitude evolution (singular
value multiplied by the right singular vector) corresponding to the instability for each
steepness studied in the preceding section.

In Figure 14, panel (a) displays the shapes of the first four components and the tem-
poral evolution of their amplitudes. As expected, the dominant sinusoidal shape appears
first, exhibiting the largest amplitude compared to the subsequent components. The sec-
ond component, which is an order of magnitude smaller, appears as a phase-shifted version
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of the first component. This behavior is typical of SVD when applied to sinusoidal signals,
considering an orthonormal basis of cosine and sine for the corresponding frequencies.

For example, applying SVD to the coordinates of the free surface rather than those
of the instability signal, based on the results of the fifth-order solution simulation, as-
signs to each mode an energy close to the amplitude corresponding to the frequency and
wavenumber of each harmonic of the initial solution in two pairs (cosine and sine of each
spatial and temporal frequency). For this reason, we now compare the amplitudes of the
third and fourth components with that of the first and second.

The next two components, while about 30 times smaller in amplitude than the first,
are close to each other and are phase-shifted by π/2, thus indicating the second pattern
that captures energy in the instability. In Figure 14(b) for ϵ = 0.25, the amplitude is
relatively low, even though nonlinear effects begin to be more significant. Despite this,
SVD still manages to separate the two distinct energy patterns (the first two are about
20 times more significant than the following two in terms of amplitude).

In Figure 15(a) for ϵ = 0.3, the nonlinear effects continue to be significant, and we
begin to see deformations in the shapes of the components, likely due to interactions
with higher frequency modes. This can be easily noticed in the graph showing amplitude
variations (frequencies of the fifth harmonic can be recognized, for example). At this
stage, the last two components are only 5 times less significant than the first two in terms
of amplitude.

Panel 15(b) for ϵ = 0.37 shows very strong nonlinearities, and the shape of the first
component, while still retaining some traces of the mode seen at lower amplitudes, now
has a new form of instability dominating its structure. This can be interpreted as a kind
of merging of the first and third modes, distinct at lower amplitudes. Indeed, the mul-
tiplication factor between the amplitudes of the third component and that of the first
component has reduced to about 3.5. The same observation also applies if we compare
the second and fourth modes at this amplitude with those obtained at lower amplitudes.
Obviously, the term “merging” does not precisely represent the potentially complex in-
teractions between different components; simply observing the high frequencies visible in
all amplitude graphs gives an idea of the complexity of the nonlinear interactions present
here.

Figure 16(a) for ϵ = 0.39 corresponds to the onset of wave breaking, marking the
transition from a relatively stable state to an extremely energetic chaotic state causing
turbulence. The first mode concentrates all the energy (about 10 times more energy than
the last two) and clearly has a dipolar structure.

In 16(b) for ϵ = 0.42, the first component reaches an amplitude about 20 times greater
than the last two, it has a predominantly dipolar structure, but this structure seems to
be modulated by a signal that closely resembles the dominant mode at low amplitude
reversed in sign. The different components are gathered in Figure 17 allowing a visual
representation of the potential interaction occurring when the amplitude (equivalently
energy) of each of them varies.

The fact that two (or more) competing instabilities are present in Stokes waves is
fairly common and has been studied by several authors. These are generally classified as
either Class I or Class II. In our case, it is complicated to precisely characterize the two
instabilities and the interaction modes responsible for them. First, this complexity arises
because we stabilize the wave by estimating the crest speed, which in a way biases the
wave phase. Furthermore, even though the SVD effectively distinguishes the modes at
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(a) ϵ = 0.15

(b) ϵ = 0.25

Figure 14: Visual representation of the spatial structures of the first four SVD modes and
the temporal evolution of their corresponding amplitudes for two steepness values: (a)
ϵ = 0.15 and (b) ϵ = 0.25.

low amplitudes, the constraint of orthogonality in the mathematical sense may not hold
much physical significance when nonlinearities are strong. This could be another source
of uncertainty when the modes have energies that are quite close to each other.

Figure 18 serves as the central illustration for this section, wherein we compare the
shapes of SH modes obtained through linear instability analysis discussed in Section 3.2
with the shapes of the fourth mode (third in terms of energy) derived via SVD applied to
our instability signal. Additionally, each mode is constrained such that max(|U(x)|) = 1.

As previously explained, when nonlinearities become significant especially near the
wave breaking threshold, the modes begin to merge under the constraint of orthogonality.
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(a) ϵ = 0.30

(b) ϵ = 0.37

Figure 15: Same as Figure 14, but for steepness values: (a) ϵ = 0.30 and (b) ϵ = 0.37.

Figure 18 tells us that even when considering only the mode capturing the third-highest
energy level (with the maximum being captured by the dipole at ϵ = 0.39 and ϵ = 0.42),
we can reproduce a scenario that closely approximates the theoretical description of SH
instability. This suggests that it is indeed one of the mechanisms contributing effectively
to wave breaking.

5.5 Effect of viscosity

As stated in Section 4.2, the water viscosity parameter influences two key non-dimensional
parameters: the viscosity ratio µa/µw and the Reynolds number in water, Re. Since our
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(a) ϵ = 0.39

(b) ϵ = 0.42

Figure 16: Same as Figure 14, but for steepness values: (a) ϵ = 0.39 and (b) ϵ = 0.42.

focus is on water waves, the viscosity ratio µa/µw is kept constant, allowing us to isolate
the effects of viscosity by varying the Reynolds number, defined as Re = cλ/νw . In
the absence of surface tension, the characteristic length scale of the flow is taken as the
wavelength λ . Varying the Reynolds number modifies the balance between viscous and
inertial forces in the flow. The values taken for the Reynolds number are Re = 1× 104 ,
Re = 2× 104 , Re = 4× 104 and Re = 8× 104 , corresponding to dimensional wavelength
of λ ∼ 2.25 cm, λ ∼ 4.5 cm, λ ∼ 9 cm and λ ∼ 18 cm.

Figure 19 illustrates the evolution of free surface profiles obtained using a fifth-order
initial solution initialized with ϵ = 0.39 and varying Reynolds numbers. Notably, the case
initialized with Re = 1× 104 , which has the highest viscosity, does not evolve into wave
breaking. In contrast, cases with higher Reynolds numbers, indicating lower viscosity, do
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Figure 17: Graph showing the 4 principal components of instabilities for each steepness
value ordered by amplitude in log scale.
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Figure 18: Comparison between the linear stability from Section 3.2 and results and the
SVD 4th mode U4(x) .

lead to wave breaking.
Figure 20 displays the corresponding instabilities for each wave profile. The instability

for Re = 1 × 104 initially develops into a dipole-like shape, observable in plots between
t∗ = 0 and t∗ = 2.39, before settling into an almost symmetrical shape. Conversely,
instabilities at higher Reynolds numbers (Re = 2 × 104; 4 × 104; 8 × 104 ) progressively
evolve towards a dipole-like shape, leading to wave breaking. Specifically, wave breaking
occurs at t∗ = 2.05 for Re = 2× 104 , t∗ = 1.91 for Re = 4× 104 , and t∗ = 1.89 for Re
= 8× 104 .

When analyzed collectively, these cases exhibit qualitative differences. Geometrically,
a decrease in viscosity corresponds to an increase in the peak of the dipole and a decrease
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in its minima. Temporally, a decrease in viscosity leads to a faster development of the
dipole-like instability that precedes wave breaking.

In these simulations, viscous dissipation serves as the primary mechanism of energy
loss in the absence of wave breaking. The total energy decays as E ∝ e−αt∗ , where
α is a decay coefficient that increases with viscosity [3], and confirmed in DNS studies
[16]. Consequently, higher viscosity levels enhance dissipation, potentially preventing the
instability from evolving into a dipole shape, as observed in the case with Re = 1× 104 ,
while lower viscosity allows for less energy dissipation, resulting in faster development of
the dipole-like instability.

Figure 19: Evolution of free surface profiles using different Reynolds number values : a)
Re=1× 104 , b) Re=2× 104 , c) Re=4× 104 , d) Re=8× 104

5.6 Effect of surface tension

Similarly to the previous section, we now investigate the effects of surface tension through
the Bond number, Bo = ∆ρg/γk2 . It is important to note that the initial conditions (4.4)
and (4.5) do not include surface tension; however, its effect begins to manifest as the wave
starts propagating. The Bond number is varied to take values of Bo = 100, Bo = 500,
Bo = 1000, and Bo = 2000, corresponding respectively to physical wavelengths of λ ∼
18 cm, λ ∼ 41 cm, λ ∼ 58 cm, and λ ∼ 82 cm.

In figure 21, panel a) shows the breaking wave for Bo =100 characterized by a bulge
trailing behind a toe at the crest, where surface tension is highest due to high curvature.
Initially stationary relative to the carrier wave, parasitic capillaries are created. The toe
then accelerates down the wave face, generating ripples that spread across the entire wave
profile, with breaking occurring at t∗ = 0.73. Parasitic capillary waves, first theoretically
described by [40] and [13], were later confirmed by numerical studies such as [19], [22], [56],
[42], and [16]. These studies highlighted their role in dissipating energy from the carrier
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Figure 20: Evolution of instability using different Reynolds numbers, computed with fifth-
order initial conditions and ϵ = 0.39: (a) Re = 1×104 , (b) Re = 2×104 , (c) Re = 4×104 ,
(d) Re = 8× 104 . Panel (e) shows the instabilities at the final time for comparison.

wave through viscous dissipation or balancing the energy input from the wind. The
gravity-capillary wave breaking process observed here is consistent with the descriptions
provided in these studies.

In panel (c) with Bo = 500, the wave breaking at t∗ = 1.47 is similar to the previ-
ous case, but with less pronounced capillary waves, resulting in a spilling-type breaking.
In panel (e) with Bo = 1000, reduced surface tension effects lead to an initially near-
overturning crest breaking in a spilling manner at t∗ = 1.60. The trend from parasitic
capillaries and spilling breaking to a purely overturning microbreaker continues in panel
(g) with Bo = 2000, where the downward motion is quickly followed by a small overturn-
ing near the crest. This trend is also observed in panel (i), where the absence of surface
tension leads to the initiation of breaking by an overturning microbreaker.

Examining the development of the instability function I(x, t) in relation to the break-
ing wave and the breaking onset time, we observe that, with the exception of panel (b)
for Bo = 100, where breaking occurs without the instability forming a dipole-like shape,
likely due to the emergence of parasitic capillaries, the instability function in panels (d),
(f), and (h) (corresponding to Bo = 500, Bo = 1000, and Bo = 2000, respectively)
shows a progression from an almost-symmetric shape to a dipole shape. This trend is also
evident in the no surface tension case shown in panel (j).
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Figure 21: Evolution of the wave profile (left) and the corresponding computed instability
I(x, t) (right) at ϵ = 0.39 for each value of the Bond number. (a)-(b) Bo = 100; (c)-(d)
Bo = 500, (e)-(f) Bo = 1000, (g)-(h) Bo = 2000, and (i)-(j) No surface tension.

In Figure 22, panel (a) displays the wave profiles prior to breaking for each Bond
number studied, alongside their corresponding instability functions at the same timestep
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Figure 22: (a) Wave profile and (b) corresponding instability profile at the time of break-
ing. (c) Instability profile from (b) scaled to the range [−1, 1] for comparison

for comparison. Panel (c) shows that, except for the Bo = 100 case, there are noticeable
differences in the dipole-like shapes of the instability functions, particularly in the region
where x < 0. The no surface tension case closely matches the theoretical representation
of the dipole-like instability function, appearing closer to zero in this region. Among
the tested values, the Bo = 2000 case most closely approximates the no surface tension
scenario as we might expect.

Consequently, similar to the observations made in the previous section regarding the
influence of viscosity through the physical wavelength, a comparable conclusion can be
drawn here. When surface tension effects become significant, as in the case of capillary or
short gravity waves, there appears to be no clear numerical evidence of the superharmonic
instability, as theoretically described, playing a direct role in the breaking process.

6 Concluding remarks

The main result of this paper is to confirm the importance of the superharmonic instability
of Stokes travelling waves as a mechanism for wave breaking in real-world conditions such
as the open ocean. However, we have just scratched the surface of this problem. The
most dramatic limitation is that the analysis here is for a two-dimensional slice of the
ocean. What happens when the basic state is three dimensional? In work in progress,
the authors are looking at the SH instability of short-crested Stokes waves. This class of
waves is genuinely three-dimensional, yet steady in a moving frame, and can be studied
with the same methodology: they are SH unstable for a region of parameter space, the
eigenfunctions can be computed exactly (within numerical error), and Basilisk has a
three-dimensional version.
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Already in two dimension there are questions about the role of surface tension. Linear
stability calculations, discussed in §2, show that large surface tension can stabilise the SH
instability. Numerical results of Dyachenko & Newell [19] show that the character of wave
breaking changes with surface tension, and the experiments of Duncan et al. [20] indicate
that surface tension appears to affect the jet of the overturning breaker, particularly when
the wavelength is short, and indeed may prevent the wave from overturning. The shape of
the unstable eigenfunction is also affected by surface tension (e.g. [14]). Deike et al. [16]
argue that the presence of capillarity increases the energy dissipation below the breaking
threshold.

Finite, and particularly small, depth will affect the SH instability and subsequent wave
breaking. Kataoka [33] shows that mass flux plays no role in infinite depth, but becomes
increasingly important in finite depth.

The SVD algorithm for filtering the perturbation will need to be extended to 3D.
This appears to be possible in principle, and will be useful for extracting the geometric
structure of the unstable perturbations. This will also enable the analysis to follow the
evolution over time of the unstable perturbation until breaking and post-breaking. Since
the primary results suggest that the three-dimensional extracted instability exhibits a
much more complex structure, and that the micro-breaking, occurring near the crest
region as a result of this instability, does not significantly affect the evolution of the
remaining components.
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A Jacobian Matrix for Basic Flow Solver

In this appendix we identify how to solve for the components of the Jacobian matrix,
∂Fm

∂Aj

,
∂Fm

∂c
,
∂W

∂Aj

,
∂W

∂c
, that arise in the algorithm in Section 3, and write these down

in terms of components.
Intrinsically we find

∂Fm

∂Aj

=

∫ π

0

[
∂Q

∂Aj

+
∂ϕ

∂z

∂η

∂Aj

]
sin(mX) dX, (A-1)

but as noted by Okamura [45], we do not have information about
∂η

∂Aj

, and hence we

need to eliminate it. We do this by noting that

∂P

∂Aj

+
∂P

∂z

∂η

∂Aj

= 0 ,

and so
∂Fm

∂Aj

=

∫ π

0

[
∂Q

∂Aj

− ∂ϕ

∂z

∂P
∂Aj

∂P
∂z

]
sin(mX) dX. (A-2)
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Similarly, using this approach, we can find that

∂Fm

∂c
=

∫ π

0

[
∂Q

∂c
− ∂ϕ

∂z

∂P
∂c
∂P
∂z

]
sin(mX) dX, (A-3)

∂W

∂Aj

=

∂P
∂Aj

∂P
∂z

∣∣∣∣∣
x=0

−
∂P
∂Aj

∂P
∂z

∣∣∣∣∣
x=π

, (A-4)

∂W

∂c
=

∂P
∂c
∂P
∂z

∣∣∣∣∣
x=0

−
∂P
∂c
∂P
∂z

∣∣∣∣∣
x=π

. (A-5)

In practical terms the important relations in calculating the Jacobian are

∂P

∂z
= −cϕXz + ϕXϕXz + ϕzϕzz + 1,

∂P

∂Aj

= j [(ϕX − c) cos(jX) + ϕz sin(jX)] ejz,

∂P

∂c
= −ϕX ,

∂Q

∂z
= c2ϕXXz + ϕXz [−2cϕXX + ϕXϕXX + ϕzϕXz] ,

+ϕX [−2cϕXXz + ϕXzϕXX + ϕXϕXXz + ϕzzϕXz + ϕzϕXzz]

+ϕzz [−2cϕXz + ϕXϕXz + ϕzϕzz + 1]

+ϕz

[
−2cϕXzz + ϕ2

Xz + ϕXϕXzz + ϕ2
zz + ϕzϕzzz

]
,

∂Q

∂Aj

= 2j [−cϕXX + ϕXϕXX + ϕzϕXz + jϕXϕz − cjϕz] cos(jX)ejz

+j
[
−jc2 +

[
jϕ2

z − 2cϕXz + ϕXϕXz + 2ϕzϕzz + 1
]
+ ϕX [2cj − jϕX + ϕXz]

]
sin(jX)ejz,

and

∂Q

∂c
= 2cϕXX − 2 [ϕXϕXX + ϕzϕXz] .
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