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Summary

In this paper, we examine the large Reynolds number (Re) asymptotic structure of the wave
number in the Orr–Sommerfeld region for the Blasius boundary layer on a semi-infinite flat
plate given by Goldstein (1983,J. Fluid Mech., 127, 59–81). We show that the inclusion of
the term which contains the leading-order non-parallel effects, atO(Re−1/2), leads to a non-
uniform expansion. By considering the far downstream form of each term in the asymptotic
expansion, we derive a length scale at which the non-uniformity appears, and compare this
position with the position seen in plots of the wave number.

1. Introduction

When a body is placed in a parallel mean flow, which contains a small-amplitude unsteady pertur-
bation, the interaction of this perturbation with the boundary layer at areas of ‘receptivity’ produces
a collection of eigenmodes (1). These areas of receptivity occur in regions where the non-parallel
effects of the mean flow are important, such as at the leading edge of a body (2), at an element
of surface roughness (3) or at regions of marginal separation (4). As these eigenmodes move
downstream of the receptivity region, they match, in the matched asymptotic expansion sense,
to the Tollmien–Schlichting (T-S) modes in the nearly parallel Orr–Sommerfeld region. All these
T-S modes experience exponential decay as they move along the body, except one, which even-
tually grows downstream of the receptivity area, and hence the growth rate calculation for this
T-S wave is important in the prediction of transition. Typically, growth rate calculations have used
Orr–Sommerfeld theory, although this method does not include the slow growth in the boundary-
layer thickness. Other numerical studies have incorporated these non-parallel effects, although they
are not rigourous in an asymptotic sense (5, 6).

Goldstein (2) made a breakthrough in the receptivity/stability problem when he derived the
asymptotic form of the wave number/growth rate and mode shape in the Orr–Sommerfeld region
on a semi-infinite flat plate, and showed that the T-S modes in this region match to the Lam–Rott
asymptotic eigenmodes (7, 8) from the leading-edge region of the plate. Goldstein (2) provided the
asymptotic expansion for the wave number in the Orr–Sommerfeld region up to and including the
O(ε3 ln ε) term, whereε = Re−1/6. However, in an earlier NASA report, Goldstein calculated
the O(ε3) term of the wave number, which turns out to be important, as it includes the non-parallel
effect of the boundary layer (9). Goldstein (2) concentrated his analysis on the growing T-S wave;
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however, his formulation of the Orr–Sommerfeld problem also incorporated the other exponentially
decaying T-S modes, which were studied in more depth by Hultgren (10).

The advantage of the asymptotic expansion over the existing numerical procedures is that they
provide a link between the receptivity which occurs at the leading edge of the plate and the ampli-
tude of the T-S wave downstream. Hence, the complete amplitude of the T-S wave is known, and
there are no unknown constants to fix, such as the initial amplitude of the T-S wave as it enters
the Orr–Sommerfeld region, unlike in previous numerical studies (6). Turner and Hammerton (11)
used this connection between the leading-edge Lam–Rott modes and the T-S modes to numerically
calculate the wave number of the T-S wave by the use of the parabolized stability equations (PSE)
(12). The advantage of the PSE over full DNS is that the numerical procedure is quicker as the most
dangerous upstream propagating eigenmode has been eliminated (13). However, Turner
and Hammerton (11) noted, when comparing their results to the results of Goldstein (2), that the
inclusion of the non-parallelO(ε3) term made the asymptotics appear to be non-uniform far down-
stream. Turner and Hammerton also demonstrated that the inclusion of thisO(ε3) term is essential
for the matching of the Lam–Rott asymptotic eigenmodes to the T-S modes in the Orr–Sommerfeld
region at values ofε & 0∙05. This statement of non-uniformity was never investigated in their paper,
and it is addressed here.

In section2, we formulate the governing equation for the wave number and include the equation
for the O(ε3) term along with the form of the undetermined constants not given in (9). We also
show that theO(ε3) equation can be simplified by the explicit evaluation of most of the integrals.
In section3, we consider the form of the smallε asymptotic expansion for the wave number, when
we include more terms in the expansion, and show that the non-uniform behaviour occurs when
the O(ε3) term is included. We then produce the large downstream asymptotic form of each of the
terms from the smallε asymptotic expansion, and show that the asymptotics do indeed become
non-uniform with the inclusion of theO(ε3) term, and we give a streamwise position at which this
occurs.

2. Formulation

We consider a small two-dimensional harmonic disturbance of frequencyω, acting on the Blasius
boundary-layer flow on a semi-infinite flat plate. The free stream has densityρ, and streamwise
velocity U∞; therefore, the corresponding length, time, velocity and pressure scales we consider
areω−1U∞, ω−1, U∞ andρU2

∞, respectively. We introduce non-dimensional coordinates(x, η =
y/(ε3(2x)1/2)), which are in the streamwise and normal directions to the plate, respectively. Non-
dimensionalizing the vorticity–stream function form of the Navier–Stokes equation with respect to
these scales and linearizing about the Blasius boundary-layer mean flow(9 = ε3(2x)1/2 f (η) +
ψ(x1, η)eit ) give an equation for the perturbation stream function,ψ , as

−i ∇̃2ψ + x
1
2

[
∂(x−1∇̃2ψ, x1/2 f )

∂(x, η)
+
∂(x−1/2 f ′′, ψ)

∂(x, η)

]

= ∇̃2
(

1

2x
∇̃2ψ

)

(η, x > 0), (2.1)

where

∇̃2 =
∂2

∂η2 + 2ε6x
∂2

∂x2 + ε6 ∂

∂x
,

ε6 = Re−1 = F =
νω

U2
∞
,
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andν is the kinematic viscosity of the fluid. The Reynolds number Re is based on the acoustic
length scaleU∞/ω and F = ων/U2

∞ is the dimensionless frequency, commonly used in stability
calculations. The functionf (η) is the usual Blasius function that satisfies

f ′′′ + f f ′′ = 0,

with boundary conditionsf (0) = f ′(0) = 0 and f ′ −→ 1 asη −→ ∞. In (2.1), correction terms,
which remain uniformly small in the region we consider, have been dropped. The parameterε6 is
the inverse of the Reynolds number, which is assumed to be large; hence,ε � 1. We utilize this
fact later when forming our asymptotic expansions.

Following the work of Goldstein (2), we seek a solution for the perturbation stream function,ψ ,
in (2.1) in the form of travelling waves

ψ = ε−(2τ j +1)A(x1)γ (x1, η) exp

(
i

ε

∫ x

0
κ̂ j (x1, ε)dx

)

, (2.2)

wherex1 = ε2x is a slow streamwise coordinate,A(x1) is a slowly varying function to be deter-
mined by the analysis,γ (x1, η) is a mode shape and̂κ j (x1, ε) is the wave number of thej th mode,
which has an associated constantτ j . The constantτ j is found by solving a solvability condition for
the receptivity problem in the leading-edge region,x = O(1) (2). The form of this constant was
simplified by Hammerton and Kerschen (14) and given by

τ j = −
889− 16ρ3

j

1260
.

Hereρ j are the roots of Ai′(−ρ j ) = 0, where Ai′ is the derivative of the Airy function. In this
paper, we concentrate solely on the first root of this problem (ρ1 = 1∙0188), which corresponds to
the unstable Tollmien–Schlichting (T-S) wave and displays streamwise growth downstream of the
lower branch point. The other modes for this problem are important close to the leading edge of
the body; however, once we pass the lower branch neutral stability point, the amplitudes of these
modes decay exponentially; hence, we do not consider them here (10). In expression (2.2), it is
assumed that̂κ1 andx1 areO(1) in the region of the lower branch point, whereasx1 = O(ε−2) and
κ̂1 = O(ε1/2) at the upper branch point (10).

Substituting (2.2) into (2.1) and applying the parallel flow assumption lead to the Orr–Sommerfeld
problem; see (2, section4), where the wave number, phase velocity and Reynolds number are now
given by

α = εᾱ = ε(2x1)
1/2κ̂1,

c = εc̄ = εκ̂−1
1 ,

R = ε−4(2x1)
1/2,

respectively. By matching the asymptotic solution in the main deck to the outer inviscid and inner
viscous layers of the resulting equation, Goldstein (2) showed that the equation for the determination
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for κ ≡ κ̂1 is

x̃3/2
1 + (εeiπ/4ζ

3/2
0 )x̃1

(

2 −
x̃3/2

1 J1

i ζ 3
0

)

+ (εeiπ/4ζ
3/2
0 )2x̃1/2

1

(

1 +
2x̃3/2

1 J2

i ζ 3
0

−
x̃3

1 J3

ζ 6
0

)

−
eiπ/4(x̃1ζ0)

3/2ε3

2U ′2
0

ln

(
εeiπ/4ζ

3/2
0

x̃1/2
1 U ′

0

)

= H(ζ0) ≡
e5iπ/2ζ 2

0 Ai ′(ζ0)
∫ ζ0
∞1

Ai(ζ )dζ
, (2.3)

where

x̃1 ≡
2x1

U ′2
0

,

ζ0 = e−5iπ/6

(
x̃1/2

1

κ

)2/3

,

J1 ≡ U ′
0

∫ ∞

0

(

U2 −
1

U2 +
1

U ′2
0 η

2

)

dη,

J2 = −U ′
0

∫ ∞

0

(
1

U3 −
2

U2 + U −
1

(U ′
0η)

3 +
2

(U ′
0η)

2

)

dη,

J3 = J2
1 − 2U ′2

0

∫ ∞

0
U2
∫ ∞

η

(

U2 −
1

U2

)

dη dη,

U = f ′(η),

(2.4)

and the subscript 1 on∞ is used to indicate that the path of integration tends to infinity in the sector
−1

3π < arg(ζ ) < 1
3π . The constantsJ1, J2 and J3 take on the values 0∙92809,−2∙09322 and

1∙28777, respectively, andU ′
0 = f ′′(0) = 0∙46960. Hultgren (10) offered an alternative form of

(2.3) which is numerically more accurate, especially near the upper branch point (15). However, as
we are only interested in forming an asymptotic expansion for the wave number for smallε, the
form of (2.3) is acceptable.

The error in (2.3) is of O(ε3); hence, an asymptotic expansion forκ using this equation would
be valid up toO(ε3 ln ε). However, the neglected non-parallel terms enter the problem atO(ε3);
therefore, in order to construct an accurate asymptotic expansion for the wave numberκ, including
the non-parallel effects, we require the equation for the slowly varying amplitude functionA(x1).
This equation is found by matching the inviscid Rayleigh solution to the viscous wall layer solution
at O(ε4). This analysis is carried out in (9, Appendix C), so we just quote the result here. The
equation ford ln A/dx1 is given by

2ᾱ
d ln A

dx1
+ ᾱx1 −

ᾱ

2x1
+
ᾱ

c̄

3∑

n=0

Ãnc̄nᾱ(3−n)

= πU ′
0Bi′(ζ0)

∫ ∞

0

(

H̄1
d ln A

dx1
+ H̄2

)

Ai(ζ )dη̄ −
ᾱζ0

c̄

∫ ∞

0

(

Wi

(

H̄1
d ln A

dx1
+ H̄2

−
U ′

0

2x1
+

iU ′
0

2c̄
η̄2(a1 + U ′

0η̄) +
c̄(a1 + c̄)

2iU ′
0

)

+
c̄(a1 + c̄)

2iU ′
0ζ

)

dη̄, (2.5)
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where

Wi(ζ ) = −π

(

Ai(ζ )
∫ ζ

ζ0

Bi(ξ)dξ − Bi(ζ )
∫ ζ

∞1

Ai(ξ)dξ

)

,

H̄1 ≡ D̄(γ̄0 − η̄D̄γ̄0),

H̄2 ≡ D̄

(
∂

∂x1
(γ̄0 − η̄D̄γ̄0)+

1

4x1
D̄(η̄2D̄γ̄0)−

iU ′
0

3!c̄
η̄3
(

γ̄0 −
1

4
η̄D̄γ̄0

))

,

ζ = ζ0

(

1 −
U ′

0η̄

c̄

)

,

a1 = c̄

(

−1 +
Ai ′(ζ0)

ζ0
∫ ζ0
∞ Ai(s)ds

)

.

(2.6)

The derivation of theO(1) constants,Ãn, from this matching procedure atO(ε4), not given in (9),
can be found in (16). These constants take the form

Ã0 = iU ′
0

(
2J1J3

U ′4
0

−
J3

1

U ′4
0

+ J6

)

,

Ã1 = iU ′
0

(
4J1J2

U ′3
0

+
6J2

1

U3
0

− J5 −
4J3

U ′3
0

)

,

Ã2 = iU ′
0

(

J4 −
8J2

U ′2
0

−
10J1

U ′2
0

−
5

24U ′4
0

)

,

Ã3 =
i

2U ′2
0

,

where

J4 = −
1

U ′
0

∫ ∞

0

(
3

U4 − 1 + 8U − 10U2 −
3

(U ′
0η)

4 −
δ

2U ′3
0 η

)

dη,

J5 =
4

U ′
0

(∫ ∞

0
(U2 − U )

∫ ∞

η

(

U2 −
1

U2

)

dη dη

+
∫ ∞

0
U2
∫ ∞

η

(

2U2 −
1

U3 − U

)

dη dη

)

,

J6 =
1

U ′
0

(∫ ∞

0
U2
(

4
∫ ∞

η
U2
∫ ∞

η

(

U2 −
1

U2

)

dη dη

+

(∫ ∞

η

(

U2 −
1

U2

)

dη

)2

dη

))

,

andδ = 1 for 0< η < 1 andδ = 0 for η > 1. The constants̃A0 to Ã3 have the values 30∙25292i ,
−42∙05954i , 6∙28404i and 2∙26733i , respectively. Equation (2.5) is solved by first solving (2.3) for
ζ0 andκ at each streamwise step, and then using these to solve ford ln(A)/dx1.
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We found that most of the integrals in (2.5) can either be written in closed form or simplified.
Thus, we can write (2.5) as

(2ᾱ − ω1L1)
d ln(A)

dx1
= −ᾱx1 +

ᾱ

2x1
−
ᾱ

c̄

3∑

n=0

Ãnc̄nᾱ(3−n)

+ ω1

(
ζ0x1

ζ0
−

c̄x1

c̄
−

Ai(ζ0)ζ0x1∫ ζ0
∞ Ai(s)ds

−
1

x1

)

L1 +
ω1ζ0x1

ζ0
L2

+

(

ω2 −
ω1

4x1
−
ω1c̄x1

c̄

)

L4 −
ω1

2x1
L3 − ω2L6 − ω2ζ0L5 +

ω2

12
L9

−
π c̄Bi′(ζ0)

ζ0

(

ω4I8 + (ω4ζ0 − ω3)I7 +
U ′

0

2x1

∫ ζ0

∞
Ai(s)ds

)

+
c̄ᾱ(a1 + c̄)

2iU ′2
0

∫ ∞

ζ0

(

Wi +
1

ζ

)

dζ, (2.7)

where

L j =
ᾱ

U ′
0

K j −
π c̄Bi′(ζ0)

ζ0
I j ,

ω1 =
U ′

0∫ ζ0
∞ Ai(ζ )dζ

,

ω2 =
i c̄2

2ζ 3
0U ′

0

∫ ζ0
∞ Ai(s)ds

,

ω3 = ω2Ai ′(ζ0),

ω4 = ω2

∫ ζ0

∞
Ai(s)ds,

and I1 to I9 andK1 to K9 are given in the Appendix as functions ofζ0.
Equation (2.3) can be solved numerically forκ, using a root search in the complex plane, and then

this value could be substituted into (2.7) to find d ln(A)/dx1. Although this method retains all the
O(ε3) terms, it also retains some terms ofO(ε4) and smaller, whereas other terms ofO(ε4) from
the functionA(x1) are missing, and these terms are important because they contain the non-parallel
behaviour. Therefore, in section3, we construct an asymptotic expansion for the wave number,κ, in
powers ofε. The asymptotic expansion eliminates the above problem because it allows us to retain
all the terms up to a given order in our solution or none at all depending on where we decide to
truncate our asymptotic solution.

3. Results and largex̃1 asymptotics

In this section, we form an asymptotic solution for the wave number,κ, in terms of the small
parameterε, which includes the leading-order non-parallel effects, which enters the problem at
O(ε3).
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To form this expansion, we note that sinceH(ζ0) is an analytic function ofζ0, it is clear that the
total wave number,κTot, has an asymptotic expansion of the form

κTot = κ0 + εκ1 + ε2κ2 + ε3 ln εκ3 + ε3
(

κ4 − i
d ln(A)

dx1

)

+ O(ε4 ln ε), (3.1)

whereκ0 to κ4 are found from (2.3).
Insertingκ = κ0 + εκ1 + ε2κ2 + ε3 ln εκ3 + ε3κ4 + O(ε4 ln ε) into (2.3) and (2.4), expanding

the functionH(ζ0) about

ζ00 = e−5π i /6

(
x̃1/2

1

κ0

)2/3

, (3.2)

and equating powers ofε, give

H(ζ00) = x̃3/2
1 , (3.3)

κ1

κ0
= −

3

2
eiπ/4ζ

1/2
00 x̃1

(

2 −
x̃3/2

1 J1

i ζ 3
00

)/

H ′(ζ00) , (3.4)

κ2

κ0
= −

1

3

(
1

2
−

H ′′(ζ00)ζ00

H ′(ζ00)

)(
κ1

κ0

)2

+ 3e−iπ/4
(

x̃1

ζ00

)5/2

J1

(
κ1

κ0

)/

H ′(ζ00)

−
3

2
i ζ 2

00x̃1/2
1

(

1 +
2x̃3/2

1 J2

i ζ 3
00

−
x̃3

1 J3

i ζ 6
00

)/

H ′(ζ00) , (3.5)

κ3

κ0
=

3

4U ′2
0

eiπ/4ζ
1/2
00 x̃3/2

1

/
H ′(ζ00) . (3.6)

The functionH(ζ00) is defined by (2.3) and the primes onH denote derivatives with respect toζ00
(2). The form ofκ4 is not given in (2), and we found it to be

κ4

κ0
=

1

27

(

47− 15
ζ00H ′′(ζ00)

H ′(ζ00)
− 2

ζ 2
00H ′′′(ζ00)

H ′(ζ00)

)(
κ1

κ0

)3

+
2

3

(

1 +
ζ00H ′′(ζ00)

H ′(ζ00)

)
κ1κ2

κ2
0

−
3

2
e−iπ/4

(
x̃1

ζ00

)5/2

J1

((
κ1

κ0

)2

− 2
κ2

κ0

)/

H ′(ζ00)

+ 3i ζ 2
00x̃1/2

1

(

1 +
x̃3

1 J3

ζ 6
00

)(
κ1

κ0

)/

H ′(ζ00) +
κ3

κ0
ln

(
eiπ/4ζ

3/2
00

x̃1/2
1 U ′

0

)

. (3.7)

To solve these equations, we first solve (3.3) for ζ00. This is done by performing a complex eigen-
value search, where the initial eigenvalue is given asζ00 = −ρ1 = −1∙0188 atx̃1 = 0. At the next
streamwise step, a box is placed around the previous eigenvalue in the complex plane, and a search
for the next eigenvalue is made within this box. Also, at each step the value forζ00 is used in (3.2) to
solve forκ0, and then both of these are used to solve forκ1, κ2, κ3 andκ4 in turn. To find theO(ε3)
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correction term toκTot from (2.7), we require only the leading-order term ofd ln(A)/dx1. Thus, we
solve (2.7) by substituting in the leading-order terms ofζ0 = ζ00 andκ = κ0 to make (3.1) a true
asymptotic expansion. The asymptotic expansion forκTot at different levels of approximation are
plotted in Fig.1.

In Fig. 1, we plot the asymptotic results for the wave number,κTot, as a function ofx̃1 for
ε = F1/6 = 0∙1. For this value ofε, the neutral stability point (Im(κTot) = 0) occurs at̃x1 ≈ 4,
which corresponds to a downstream Reynolds numberRx = U∞x∗/ν = U ′2

0 x̃1/(2ε8) ≈ 4∙4×107,
wherex∗ is a dimensional distance downstream. The wave number,κTot, in Fig. 1 appears to be
uniform up to and including theO(ε3 ln ε) term, as the inclusion of each extra term only changes
the wave number by a small amount. However, when we include theO(ε3) term, we see that the
asymptotic expansion appears to become non-uniform far downstream. The addition of theO(ε3)
term also appears to change the form ofκTot significantly for smallx̃1, which can be seen near the
first maximum of Im(κ), close tox̃1 = 0∙5, in Fig. 1(b). However, this behaviour is required so
that the wave number matches on to the large downstream asymptotic form of the first Lam–Rott
eigenmode from the leading-edge region (2). Goldstein (2) showed that, for this matching to take
place, the functionA(x1), in the limit asx1 −→ 0, must behave like

d ln(A)

dx1
∼

1 + 2τ1
2x1

,

whereτ1 = −0∙6921. This property can been seen to hold numerically, in Fig.2, which plots
d ln(A)/dx1 as a function ofx̃1, along with(1 + 2τ1)/2x1. It is clear that the imaginary part of
d ln(A)/dx1 tends to zero for small̃x1, and beforẽx1 ≈ 0∙5, the real part ofd ln(A)/dx1 is indis-
tinguishable from(1 + 2τ1)/2x1. Therefore, the wave number has the correct behaviour for small
x̃1, so we need only to concern ourselves with the largex̃1 behaviour of the wave number.

Figure3 shows the real parts ofκ0 to κ4 as a function ofx̃1. We see that the modulus of each
term, atx̃1 = 100, increases as we move fromκ0 to κ4. The form of the imaginary parts in Fig.4 is

Fig. 1 Plot of (a) the real part and (b) the imaginary part of the wave numberκTot as a function of̃x1, up to
1− O(1), 2− O(ε), 3− O(ε2), 4− O(ε3 ln ε) and 5− O(ε3), whereε = F1/6 = 0∙1 in this case. Note that
Rx = U ′2

0 x̃1/(2ε
8)
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slightly different becauseκ0, κ1 andκ3 all decay with increasing̃x1; however,κ2 andκ4 both grow
with increasingx̃1. The asymptotic expansion forκTot will remain valid, as long as|εκ1| < |κ0| and
|ε2κ2| < |εκ1|, etc. From Figs3 and4, it is not clear if the non-uniformity seen in Fig.1 is due to
any of the termsκ0 to κ4 becoming non-uniform, so we consider the largex̃1 asymptotic form ofκ0
to κ4 to determine if they lead to the breakdown of (3.1).

Fig. 2 Plot of the real and imaginary part ofd ln(A)/dx1, showing the matching onto(1 + 2τ1)/2x1 for
smallx1

Fig. 3 Plot of the real parts of (a)κ0 andκ1 and (b)κ2, κ3 andκ4, as a function of̃x1
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Fig. 4 Plot of the imaginary parts of (a)κ0 andκ1 and (b)κ2, κ3 andκ4, as a function of̃x1

3.1 Largex̃1 asymptotics of(3.1)

To find out when the asymptotic form of (3.1) breaks down, we consider the largex̃1 form of (3.3)
to (3.7). To find the largẽx1 form of κ0, we first expand the functionH(ζ00) in (3.3) for largeζ00.
To do this, we require the largeζ00 asymptotic forms of Ai′(ζ00) and

∫ ζ00
∞ Ai(ζ )dζ , which from

Abramowitz and Stegun (17) are given by

Ai ′(ζ00) ∼ −
ζ

1/4
00

2π1/2

(

1 +
7

48
ζ

−3/2
00 −

455

4608
ζ−3

00 +
95095

663552
ζ

−9/2
00

−
40415375

127401984
ζ−6

00

)

exp

(

−
2

3
ζ

3/2
00

)

, (3.8)

∫ ζ00

∞
Ai(ζ )dζ ∼ −

1

2π1/2

(

ζ
−3/4
00 −

41

48
ζ

−9/4
00 +

9241

4608
ζ

−15/4
00 −

5075225

663552
ζ

−21/2
00

+
5153008945

127401984
ζ

−27/4
00

)

exp

(

−
2

3
ζ

3/2
00

)

, (3.9)

which have error terms ofO(ζ−29/4
00 exp(−2

3ζ
3/2
00 )) andO(ζ−33/4

00 exp(−2
3ζ

3/2
00 )), respectively.

Substituting these into (3.3), we find

x̃3/2
1 = e5π i /2

(

ζ 3
00 + ζ

3/2
00 −

5

4
+

151

32
ζ

−3/2
00 + O(ζ−3

00 )

)

. (3.10)

Just considering the first term on the right-hand side of (3.10), we find that to leading order

ζ00 = e−5π i /6x̃1/2
1 ;
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hence, we can find the higher-order terms ofζ00 by looking for a solution of the formζ00 =
e−5π i /6x̃1/2

1 + ˆζ00. On inserting this into (3.10), we find that

ζ00 = e−5π i /6x̃1/2
1 −

1

3
e5π i /12x̃−1/4

1 +
17

36
e5π i /6x̃−1

1 + O(x̃−7/4
1 ). (3.11)

Hence, we note that the real part ofζ 3/2
00 , which appears in the exponential term of (3.8) and (3.9), is

negative, and so in this region Ai′(ζ00) and
∫ ζ00
∞ Ai(ζ )dζ are both exponentially growing functions.

We can now use (3.11) to find the largẽx1 form of the wave number terms, which are

κ0 = x̃−1/4
1 +

1

2
e5π i /4x̃−1

1 + O(x̃−7/4
1 ),

κ1 =
1

2
(2 − J1)−

1

2
eπ i /4

(

1 −
3

2
J1

)

x̃−3/4
1 + O(x̃−3/2

1 ),

κ2 =
1

2

[(

1 −
1

2
J1

)(

1 −
5

2
J1

)

− (1 + 2J2 − i J3)

]

x̃1/4
1

+
1

2
eπ i /4 [2(J2 − i J3)+ J1 (4 − 3J1)] x̃−1/2

1 + O(x̃−5/4
1 ),

κ3 = −
1

4U ′2
0

x̃1/2
1 +

1

8U ′2
0

eπ i /4x̃−1/4
1 + O(x̃−1

1 ),

κ4 = −
1

16U ′2
0

x̃1/2
1 ln(x̃1)+

[
40

27
−

67

18
J1 +

37

9
J2

1 −
32

27
J3

1 + i J3 (1 − J1)+
1

2
J3 (J1 − 2)

+ 2J2 (J1 − 1)−
1

4U ′2
0

ln

(

−
1

U ′
0

)]

x̃1/2
1 +

eπ i /4

32U ′2
0

x̃−1/4
1 ln(x̃1)

+ eπ i /4

[

−
20

27
+

29

6
J1 −

1345

144
J2

1 +
3395

864
J3

1 −
7

4
i J3

(

1 −
23

14
J1

)

+ 2J3

(

1 −
3

4
J1

)

+
3

2
J2

(

1 −
5

2
J1

)

+
1

8U ′2
0

(

ln

(

−
1

U ′
0

)

− 1

)]

x̃−1/4
1 + O(x̃−1

1 ln(x̃1)),

whereJ1, J2 andJ3 are the numerical coefficients given in section2.
Figure5 shows a plot of the numerical and largex̃1 asymptotic forms of bothκ0 andκ1. We

see that the asymptotics and the numerics are in good agreement forx̃1 larger than 50, and this
result holds true forκ2, κ3 andκ4. The asymptotic form of the wave number breaks down when
|κ0| = |εκ1|; hence, by comparing the leading-order terms of the largex̃1 asymptotics forκ0 and
κ1, we note that the asymptotic form of the wave number (3.1) breaks down when

x̃−1/4
1 = ε,

that is, whenx̃1 = O(ε−4). For the value ofε = 0.1 chosen in Fig.1, this breakdown point would
be whenx̃1 = O(10 000), which is well outside the range of values considered here. Thus, the
non-uniformity seen in Fig.1 must be due to the functionA(x1).
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Fig. 5 Plot of the numerical and largẽx1 form of (a)κ0 and (b)κ1, as a function of̃x1

3.2 Largex̃1 asymptotics of dln(A)/dx1

To find the largẽx1 asymptotic form of (2.7), we note that we again require the largeζ00 asymptotic
forms of both Ai′(ζ00) and

∫ ζ00
∞ Ai(ζ )dζ obtained above, and also the largeζ00 asymptotic form of

Ai(ζ00) and Bi(ζ00). From (3.11), we can see that for largẽx1, ζ00 lies in the sector|arg(−ζ00)| <
2
3π ; hence, by comparing the largeζ00 forms of Ai(ζ00) and Bi(ζ00) in Abramowitz and Stegun (17)
we deduce that in the sector we are considering

Bi(ζ00) = −i Ai(ζ00)+ R(ζ00), (3.12)

whereR(ζ00) is the remainder term of Bi(ζ00), and its largeζ00 asymptotic form is given by

R(ζ00) =
ζ

−1/4
00

π1/2

(

1 +
5

48
ζ

−3/2
00 +

385

4608
ζ−3

00 +
85085

663552
ζ

−9/2
00 + O(ζ−6

00 )

)

exp

(
2

3
ζ

3/2
00

)

. (3.13)

Note also that in this sector exp
(
− 2

3ζ
3/2
00

)
is exponentially large, while exp

(
2
3ζ

3/2
00

)
is exponentially

small.
Using the fact that (3.12) holds in this sector, we can simplify the form of theL j terms which

appear in (2.7). These terms can be written in their largeζ00 form as

L j ∼ −c̄iπ
∫ ζ00

∞
Ai(ζ )dζ F̃ j (ζ00)

{
ᾱ

c̄U′
0

−
Ai ′(ζ00)

ζ00
∫ ζ00
∞ Ai(s)ds

}

+ O

(

exp

(

−
2

3
ζ

3/2
00

))

, (3.14)

where the function F̃ j (ζ00) is the evaluation of I j , with ζ0 replaced by ζ00, which is

O
(

exp
(

− 2
3ζ

3/2
00

)2)
. In equation (2.7), all the L j terms are multiplied byω1 or ω2 which are

both O
(

exp
(

2
3ζ

3/2
00

))
; thus, the leading-order term ofωkL j (k = 1 or 2) is exponentially large of

O
(

exp
(

− 2
3ζ

3/2
00

)2)
, while the correction terms areO(1). Now using (3.3), we can write

Ai ′(ζ00)

ζ00
∫ ζ00
∞ Ai(s)ds

= e−5π i /2 x̃3/2
1

ζ 3
00

,
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which on inserting (3.11), and using the fact that

ᾱ = (2x1)
1/2κ = U ′

0x̃1/2
1 κ0,

c̄ =
1

κ
=

1

κ0
,

gives

Ai ′(ζ00)

ζ00
∫ ζ00
∞ Ai(s)ds

=
ᾱ

U ′
0c̄
.

Therefore, comparing this with (3.3), we see that the term in braces in (3.14) is zero; hence, all the
combinationsωkL j (k = 1 or 2) have no exponential growth and are at mostO(1).

The left-hand side of (2.7), 2ᾱ − ω1L1, now has no exponential growth, and to find the leading-
order term, we consider the error term in (3.14) multiplied by ω1. In this case,j = 1 and the
correction term toω1L1 from (3.14) is

ᾱ

2
+

2ᾱ

3

ζ00Ai(ζ00)
∫ ζ00
∞ Ai(s)ds

−
πU ′

0c̄F̃1(ζ00)R′(ζ00)

ζ00
∫ ζ00
∞ Ai(s)ds

+ ᾱπ

(

−
1

6
(Ai ′(ζ00)R(ζ00)+ Ai(ζ00)R

′(ζ00))−
2

3
ζ00Ai ′(ζ00)R

′(ζ00)+
2

3
ζ 2

00Ai(ζ00)R(ζ00)

)

,

whereR(ζ00) is given in (3.13) and in this case

F̃1(ζ00) =
1

3
(2ζ 2

00Ai(ζ00)
2 − 2ζ00Ai ′(ζ00)

2 − Ai(ζ00)Ai ′(ζ00)).

Thus, it is straightforward to show that the leading-order term of(2ᾱ − ω1L1) is just 2ᾱ. However,
on the right-hand side of (2.7), there is still some exponential growth, and in fact the leading-order
term is

c̄ᾱ(a1 + c̄)

2iU ′2
0

∫ ∞

ζ00

(

Wi(ζ )+
1

ζ

)

dζ.

Using the definition ofa1 in (2.6), with ζ0 replaced byζ00 we see thata1 + c̄ = ᾱ/U ′
0. Hence, the

equation ford ln(A)/dx1 becomes

d ln(A)

dx1
=

ᾱc̄

4iU ′3
0

∫ ∞

ζ00

(

Wi(ζ )+
1

ζ

)

dζ. (3.15)

The above integral can be approximated for largeζ00 by using the fact thatWi′′ − ζWi = 1; thus,
by integrating by parts we find

I =
∫ ∞

ζ00

(

Wi(ζ )+
1

ζ

)

dζ = −Wi′(ζ00)

(
1

ζ00
+

2

ζ 4
00

)

− Wi(ζ00)

(
1

ζ 2
00

+
8

ζ 5
00

)

−
2

3ζ 3
00

+ 40
∫ ∞

ζ00

Wi(ζ )

ζ 6 dζ, (3.16)

where

Wi(ζ00) = πBi(ζ00)

∫ ζ00

∞1

Ai(ξ)dξ and Wi′(ζ00) = πBi′(ζ00)

∫ ζ00

∞1

Ai(ξ)dξ. (3.17)
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Substituting (3.11) into (3.16) and (3.17) above, we find that, in terms ofx̃1, the first two asymp-
totic terms of the integralI can be given as

I ∼ ie2/3
(

1

4
e5π i /4x̃−3/4

1 −
29

96
e5π i /2x̃−3/2

1 + O(x̃−9/4
1 )

)

exp

(

−
4

3
e−5π i /4x̃3/4

1

)

. (3.18)

Figure6 plots the numerical solution of the integralI along with the solution given by the first
five terms of the asymptotic expansion given in (3.16). We see that even for these moderate values
of x̃1, the asymptotics and numerics are in reasonable agreement, in both shape and magnitude.
The agreement between the asymptotics and the numerics for larger values ofx̃1 is illustrated in
Fig. 7, where (a) is the real part and (b) is the imaginary part of the integralI . In Fig. 7, curve
1 represents the full numerical integration, curve 2 is the leading-order term from the asymptotic
expansion (3.16) (−Wi′(ζ00)/ζ00), curve 3 is the first five terms of the asymptotic expansion given
in (3.16) and curve 4 is the leading-order term ofI from (3.18). Although the two leading-order
expansions do not agree as well as the five-term higher-order expansion, their shape and magnitude
show that these are valid approximations to the full numerical result at leading order.

Using the expansion (3.18) in (3.15), we find that the first two terms in the largex̃1 expansion of
d ln(A)/dx1 are

d ln(A)

dx1
= −

x̃1/2
1 e2/3

4U ′2
0

(

−
1

4
e5π i /4x̃−3/4

1 +
29

96
e5π i /2x̃−3/2

1

)

exp

(

−
4

3
e−5π i /4x̃3/4

1

)

,

which to leading order is

d ln(A)

dx1
=

e2/3e5π i /4

16U ′2
0

x̃−1/4
1 exp

(

−
4

3
e−5π i /4x̃3/4

1

)

.

Fig. 6 Plot of the real and imaginary parts of the integralI as a function of̃x1, for both the numerical solution
and the asymptotic solution given by the first five terms of (3.16)
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Fig. 7 Plot of (a) the real part and (b) the imaginary part of the integralI as a function ofx̃1, where 1 is
the numerical solution, 2 is the leading-order term of (3.16), 3 is the first five terms of (3.16) and 4 is the
leading-order term of (3.18)

Therefore, comparing the leading-order asymptotic term ofκ0 with the one above, we find that
the asymptotic expansion breaks down when

x̃−1/4
1 = ε3x̃−1/4

1 exp

(

−
4

3
e−5π i /4x̃3/4

1

)

,

which leads to a breakdown when

x̃1 = O((− ln ε)4/3).

For the value ofε = F1/6 = 0∙1 used in Fig.1, this would lead to a breakdown aroundx̃1 = 3∙0
(Rx ≈ 3∙3 × 107), which is in reasonable agreement with the observations in Fig.1.

4. Conclusions

We have shown that for the Blasius boundary layer on a semi-infinite flat plate, the large Reynolds
number asymptotic expansion for the wave number,κTot, given by Goldstein (2) becomes non-
uniform downstream, due to the non-parallel flow effects. In the limit asε → 0, the lower branch
neutral stability point ((κTot) = 0) occurs at̃x1 = 3∙03, and the non-uniformity occurs far down-
stream of this, where it is unimportant. However, for practical values ofε, this non-uniformity
moves towards the lower branch point, and in fact whenε = 0∙1, the non-uniformity occurs
before the lower branch point. This shows that any T-S wave amplitudes calculated via these
asymptotics downstream of the leading edge would become less accurate with the inclusion of
the importantO(ε3) term. However, the numerical methods of Gaster (5), Saris and Nayfeh (6)
and Bertolottiet al. (12) do not show this non-uniformity and are in good agreement with the
numerical and experimental results. These numerical schemes include terms which areO(1) and
O(R−1/2

x = 21/2ε4/U ′
0x̃1/2

1 ). TheO(R−1/2
x ) terms when changed into our variables correspond to

being O(ε3), and as the neglected terms in the above numerical schemes areO(R−1
x ), or O(ε6),

we note that these schemes include more terms than our asymptotic expansion. Also, these schemes
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handle all theO(R−1/2
x ) terms together, which corresponds to combining terms of orderε3, ε4 ln ε,

ε4, ε5 ln ε, ε5 andε6 ln ε into one single equation. It appears that this approach either removes the
non-uniformity or handles it in such a way as to not be an issue. Thus, the inclusion of these extra
terms could help to deal with the non-uniformity; however, the asymptotic evaluation of these terms
is far from trivial.

The value ofε = 0∙1 (F = 1 × 10−6) used in this paper has illustrated the importance of the
O(ε3) term in the asymptotic expansion; however, in experiments, a typical value forε is between
0∙18 and 0∙25 (34×10−6 < F < 244×10−6); hence, the inclusion of the O(ε3) term becomes even
more significant for these cases. Thus, to accurately calculate the T-S wave amplitude downstream
of the leading-edge region, we require a numerical method in the Orr–Sommerfeld region similar
to the method of Turner and Hammerton (11). A numerical method in the Orr–Sommerfeld region
would also be needed if the asymptotics were extended to bodies with non-zero pressure gradients,
for the same reason, although the asymptotics up toO(ε3 ln ε) would provide reasonable results, at
least for smallε.
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APPENDIX

Evaluation of integrals

This Appendix displays the form of the integrals in section2, as well as their evaluation or simplification.
Some of the integrals inI1 to I9 involve the integration of Ai(ζ )2, which can be integrated by noting that

w = Ai(ζ )2 satisfies the differential equation

w′′′ − 4ζw′ − 2w = 0.

Rearranging this to give 2w = w′′′ − 4ζw′ and integrating with respect toζ gives
∫
w dζ = −

1

2
(w′′ − 4ζw).

Thus, the integralsI1 to I9 can be evaluated by using the above expression and using integration by parts:

I1 =
∫ ∞

ζ0

(ζ − ζ0)Ai(ζ )2 dζ =
1

3
(2ζ2

0 Ai(ζ0)
2 − 2ζ0Ai ′(ζ0)

2 − Ai(ζ0)Ai ′(ζ0)),

I2 =
∫ ∞

ζ0

ζ(ζ − ζ0)Ai(ζ )Ai ′(ζ )dζ =
1

6
(2Ai(ζ0)Ai ′(ζ0)− ζ2

0 Ai(ζ0)
2 + ζ0Ai ′(ζ0)

2),

I3 =
∫ ∞

ζ0

Ai(ζ )
∫ ζ

∞
Ai(s)ds dζ = −

1

2

(∫ ζ0

∞
Ai(s)ds

)2

,

I4 =
∫ ∞

ζ0

(ζ − ζ0)
2Ai ′(ζ )Ai(ζ )dζ

= −I1 = −
1

3
(2ζ2

0 Ai(ζ0)
2 − 2ζ0Ai ′(ζ0)

2 − Ai(ζ0)Ai ′(ζ0)),

I5 =
∫ ∞

ζ0

(ζ − ζ0)
2Ai(ζ )

∫ ζ

∞
Ai(s)ds dζ

= (Ai(ζ0)+ ζ0Ai ′(ζ0))
∫ ζ0

∞
Ai(s)ds−

ζ2
0
2

(∫ ζ0

∞
Ai(s)ds

)2

+
3

2
Ai ′(ζ0)

2 − 2ζ0Ai(ζ0)
2,
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I6 =
∫ ∞

ζ0

(ζ − ζ0)
3Ai(ζ )

∫ ζ

∞
Ai(s)ds dζ = −(ζ2

0 Ai ′(ζ0)+ ζ0Ai(ζ0))
∫ ζ0

∞
Ai(s)ds

+

(
ζ3
0
2

− 1

)(∫ ζ0

∞
Ai(s)ds

)2

−
7

2
ζ0Ai ′(ζ0)

2 + 4ζ2
0 Ai(ζ0)

2 − Ai(ζ0)Ai ′(ζ0),

I7 =
∫ ∞

ζ0

(ζ − ζ0)
2Ai(ζ )dζ = ζ0Ai ′(ζ0)+ Ai(ζ0)− ζ2

0

∫ ζ0

∞
Ai(s)ds,

I8 =
∫ ∞

ζ0

(ζ − ζ0)
3Ai(ζ )dζ = (ζ3

0 − 2)
∫ ζ0

∞
Ai(s)ds− ζ2

0 Ai ′(ζ0)− ζ0Ai(ζ0),

I9 =
∫ ∞

ζ0

(ζ − ζ0)
4Ai(ζ )2dζ =

1

9

((
128

35
ζ4
0 −

80

7
ζ0

)

Ai ′(ζ0)
2 +

(
64

5
ζ2
0 −

128

35
ζ5
0

)

Ai(ζ0)
2

+

(
64

35
ζ3
0 − 4

)

Ai(ζ0)Ai ′(ζ0)

)

.

The integralsK1 to K9 are evaluated in a similar way to the integrals above. However, in this case, some of
the integrals involve having to integrate Ai(ζ )Wi(ζ ), whereWi(ζ ) is defined in (2.6). In this case, the function
v = Ai(ζ )Wi(ζ ) satisfies the differential equation

v′′′ − 4ζv′ − 2v = 3Ai′.

Again, this is rearranged to give 2v = v′′′ − 4ζv′ − 3Ai′, which on integration with respect toζ leads to the
expression

∫
v dζ = −

1

2
(v′′ − 4ζv − 3Ai).

Thus, using this and integration by parts lead to the evaluation of the integrals below:

K1 =
∫ ∞

ζ0

(ζ − ζ0)Ai(ζ )Wi(ζ )dζ

=
1

3

(
3

2
−
π

2
(Ai ′(ζ0)Bi(ζ0)+ Ai(ζ0)Bi′(ζ0))− 2πζ0(Ai ′(ζ0)Bi′(ζ0)− ζ0Ai(ζ0)Bi(ζ0))

)

×
∫ ζ0

∞
Ai(s)ds+

2

3
ζ0Ai(ζ0),

K2 =
∫ ∞

ζ0

ζ(ζ − ζ0)Ai ′(ζ )Wi(ζ )dζ

=
1

6
π(Ai ′(ζ0)Bi(ζ0)+ Ai(ζ0)Bi′(ζ0))

∫ ζ0

∞
Ai(s)ds+

1

6
πζ0Ai ′(ζ0)Bi′(ζ0)

∫ ζ0

∞
Ai(s)ds

−
1

6
πζ2

0 Ai(ζ0)Bi(ζ0)
∫ ζ0

∞
Ai(s)ds−

5

6

∫ ζ0

∞
Ai(s)ds−

1

12
ζ3
0

∫ ζ0

∞
Ai(s)ds

−
1

12
ζ0Ai(ζ0)+

1

12
ζ2
0 Ai ′(ζ0),
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K3 =
∫ ∞

ζ0

Wi(ζ )
∫ ζ

∞
Ai(s)ds dζ =

3

2
π

∫ ∞

ζ0

Bi(ζ )

(∫ ζ

∞
Ai(s)ds

)2

dζ,

K4 =
∫ ∞

ζ0

(ζ − ζ0)
2Ai ′(ζ )Wi(ζ )dζ

=
1

3

(π

2
(Ai ′(ζ0)Bi(ζ0)+ Ai(ζ0)Bi′(ζ0))+ 2πζ0(Ai ′(ζ0)Bi′(ζ0)− ζ0Ai(ζ0)Bi(ζ0))

)

×
∫ ζ0

∞
Ai(s)ds−

5

6

∫ ζ0

∞
Ai(s)ds+

1

6
ζ3
0

∫ ζ0

∞
Ai(s)ds−

5

6
ζ0Ai(ζ0)−

1

6
ζ2
0 Ai ′(ζ0),

K5 =
∫ ∞

ζ0

(ζ − ζ0)
2Wi(ζ )

∫ ζ

∞
Ai(s)ds dζ = π(Bi(ζ0)+ ζ0Bi′(ζ0))

(∫ ζ0

∞
Ai(s)ds

)2

− 2ζ0πAi(ζ0)Bi(ζ0)
∫ ζ0

∞
Ai(s)ds+

3

2
πAi ′(ζ0)Bi′(ζ0)

∫ ζ0

∞
Ai(s)ds−

9

4
ζ2
0

∫ ζ0

∞
Ai(s)ds

+
9

4
ζ0Ai ′(ζ0)−

3

4
Ai(ζ0)+

3

2
πζ2

0

∫ ∞

ζ0

Bi(ζ )

(∫ ζ

∞
Ai(s)ds

)2

dζ,

K6 =
∫ ∞

ζ0

(ζ − ζ0)
3Wi(ζ )

∫ ζ

∞
Ai(s)ds dζ = −πζ0(Bi(ζ0)+ ζ0Bi′(ζ0))

(∫ ζ0

∞
Ai(s)ds

)2

−
1

2
π(Ai(ζ0)Bi′(ζ0)+ Ai ′(ζ0)Bi(ζ0))

∫ ζ0

∞
Ai(s)ds+ 4πζ2

0 Ai(ζ0)Bi(ζ0)
∫ ζ0

∞
Ai(s)ds

−
7

2
πζ0Ai ′(ζ0)Bi′(ζ0)

∫ ζ0

∞
Ai(s)ds+

11

4
ζ3
0

∫ ζ0

∞
Ai(s)ds+

1

2

∫ ζ0

∞
Ai(s)ds−

11

4
ζ2
0 Ai ′(ζ0)

+
9

4
ζ0Ai(ζ0)+ 3π

(

1 −
ζ3
0
2

)∫ ∞

ζ0

Bi(ζ )

(∫ ζ

∞
Ai(s)ds

)2

dζ,

K7 =
∫ ∞

ζ0

(ζ − ζ0)
2Ai(ζ )Wi(ζ )dζ =

1

5
πAi(ζ0)Bi(ζ0)

∫ ζ0

∞
Ai(s)ds

+
4

15
ζ0

(π

2
(Ai ′(ζ0)Bi(ζ0)+ Ai(ζ0)Bi′(ζ0))+ 2πζ0(Ai ′(ζ0)Bi′(ζ0)− ζ0Ai(ζ0)Bi(ζ0))

)

×
∫ ζ0

∞
Ai(s)ds−

8

15
ζ2
0 Ai(ζ0)+

3

5
Ai ′(ζ0)− ζ0

∫ ζ0

∞
Ai(s)ds,

K8 =
∫ ∞

ζ0

(ζ − ζ0)
3Ai(ζ )Wi(ζ )dζ =

3

7
π(Ai ′(ζ0)Bi′(ζ0)− ζ0Ai(ζ0)Bi(ζ0))

∫ ζ0

∞
Ai(s)ds

−
6

7
ζ0K7 −

15

14
Ai(ζ0)−

9

14
ζ0Ai ′(ζ0)+

9

14
ζ2
0

∫ ζ0

∞
Ai(s)ds,
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K9 =
∫ ∞

ζ0

(ζ − ζ0)
4Ai(ζ )Wi(ζ )dζ

= −
4

9

(π

2
(Ai ′(ζ0)Bi(ζ0)+ Ai(ζ0)Bi′(ζ0))+ 2πζ0(Ai ′(ζ0)Bi′(ζ0)− ζ0Ai(ζ0)Bi(ζ0))

)

×
∫ ζ0

∞
Ai(s)ds−

8

9
ζ0K8 +

14

9
ζ0Ai(ζ0)+

2

3
ζ2
0 Ai ′(ζ0)+ 2

∫ ζ0

∞
Ai(s)ds−

2

3
ζ3
0

∫ ζ0

∞
Ai(s)ds.

The integralK3 (and alsoK5 andK6) could not be evaluated explicitly; however, they were simplified, as
shown above. Thus, when we are in the region where Bi(ζ ) ∼ −i Ai(ζ ) to leading order, as in (3.12), then the
leading-order term ofK3 is given by

K3 ∼
iπ

2

(∫ ζ0

∞
Ai(s)ds

)3

,

which means that property (3.14) still holds for L3, L5 andL6.
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