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Summary

In this paper, we examine the large Reynolds number (Re) asymptotic structure of the wave
number in the Orr—Sommerfeld region for the Blasius boundary layer on a semi-infinite flat
plate given by Goldstein (1983, Fluid Mech, 127, 59-81). We show that the inclusion of

the term which contains the leading-order non-parallel effect@(ﬁte‘l/z), leads to a non-
uniform expansion. By considering the far downstream form of each term in the asymptotic
expansion, we derive a length scale at which the non-uniformity appears, and compare this
position with the position seen in plots of the wave number.

1. Introduction

When a body is placed in a parallel mean flow, which contains a small-amplitude unsteady pertur-
bation, the interaction of this perturbation with the boundary layer at areas of ‘receptivity’ produces

a collection of eigenmoded). These areas of receptivity occur in regions where the non-parallel
effects of the mean flow are important, such as at the leading edge of a Body &n element

of surface roughness3) or at regions of marginal separatiod).( As these eigenmodes move
downstream of the receptivity region, they match, in the matched asymptotic expansion sense,
to the Tollmien—Schlichting (T-S) modes in the nearly parallel Orr—Sommerfeld region. All these
T-S modes experience exponential decay as they move along the body, except one, which even-
tually grows downstream of the receptivity area, and hence the growth rate calculation for this
T-S wave is important in the prediction of transition. Typically, growth rate calculations have used
Orr—Sommerfeld theory, although this method does not include the slow growth in the boundary-
layer thickness. Other numerical studies have incorporated these non-parallel effects, although they
are not rigourous in an asymptotic senSgg).

Goldstein 2) made a breakthrough in the receptivity/stability problem when he derived the
asymptotic form of the wave number/growth rate and mode shape in the Orr—Sommerfeld region
on a semi-infinite flat plate, and showed that the T-S modes in this region match to the Lam—Rott
asymptotic eigenmodeg,(8) from the leading-edge region of the plate. Goldst@)ypfovided the
asymptotic expansion for the wave number in the Orr—Sommerfeld region up to and including the
O(e3In¢) term, wheree = Re 16, However, in an earlier NASA report, Goldstein calculated
the O(e3) term of the wave number, which turns out to be important, as it includes the non-parallel
effect of the boundary laye®). Goldstein 2) concentrated his analysis on the growing T-S wave;

TCurrent address: School of Engineering, Computer Science and Mathematics, University of Exeter, North Park Road,
Exeter EX4 4QF, UK{m.r.turner@exeter.ac.pk

Q. JI Mech. Appl. Math, Vol. 60. No. 3(© The author 2007. Published by Oxford University Press;
all rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Advance Access publication 11 July 2007. doi:10.1093/gjmam/hbm011



256 M. R. TURNER

however, his formulation of the Orr—Sommerfeld problem also incorporated the other exponentially
decaying T-S modes, which were studied in more depth by Hultdr@n (

The advantage of the asymptotic expansion over the existing numerical procedures is that they
provide a link between the receptivity which occurs at the leading edge of the plate and the ampli-
tude of the T-S wave downstream. Hence, the complete amplitude of the T-S wave is known, and
there are no unknown constants to fix, such as the initial amplitude of the T-S wave as it enters
the Orr—Sommerfeld region, unlike in previous numerical studsgsTurner and Hammertorig)
used this connection between the leading-edge Lam—Rott modes and the T-S modes to numerically
calculate the wave number of the T-S wave by the use of the parabolized stability equations (PSE)
(12). The advantage of the PSE over full DNS is that the numerical procedure is quicker as the most
dangerous upstream propagating eigenmode has been elimind8d However, Turner
and Hammerton1(1) noted, when comparing their results to the results of GoldsBirtt{at the
inclusion of the non-paralleD (%) term made the asymptotics appear to be non-uniform far down-
stream. Turner and Hammerton also demonstrated that the inclusion Gf(@fsterm is essential
for the matching of the Lam—Rott asymptotic eigenmodes to the T-S modes in the Orr—Sommerfeld
region at values of > 0-05. This statement of non-uniformity was never investigated in their paper,
and it is addressed here.

In section2, we formulate the governing equation for the wave number and include the equation
for the O(e®) term along with the form of the undetermined constants not give®)inWe also
show that theD(e3) equation can be simplified by the explicit evaluation of most of the integrals.

In section3, we consider the form of the smallasymptotic expansion for the wave number, when

we include more terms in the expansion, and show that the non-uniform behaviour occurs when
the O(e%) term is included. We then produce the large downstream asymptotic form of each of the
terms from the smalé asymptotic expansion, and show that the asymptotics do indeed become
non-uniform with the inclusion of th®(e3) term, and we give a streamwise position at which this
occurs.

2. Formulation

We consider a small two-dimensional harmonic disturbance of frequenaygting on the Blasius
boundary-layer flow on a semi-infinite flat plate. The free stream has dems#agyd streamwise
velocity Us; therefore, the corresponding length, time, velocity and pressure scales we consider
areo Wy, ™1, Ug andeozo, respectively. We introduce non-dimensional coordingteg =
y/(€3(2x)/2)), which are in the streamwise and normal directions to the plate, respectively. Non-
dimensionalizing the vorticity—stream function form of the Navier—Stokes equation with respect to
these scales and linearizing about the Blasius boundary-layer meag#low 3(2x)Y/2 f () +

w(x1, n)€t) give an equation for the perturbation stream functignas

. o(x~IV2y, xV2f)y  a(x~V2f”, /1 -
Li92y 4 x| v ) & W2 (L92,) x>0, @1
(X, 1) o(x, 1) 2x
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andv is the kinematic viscosity of the fluid. The Reynolds number Re is based on the acoustic
length scaldJ, /@ andF = a>v/U§o is the dimensionless frequency, commonly used in stability
calculations. The functiori () is the usual Blasius function that satisfies

f///+ ff// :0,

with boundary conditiond (0) = f/(0) = 0 andf’ — 1 asy — oo. In (2.1), correction terms,
which remain uniformly small in the region we consider, have been dropped. The parafister
the inverse of the Reynolds number, which is assumed to be large; kercel. We utilize this
fact later when forming our asymptotic expansions.

Following the work of Goldstein2), we seek a solution for the perturbation stream function,
in (2.1) in the form of travelling waves

. R
y = DAy (xa, n) exp(e /0 3 (xl,e>dx>, (2:2)

wherex; = €°x is a slow streamwise coordinat8(x;) is a slowly varying function to be deter-
mined by the analysig, (x1, #) is a mode shape arkg (x1, €) is the wave number of thith mode,
which has an associated constantThe constant; is found by solving a solvability condition for
the receptivity problem in the leading-edge regigns= O(1) (2). The form of this constant was
simplified by Hammerton and Kerschely] and given by

889 16p°
1T 71260
Here p; are the roots of A(—pj) = 0, where Ai is the derivative of the Airy function. In this
paper, we concentrate solely on the first root of this problem= 1.0188), which corresponds to
the unstable Tollmien—Schlichting (T-S) wave and displays streamwise growth downstream of the
lower branch point. The other modes for this problem are important close to the leading edge of
the body; however, once we pass the lower branch neutral stability point, the amplitudes of these
modes decay exponentially; hence, we do not consider them h@yelrf expression4.2), it is
assumed that; andx; areO(1) in the region of the lower branch point, whereas= O(¢~2) and
k1 = O(e'/?) at the upper branch point().

Substituting .2) into (2.1) and applying the parallel flow assumption lead to the Orr—Sommerfeld
problem; seeg, sectiond), where the wave number, phase velocity and Reynolds number are now
given by

1/25

o =ea = €(2X1)™ K1,

respectively. By matching the asymptotic solution in the main deck to the outer inviscid and inner
viscous layers of the resulting equation, Goldst@jrshiowed that the equation for the determination
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fork =x1is
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- 2X1
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= Ué (U -0zt U/z 2) dr, (2.4)
°°( 1 1 + 2 >d
37 T WmE T wgnz) "
=1 —2U/2/ U / (uz—) dndy,
1 0 0 . U2
U="f',

and the subscript 1 ocm is used to indicate that the path of integration tends to infinity in the sector
37r < arg¢) < 37r The constants);, J, and J3 take on the values-92809,—2-09322 and
1.28777, respectively, and) = f”(0) = 0-46960. Hultgren 10) offered an alternative form of
(2.3) which is numerically more accurate, especially near the upper branch p6jinHpwever, as
we are only interested in forming an asymptotic expansion for the wave number foresrtiad!
form of (2.3) is acceptable.
The error in 2.3) is of O(e3); hence, an asymptotic expansion fousing this equation would
be valid up toO(e2In€). However, the neglected non-parallel terms enter the probledvat);
therefore, in order to construct an accurate asymptotic expansion for the wave nynmoduding
the non-parallel effects, we require the equation for the slowly varying amplitude fun&tian.
This equation is found by matching the inviscid Rayleigh solution to the viscous wall layer solution
at O(e*). This analysis is carried out i9( Appendix C), so we just quote the result here. The
equation fod In A/dx is given by

_dinA  _ N~ (3=n)
ZOCTX]_‘F + ZA CcCa
nA . -dInA _
— zUSBI ((o)/ (Hl + H2> a0 <w| (Hl + Hy
c Jo dxq
Uy iUgp_» ,_. C(a1+0) Cla+0)\ ,_
- — 4+ — U d 2.5
0 + 2 1781+ Uoi) + 207 20 s (2.5)
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where

¢
wite) = - (i) [

¢
Bi(¢)d¢& — Bi(¢) / Ai (é)d§> ,
Zo

001

o= (-2 (5o — i1Bj0) + — B(2B70) — 272 (50 - LDy

2= ox1 Yo —nvtyo 4%, mvryo 3!(_:’7 0 4’7 70 > (2.6)
Ui

— 1— =07

¢ CO( c >

_ Ai’(¢o)
= _1 - - .
a=c ( * fo [LOA (s)ds)

The derivation of theD (1) constantsAn, from this matching procedure @(e*), not given in @),
can be found in16). These constants take the form

~ . 21 J J3
A0=|U6< 1,43 =L +J6>a

Ug ug

L 431), 6J72 433
AL =iU} +—1 — 35— ,
' ( ug T us T o

where

1 [~/(3 , 3 5
Jyp=—— — —1+8U —10U“ — — —— | dpg,
“ U(’)/o <u4 Ugn)* 2u(33;7> 1
Js = 4 /(u2 U)/ UZ—— drndy

U E
[ o)
J UZ—— dnd
=g () vr(ef o [ (v g ) anen
o 5 1 2
+ (/’7 (U _U) d77> dy ,
andé = 1 for 0 < 5 < 1 ands = O for 4 > 1. The constantd\ to Az have the values 325292,

—42.05954, 628404 and 226733, respectively. Equatior2(5) is solved by first solvingZ.3) for
(o andk at each streamwise step, and then using these to solddrfoA) /d x; .
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We found that most of the integrals i8.5) can either be written in closed form or simplified.
Thus, we can write4.5) as

- _ 3
din(A) _ a o
26 — i L =—lx, + 5 — = Ac"aC®"
(20 — 1L 1) ax T X

+ o {oxy. Cf)_q_ Ai(C?)COxl 1 L1+wlCOX1 L,
o €  [PAi(s)ds X1 0

w1 @1Cyx, w1
-— - Ly — —Lz—wolg— L —L
+ <w2 ax c ) 4 21 3 —w2le — w2lols + 1 9

., o
_ 7CBI'((o) <w4lg+(w450—w3)l7+ Yo /O/-\i(S)dS)
0 2X1 Joo

Ca(ag +¢€) [*
== w de, 2.7
+ 22 Jy ( '+§> ¢ @)

where
Lj= E/KJ _ TG i,
Uo (o
__ Yo
C[LAiOde
ic?
B 2:3U4 [0 Ai(s)ds’

w3 = w2Ai’(¢0),
(o
a)4=a)2/ Ai (S)dS,
o0

andls to lg andK to Kg are given in the Appendix as functionsef

Equation 2.3) can be solved numerically fat, using a root search in the complex plane, and then
this value could be substituted int®.7) to findd In(A)/dx;. Although this method retains all the
O(e®) terms, it also retains some terms®fe*) and smaller, whereas other terms®fe?) from
the functionA(x1) are missing, and these terms are important because they contain the non-parallel
behaviour. Therefore, in secti@we construct an asymptotic expansion for the wave nunaben,
powers ofe. The asymptotic expansion eliminates the above problem because it allows us to retain
all the terms up to a given order in our solution or none at all depending on where we decide to
truncate our asymptotic solution.

3. Results and largeX; asymptotics

In this section, we form an asymptotic solution for the wave numbem terms of the small
parameter, which includes the leading-order non-parallel effects, which enters the problem at
O(ed).
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To form this expansion, we note that sindé(o) is an analytic function ofo, it is clear that the
total wave numberTot, has an asymptotic expansion of the form
din(A)

dX]_

KTot = ko + €K1 + €%k2 + €2 Inexz + €2 <x4 —i > + O(e4 Ine), (3.1
wherekg to x4 are found from 2.3).

Insertingx = ko + €x1 + €%k + €3 Inexz + €3k4 + O(e*In€) into (2.3) and @.4), expanding
the functionH (¢p) about

_ 7172 2/3
oo = e 571/8 (;)) , (3.2)
and equating powers @f give
H(Co0) = %%, (3.3)
3 %23
B Ay (2—1> /H’(:oo), (3.4)
Ko 2 ICOO
ke 1/(1 H”(Coo)éoo) (zq)z i 4(21)5/2 (n)/
Lo (- =EER) () 43774 (2] H’
Ko 3 (2 H’(loo) K0 oo ko (¢oo)
53/2 <3
2%, X3 J ,
—*'Cooxi/z 14512 13 /H(Coo), (3.5)
1¢00 1¢00
K3 3 d/a 1/2 3/2
s _ H’ 3.6
o~ 207 /H(Coo) - (3.6)

The functionH (¢oo) is defined by 2.3) and the primes ol denote derivatives with respect gy
(2). The form ofk4 is not given in @), and we found it to be

/ 2 g/ 3 /
ke 1 ( 0 s00H"(C00)  ,¢5oH™ (Coo) (’Cl> 2 <1+ ZooH’ (Coo)) Kl’;z
ko 27 H’(¢o0) H’(lo0) Ko 3 H’(¢o0) K4
3 %\ 5/2 2
— el (l) % ("1) — 2% / H'(700)
2 Zoo K0 KO
1/2 X J3 K1 e'”/“ 3/2
+3|COOX/ 1+ < >/H (o )+ T (3.7)
COO K0 UO
To solve these equations, we first sol@e3 for ¢po. This is done by performing a complex eigen-
value search, where the initial eigenvalue is giveggas= —p1 = —1-0188 atX; = 0. At the next

streamwise step, a box is placed around the previous eigenvalue in the complex plane, and a search
for the next eigenvalue is made within this box. Also, at each step the valggfisrused in 8.2) to
solve forxg, and then both of these are used to solvedioi,, k3 andx, in turn. To find theO (e2)
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correction term tacro; from (2.7), we require only the leading-order terma(A)/dx;. Thus, we
solve @.7) by substituting in the leading-order terms@f= ¢po andx = xo to make 8.1) a true
asymptotic expansion. The asymptotic expansiorkigy at different levels of approximation are
plotted in Fig.1.

In Fig. 1, we plot the asymptotic results for the wave numbag:, as a function ofky for
e = F¥6 = 0.1. For this value ot, the neutral stability point (IffxTo) = 0) occurs afk; ~ 4,
which corresponds to a downstream Reynolds nuriges U x* /v = U62>?1/(268) ~ 44x 10,
wherex* is a dimensional distance downstream. The wave numbgt,in Fig. 1 appears to be
uniform up to and including th@(e3In¢) term, as the inclusion of each extra term only changes
the wave number by a small amount. However, when we includ®©ite€) term, we see that the
asymptotic expansion appears to become non-uniform far downstream. The additiorOu the
term also appears to change the formegj; significantly for smaliX1, which can be seen near the
first maximum of Inx), close toX; = 0.5, in Fig. 1(b). However, this behaviour is required so
that the wave number matches on to the large downstream asymptotic form of the first Lam—Rott
eigenmode from the leading-edge regi@p Goldstein ) showed that, for this matching to take
place, the functiorA(x1), in the limit asx; — 0, must behave like

din(A) 1+2r
Xm 2X1 ’

wherer; = —0-6921. This property can been seen to hold numerically, in Eigvhich plots
dIn(A)/dx; as a function ofX;, along with (1 + 271)/2x;. It is clear that the imaginary part of
dIn(A)/dx; tends to zero for smafl;, and beforex; &~ 0.5, the real part ofl In(A)/dx; is indis-
tinguishable from(1 + 271)/2x;. Therefore, the wave number has the correct behaviour for small
X1, SO we need only to concern ourselves with the lasgkeehaviour of the wave number.

Figure 3 shows the real parts af to x4 as a function ofX;. We see that the modulus of each
term, atX; = 100, increases as we move fragto x4. The form of the imaginary parts in Fig.is

(a) 06 (b) ©03p '
/ 0-25
05}
0-2
0-4 H 0-15
2 2 ot
5 03 =4
~ ) = 005
0-2 p ot
-0.05
01p
-0.1}
0 1 L L 1 L L 1 _015
0 2 4 6 8 10 12 14 0O 2 4 6 8 10 12 14
X X

Fig. 1 Plot of (a) the real part and (b) the imaginary part of the wave numfgras a function oy, up to
1— 0O(1),2— O(e), 3— O(e2), 4— O(e3In¢) and 5— O(e3), wheree = F1/6 = 0.1 in this case. Note that
Rx = Ug?%1/(2¢%)
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slightly different becausey, x1 andxs all decay with increasingy; howeverx, andx4 both grow
with increasingk;. The asymptotic expansion fefy; will remain valid, as long akx1| < |xo| and
|€2k2| < |ex1], etc. From FigsS and4, it is not clear if the non-uniformity seen in Fid.is due to
any of the termsyg to x4 becoming non-uniform, so we consider the lakgesymptotic form ofq
to x4 to determine if they lead to the breakdown 8f1).

Re(d ln(A)/dxl)

Fig. 2 Plot of the real and imaginary part dfin(A)/dx;, showing the matching ont@l + 271)/2x; for
smallxy

(a) 07
06}!

05

04

03

02

0-1

0 20 40 60 80 100 0 20 40 60 80 100

Fig. 3 Plot of the real parts of (a)g andxy and (b)x2, k3 andxg4, as a function okq
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(a) 0-35 T T T T (b) 5 T T T Im(IKZ)
03 - 0 b
Im( k3)
025 5l
02y 10f
015
_15 k
0-1
P R
005 |
- I
N L T i
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Fig. 4 Plot of the imaginary parts of (&p andxq and (b)xo, k3 andkg4, as a function oky

3.1 LargeX; asymptotics of3.1)

To find out when the asymptotic form ad.Ql) breaks down, we consider the larggeform of (3.3
to (3.7). To find the largeX; form of «p, we first expand the functioRl (¢oo) in (3.3) for largeoo.
To do this, we require the larggo asymptotic forms of Ai¢oo) and foi?o Ai(¢)d¢, which from
Abramowitz and Stegurl{) are given by

1/4
. o 7 _ap 455 _5 95095 _gp

Ai’ ~— — -

(¢o0) 2n1/2< * 28500 T 260870 Tt 5355200

40415375 _¢ 2 3
- 20000, 6) oxf — 2 3.8
127401985°°> p( 3§°°>’ (3.8)
w 1 [ a4 41 g4 9241 154 5075225
Al ~ ——— _ = 2 _
/Oo (Ode~ =52 <500 28°0 T 25080 663552°0

5153008945 7,4 2 3
t 127401084 )eXF< 3¢ ) (3:9)

which have error terms @ ((5e * exp(—2¢on ) andO (oo exp(—2coh’

Substituting these int®3(3), we find

)), respectively.

23/2 i 32 5 151 _3p _
%2 = e/ (CgoJrCoc/) a7t 5(00/ + 0 ) : (3.10)
Just considering the first term on the right-hand side8df@, we find that to leading order

_57i/651/2
foo==e 57r|/6xl/ :
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hence, we can find the higher-order terms¢ef by looking for a solution of the forngpo =
‘5’”/6x1/ + (00. On inserting this into3.10), we find that

; 1 ; _ 17
‘00 = e—57r|/6)~<]]-/2 _ §e57rl/12)~(l 1/4 4+ 36 57r|/6~—1 + O(~ 7/4) (311)

Hence, we note that the real part@téiéz, which appears in the exponential term 81g) and 3.9), is
negative, and so in this region’Ajoo) and [ ég‘) Ai(¢)d¢ are both exponentially growing functions.
We can now use3(1]) to find the largeX; form of the wave number terms, which are

1 _
Ko = X + 2e57rl/4~—1 + O(X 7/4),

1 1. 3 -
K1=2(2—J1)—Zeﬂl/4< 2J> 3/4+ O( 3/2)9

1 1 5 Jua
=—|(1-=J 1—--=-J 1+2)—id
K2 2[( > 1)( > 1) 1+23 3)]

1 % .
+ 5123 — i3 + 1 4= 3] 5 2+ 0%,

1 12 4g-1/4 o1

K3 = 4ul2X1 + 8U/297”/ + O( )a
= ——%/%In(x 40 675 3752 3233 i3 -+ ta—2
K4 1602 (X1) + 27 181+9 1 271+ 3 ( 1)+ 3(J1—2)

1 1N 2, € <L/
2 (-1 5 In X — In(X
+2R (-1 - g ( U6>] 1+ 32U62 (X1)

i 20 29 1345 3395 7 23 3
i/4 _ <~ &9 _ 19%o.) ) 23 3
+ée" l 27+ 6J1 144J1+ 864J1 |J3<1 14Jl>+233<1 431)

3 5 1 1 —1/4 U T
u(1-2n)+—(m(-=) -1 o
3 2( 2 1) * suc’,z(n( Ué) )] o+ 0% Tnea),

whereJs, J; and Jz are the numerical coefficients given in sectibn

Figure5 shows a plot of the numerical and lar§e asymptotic forms of botlg andx;. We
see that the asymptotics and the numerics are in good agreement lfoger than 50, and this
result holds true foky, k3 andx4. The asymptotic form of the wave number breaks down when
|xol = |lex1]; hence, by comparing the leading-order terms of the |&fgasymptotics fotcg and
k1, we note that the asymptotic form of the wave numi3et)(breaks down when

o—1/4 _
X =e,

that is, wherk; = O(e~%). For the value ot = 0.1 chosen in Figl, this breakdown point would
be whenX; = O(10000, which is well outside the range of values considered here. Thus, the
non-uniformity seen in Figl must be due to the functioA(xy).
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(b) 07
06 Re( k)
0-5
0-4
02 0-3
02 [,
0-1 t 5
: 0-1 .
ol Im i) e Im(xy
3 e 0 e SO S —
-01 . . . L . " . —0-1 N o " " L N
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Fig. 5 Plot of the numerical and largg form of (a)xg and (b)x1, as a function okq

3.2 LargeX; asymptotics of th(A)/dxg

To find the largek; asymptotic form of 2.7), we note that we again require the lagge asymptotic
forms of both Af(¢o0) and |, 0{‘30 Ai(¢)d¢ obtained above, and also the lagge asymptotic form of
Ai (¢oo) and Bi(¢po). From @.11), we can see that for larga, (oo lies in the sectofarg(—¢oo)| <
%n; hence, by comparing the largg forms of Ai(¢po) and Bi(¢po) in Abramowitz and Stegurl{)
we deduce that in the sector we are considering

Bi(¢o0) = —iAi(¢o0) + R(00), (3.12)

whereR(¢po) is the remainder term of Bioo), and its largeop asymptotic form is given by

—1/4
Lo 5 _sp 385 5 85085 _gp
R0 = "7 <1+ 26+ 2508 T 6635550

2
+ oq&f)) exp(3¢§’éz) . (313)

Note also that in this sector e<<p§5362> is exponentially large, while e{p%{ééz) is exponentially
small.

Using the fact that3.12) holds in this sector, we can simplify the form of thg terms which
appear in2.7). These terms can be written in their laggg form as

. [foo - a Ai’(Z00) ( ( 2 3/2))
Li~ —Gi Al ()deE; & 00 UL ofexp( -2 . (3.14
j T /oo (©d¢ J(Coo){cué o0 [ A (s)ds} Pl —3¢00 (3.14)

where the functionlfj (¢oo) is the evaluation oflj, with (o replaced by(go, which is

2
O(exp( — %(0362> ) In equation 2.7), all the L terms are multiplied by»1 or w which are

both O(exp(%gc%z ); thus, the leading-order term ekL j (k = 1 or 2) is exponentially large of

(0] (exp( - %gg’éz) ) while the correction terms ai@(1). Now using 8.3), we can write
. 53/2
A'Go0) e—5ni/2i

oo [5° Ai(s)ds o
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which on inserting §.11), and using the fact that

a = (2x1) % = Ugsa ko,
_ 1 1
C=—= —,
K K0
gives
Ai'(coo) @

Zoo [P Ai(9)ds  UgC

Therefore, comparing this witt8(3), we see that the term in braces 8114 is zero; hence, all the
combinationsokL j (k = 1 or 2) have no exponential growth and are at n@ét).

The left-hand side of2.7), 2o — w1L1, now has no exponential growth, and to find the leading-
order term, we consider the error term X4 multiplied by w1. In this case,j = 1 and the
correction term tav1L 1 from (3.14) is

o 2a £ooAi(Loo) _ﬂUéélfl(Coo)R/(Coo)
2 3 [{Opis)ds (oo [P Ai(s)ds

1 2 2
+an (—G(Ai/(g'oo) R(¢oo) + Ai(¢o0) R (¢o0)) — §CooAi'(Coo) R (¢o0) + é(ozoAi (¢00) R(Coo)) ,

whereR(¢po) is given in 3.13 and in this case

- 1
F1(Coo) = §<2530Ai (£00)? — 2200Ai (C00)? — Al (C00)AT’ (¢00))-

Thus, it is straightforward to show that the leading-order terrtRaf— w1L 1) is just 2x. However,
on the right-hand side oR(7), there is still some exponential growth, and in fact the leading-order
termis

Ca(ap+¢€) [ . 1

0((,;/2) (WI(C) + ) dc.

2| UO COO C

Using the definition oBy in (2.6), with (o replaced byoo we see thas; + ¢ = a/Uj. Hence, the
equation ford In(A)/dx; becomes

din(A) _ ac /°° (Wi@H;) dc. (3.15)

d X1 B 4iU 63 200

The above integral can be approximated for largigby using the fact tha@/i” — ¢ Wi = 1; thus,
by integrating by parts we find

I—/OO<Wi(()+1>d§——Wi’(§ ) i+i — Wi(¢00) i+E
B ¢oo ¢ B . ¢oo 5610 . Cgo (050

2 Wi
— -3 +40 Ig)d ,
3(00 ¢oo

(3.16)

where

Wi(foo) = ﬂBi(COO)/

001

(oo . . ) {0
Ai(©)de and Wi (¢o0) = 7B (Coo) /

001

® i (). (3.17)
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Substituting 8.11) into (3.16 and @.17) above, we find that, in terms &f, the first two asymp-
totic terms of the integral can be given as

: 1cima.— 29 ¢ i — - 4 i
| ~ 23 <4€5m/4)~(l 3/4 _ %357”/2;(1 2 0% 9/4)> exp<—3e_5”'/4>?f/4> . (@18)

Figure6 plots the numerical solution of the integrallong with the solution given by the first
five terms of the asymptotic expansion given311). We see that even for these moderate values
of X3, the asymptotics and numerics are in reasonable agreement, in both shape and magnitude.
The agreement between the asymptotics and the numerics for larger valkets dustrated in
Fig. 7, where (a) is the real part and (b) is the imaginary part of the intdgrhal Fig. 7, curve
1 represents the full numerical integration, curve 2 is the leading-order term from the asymptotic
expansion3.16) (—Wi'(¢o0)/¢00), curve 3 is the first five terms of the asymptotic expansion given
in (3.16 and curve 4 is the leading-order term lofrom (3.18. Although the two leading-order
expansions do not agree as well as the five-term higher-order expansion, their shape and magnitude
show that these are valid approximations to the full numerical result at leading order.

Using the expansior8(18 in (3.19, we find that the first two terms in the large expansion of
dIn(A)/dx; are

c1/2_2/3
din(A) _ % ez/ _}e5ni/4)~(l—3/4+ §e57ri/2)~(l—3/2 exp _f’e—sni/4)~(f/4 ’
dx aZ \ 4 96 3

which to leading order is

din(A)  e/3em/4 4 .
G g7 Y4 exp( —2e i/
dxg 16U "t 3 !

60 T T T T
50

40 T A

30|
Im(

num) /'/

20

101

0 2 4 6 8 10

Fig. 6 Plot of the real and imaginary parts of the intedras a function ok4, for both the numerical solution
and the asymptotic solution given by the first five terms316)
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(a) x10° (b) x10°

: 1
05
0
-05
-1
-15
-2
-2'5
-30
40 42 44 46 48 50 52 54 % 42 42 45 48 50 52 54

X X1

Re()
Im(7)

Fig. 7 Plot of (a) the real part and (b) the imaginary part of the integjrak a function ofX1, where 1 is
the numerical solution, 2 is the leading-order term &fL¢), 3 is the first five terms 0f3.16 and 4 is the
leading-order term of3.18

Therefore, comparing the leading-order asymptotic termgpofith the one above, we find that
the asymptotic expansion breaks down when

_ _ 4 ;
gV = Sy exp(—se‘s”'/4>?f/4> ,
which leads to a breakdown when
%1 = O((=Ine)*3).

For the value ok = F1/6 = 0.1 used in Figl, this would lead to a breakdown aroukgd = 3-0
(Rx &~ 3-3 x 107), which is in reasonable agreement with the observations inlFig.

4. Conclusions

We have shown that for the Blasius boundary layer on a semi-infinite flat plate, the large Reynolds
number asymptotic expansion for the wave numbes;, given by GoldsteinZ) becomes non-
uniform downstream, due to the non-parallel flow effects. In the lim& as 0, the lower branch
neutral stability point (x1ot) = 0) occurs ak; = 3-03, and the non-uniformity occurs far down-
stream of this, where it is unimportant. However, for practical values, dhis non-uniformity
moves towards the lower branch point, and in fact when- 0.1, the non-uniformity occurs
before the lower branch point. This shows that any T-S wave amplitudes calculated via these
asymptotics downstream of the leading edge would become less accurate with the inclusion of
the importantO(e2) term. However, the numerical methods of Gas&y Saris and Nayfeh6]

and Bertolottiet al. (12) do not show this non-uniformity and are in good agreement with the
numerical and experimental results. These numerical schemes include terms whiz{lpend
O(RY? = 21/2¢4) Uéf(i/z). The O(Rx “/?) terms when changed into our variables correspond to
being O(e3), and as the neglected terms in the above numerical schem&x Re"), or 0(e9),

we note that these schemes include more terms than our asymptotic expansion. Also, these schemes
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handle all theO(R;l/z) terms together, which corresponds to combining terms of atle* Ine,
€*, €®Ine, €® ande®In e into one single equation. It appears that this approach either removes the
non-uniformity or handles it in such a way as to not be an issue. Thus, the inclusion of these extra
terms could help to deal with the non-uniformity; however, the asymptotic evaluation of these terms
is far from trivial.

The value ofe = 0-1 (F = 1 x 10°%) used in this paper has illustrated the importance of the
O(e®) term in the asymptotic expansion; however, in experiments, a typical valueiddretween
0-18 and 025 (34x 10°% < F < 244x 107%); hence, the inclusion of the &) term becomes even
more significant for these cases. Thus, to accurately calculate the T-S wave amplitude downstream
of the leading-edge region, we require a numerical method in the Orr—Sommerfeld region similar
to the method of Turner and Hammertdtl). A numerical method in the Orr—Sommerfeld region
would also be needed if the asymptotics were extended to bodies with non-zero pressure gradients,
for the same reason, although the asymptotics Up( In €) would provide reasonable results, at
least for smalk.
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APPENDIX
Evaluation of integrals

This Appendix displays the form of the integrals in sect®as well as their evaluation or simplification.
Some of the integrals iy to Ig involve the integration of A(()Z, which can be integrated by noting that
w = Al (./;)2 satisfies the differential equation

w"” —4cw’ — 2w = 0.

Rearranging this to givei2 = w”’ — 4w’ and integrating with respect togives

1
/w de = —é(w” —4drw).

Thus, the integral$; to Ig can be evaluated by using the above expression and using integration by parts:

o . 1 . i H Ha
Iy = /C (€ — A d¢ = S2EAI (o) — 20A (o) — AT CD)AT' (o)),
0

o0 H HA 1 f o f i
I2 = /{ £ = AIOA(O)d = ZRAICDIAI' (o) — (AT (o) + (oA (o)),

0

oo ¢ q 1 o d 2
Q:/@ Al(g)/oom(s) sd§=—§ /OO Ai(syds|
la= [ - oA On Od:

<o

1 . ./ H 4
= —l1= —3(2EAI(0) — 2%0Ai" (D) — AT (DA ().

|5=/C:o(c—¢o)2Ai(() /Oi Al(s)ds o

¢ 2 (i 2 3
— (A o) + oA o) | °Ai(s>ds—C§< / °Ai(s>ds> + SACO)? - 20A ()2,

o
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lo= [ (- colAiI©) / Ai(8)ds d = —(2Ai' (o) + coAi (0)) / Ai(s)ds
{0

-3 & 2 7
+ <4§ - 1) ( / Al (s)ds> ~ 500A (0% + 45AI (0)* ~ A (LA (o).

*© 2 y : 2 [0,
7= [~ c0PAId = 2o ) + A0~ / Ai(9)ds
0 o0

lg = / (€ - A O = (& -2) / Ai(8)ds— :2AT (5o) — CoAi (o).

{0

_°°_4-2_}%3 2, (842 1285\ . 2
|9—/[O ¢ CO)AI(C)dC—9<<3 C0>A|(Co) (54“0 354“0>A|(Co)

64 _ .,
+ <3—5¢§ - 4) Ai (o)A (Co)) :

The integralK to Kg are evaluated in a similar way to the integrals above. However, in this case, some of
the integrals involve having to integrate(&)Wi(¢), whereWi(¢) is defined in 2.6). In this case, the function
v = Ai(¢)Wi(¢) satisfies the differential equation

— 40’ — 20 = 3AT.

Again, this is rearranged to give 2= "/ — 4¢0’ — 3Ai’, which on integration with respect toleads to the
expression

/v dc = —%(v” — 470 — 3Ai).

Thus, using this and integration by parts lead to the evaluation of the integrals below:
o0
Ki= [~ comEwWiCd:
(o

1

3 ./ . - -/ N HA 5 H H
=3 (5 - %(Al (¢0)Bi(¢0) + Ai(0)BI'(¢0)) — 27 (o (A ((0)BI" (¢0) — ¢oAI (Co)Bl(Co)))

(I 2 .
x /Oo Al ds+ SCoAi (o).
Ko = ; {(¢ = A (OWI)ds
0
1 ., ) . ., o 1 y . “ .
= 67r(A| (¢0)Bi(¢0) + Ai(¢o)Bi (go))/ Ai(s)ds+ éﬂCoAl (Co)Bi (Co)/ Ai(s)ds

1 ) . o 5 o
—6n§gA|(§o)Bl(§o)/oo AI(S)dS—é/ Al(s)ds——go/ Ai(s)ds

—~ —coAl 0 + 35 gA. (o),
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2
o0 4 3 o0 -
Kg= Wi({)/ Ai(s)dsd(:in/( Bi(()(/ Ai(s)ds> de,
o0 4]

(o 00

Kg= : (€ — 20)*AV (OWi()d:
¢0

1 o/ . . v . .y . .
= 5 (5 A ()Bi(c0) + Al (C0)B (c0)) + 27 Co(AT'(0)BI (o) — oA (0)B(C0)))

q g ¢
x / 0Ai(s)ols—§/ °Ai(s)ds+ igg/ OAi(s)ds— §§0Ai(§o)—} 2AI' (o),
6 6°0 /oo 6 6

oo oo

2
00 4 (o
Ks = / (¢ — 20 2Wi(0) / Ai(9)ds d- = 7 (Bi(o) + 0BV’ (o)) / Ai(9)ds
(o 00 00

o 9 , [
Al(s)ds—zgo/ Ai(s)ds

o

N T T
~20nAlCo)BiGo) | A9+ SrAT(Co)BT o) [

oo

(o 00

2
9 3 3 o ¢
+ 20081 (€)= JAiC0) + 57 | Bu@( / A|(s)ds> @,

oo oo

. 2
00 ¢ (o
K = / (¢ — c0)BWi() / Ai(s)ds dr = —¢o(Bi(co) + CoBY' (o)) / Ai(9)ds
lo

Lo SN
- ST A COBI (o) + A (o)Bito)) | Ai©ds+ arcBAi0BiD) [ Ai(o)ds

oo o

¢o (o 4]
Ai(s)ds + %gg/ Ai(s)ds+%/ Ai(s)ds — %g&Ai’(go)

oo o

7 Ha HA
— SRCoAl 0B o) |

(0.¢]

2
9 3\ > ¢
+ Z[()AI (¢o) + 37 ( - Cg) /( Bi(¢) (/OO Ai (s)ds> de,

SRR SO
k7= [ €~ PAEWi)d = Grai Goico) [ Ai(sids

o [

4 ./ . . ./ ./ ./ . .
+ 2e0( 5 (A (C0)BI(Co) + Al (20)BI' (o)) + 22 C0(A (DB (c0) — COAI (DB (¢0)) )
o 8 o0 3, o
x [ A= TeBAIo) + 2A o) — o [ Ai(syds

% s g gy
Kg = / (¢ = CPAIOWIE)AE = S (A ()BT (o) — oA (C0)BI(D)) / Ai(9)ds
(o 7 S

6 15 9 9 , [f0
— S00K7 = T A0 — 130 o)+ 7568 [ Aoy
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Kg= : (€ — o) * A (OWi()de
¢0

4 4 H H A o/ o/ . .
= — 5 (5 (A (0)Bi(0) + A (0)BI' (o)) + 2r 0 Al (C0)BI' (C0) — C0AI (OB (0)) )

¢o 8 14 2 (o 2 ¢o
x / Ai(s)ds — —oKg + = C0AI (00) + = (oA (C0) + 2/ Ai(s)ds— 7503/ Ai(s)ds.
. 9 9 3 o 3°0

The integralK 3 (and alsoKs and Kg) could not be evaluated explicitly; however, they were simplified, as
shown above. Thus, when we are in the region whefg)Bi —i Ai () to leading order, as ir3(12), then the

leading-order term oK 3 is given by
3
i (o
Kz ~ il (/ Ai(s)ds> ,
2 \Joo

which means that propert (14 still holds forL 3, Lg andLg.
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