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Abstract

This paper studies the use of braiding fluid particles to quantify the amount
of mixing within a fluid flow. We analyze the pros and cons of braid methods by
considering the motion of three or more fluid particles in a coherent vortex structure.
The relative motions of the particles, as seen in a space–time diagram, produces a
braid pattern, which is correlated with mixing and measured by the braiding factor.

The flow we consider is a Gaussian vortex within a rotating strain field which
generates cat’s eyes in the vortex. We also consider a modified version of this strain
field which contains a resonance frequency effect that produces multiple sets of cat’s
eyes at different radii. As the thickness of the cat’s eyes increase they interact with
one another and produce complex Lagrangian motion in the flow which increases
the braiding of particles, hence implying more mixing within the vortex.

It is found that calculating the braiding factor using only three fluid particles
gives useful information about the flow, but only if all three particles lie in the same
region of the flow, i.e. this gives good local information. We find that we only require
one of the three particles to trace a chaotic path to give an exponentially growing
braiding factor. i.e. a non–zero ‘braiding exponent’. A modified braiding exponent
is also introduced which removes the spurious effects caused by the rotation of the
fluid.

This analysis is extended to a more global approach by using multiple fluid par-
ticles that span larger regions of the fluid. Using these global results we compare
the braiding within a viscously spreading Gaussian vortex in the above strain fields,
where the flow is determined both kinematically and dynamically. We show that the
dynamic feedback of the strain field onto the flow field reduces the overall amount
of braiding of the fluid particles.
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1 Introduction

Various techniques have been used to measure the amount of mixing within
chaotic flows, such as using the effective diffusion (Shuckburgh and Haynes,
2003; Turner et al., 2008, 2009b) and Lyapunov exponents (Wolf et al., 1985;
Lichtenberg and Lieberman, 1992; Pierrehumbert and Yang, 1993) to name
but two. One of the latest techniques studied for such a purpose is that of par-
ticle braiding (Boyland et al., 2000; Kin and Sakajo, 2005; Thiffeault, 2005,
2010). Braiding uses the trajectories of particles within the flow to give a mea-
sure of their entanglement, and hence how chaotic the flow is. The measure
of entanglement is known as the ‘braiding exponent’ (or the braid’s topolog-
ical entropy) and is a lower bound on the rate of stretching of material lines
(Boyland et al., 2000) which is related to the traditional finite–time Lyapunov
exponents (Wolf et al., 1985); the largest positive Lyapunov exponent provides
a measure of chaotic motion in advection (Aref, 1984). The main appeal of the
braiding exponent compared to the Lyapunov exponent is the ease with which
it can be computed, even from crude data sets, without knowledge of the un-
derlying fluid flow (Kin and Sakajo, 2005; Thiffeault, 2005, 2010). The braiding
exponent is also more sensitive to global properties of the flow compared to
Lyapunov exponents. The fact that the braiding exponent can be easily com-
puted makes it appealing to use on fluid dynamics problems, because mixing
properties of particular flows can be inferred by solely considering the paths
of individual particles such as tracer particles in experiments. So far braiding
has mainly been used to quantify the mixing properties of idealized dynami-
cal systems, such as free point vortices (Boyland et al., 2000), fixed blinking
vortices (Kin and Sakajo, 2005; Thiffeault, 2005) or rod stirring devices etc.
(Finn et al., 2003; Vikhansky, 2004; Binder and Cox, 2008; Thiffeault et al.,
2008). Thiffeault (2010) then applied the braiding technique to a set of sea
float data to imply information about the complex motion of the Labrador
sea (Davis, 2004), however this study did not thoroughly investigate the use
of braiding on a ‘real’ flow because the flow field in the Labrador sea was not
known explicitly, so no connections could be made between the braiding re-
sults and the motion of the fluid in real space. Therefore, the aim of this work
is to use this technique on another real flow problem, consisting of a coherent
vortex structure in a rotating strain field, to examine the pros and cons of this
diagnostic and link the braiding results to the motion of the fluid particles in
real space. The main reason for conducting this study is because braiding can
be used to infer information about a fluid flow, such as the Labrador sea data,
without requiring knowledge of the flow field itself, which could aid experi-
ments where tracer particles are placed in the flow, but the flow field itself is
unknown.
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We study the evolution of fluid particle trajectories within the two–dimensional
axisymmetric Gaussian vorticity field

ω0(r, t) =
1

4π(L2 + tR−1)
exp

(
− r2

4(L2 + tR−1)

)
, (1.1)

where L is some initial width of the vortex and R = Γ/ν is the Reynolds
number based on the total circulation Γ. This vortex is placed in an irrotational
external strain field ψext which takes one of the following two forms: either ψext

is a steadily rotating strain field with angular velocity αext which generates
cat’s eyes at a single radius rext within the vortex (Turner and Gilbert, 2007) or
ψext is a rotating strain field with multiple resonant frequencies that generates
multiple cat’s eyes which, if wide enough, overlap and produce regions of
complex Lagrangian motion. We examine the effect of both these strain fields
on a steady vortex (1.1) (with R =∞) using a kinematic integral flow model.
This approach does not incorporate any feedback of the strain field onto the
basic vortex profile (Bassom and Gilbert, 1999; Turner and Gilbert, 2007).
This part of the study will provide a flow field which will allow us to examine
the limitations of the braiding method and determine in which situations this
technique will be useful.

Once the properties of the braiding method have been established for the
steady kinematic flow model, we use it to compare the mixing properties of
a kinematic flow and a dynamical flow model. For the strain field which gen-
erates one set of cat’s eyes in the vortex at r = rext, the dynamical aspects
of the flow cause the azimuthal averaged profile, ω0(r, t), to flatten (Turner
and Gilbert, 2007) which leads to enhanced spreading and mixing within the
vortex. However, it was also observed that this flattening leads to a reso-
nance effect occurring within the vortex which produces further mixing and
spreading (Turner and Gilbert, 2009). The resonance effect occurs because the
vortex profile (1.1) has a particular radius rcat(t) at which inviscid cat’s eyes
of infinitesimal width can exist without the application of an external strain
field (Le Dizès, 2000). When the radius rcat(t) becomes close to the externally
forced radius rext(t) there is a rapid feedback in the vorticity field, producing
large–amplitude, non–axisymmetric components of the vorticity field. When
we consider the case R = 104 with an initial vortex profile close to a point
vortex, we find that the value of rcat(0) ≈ 0 and rext(0) lies outside the vortex.
Then, as the vortex spreads, rcat(t) moves radially outwards (i.e. rcat(t) in-
creases) while rext(t) moves radially inwards (rext(t) decreases), until rcat ≈ rext

and the resonant response occurs. This resonant response does not occur in
the kinematic flow model because there is no dynamical feed back onto the
flow field to generate non–axisymmetric components of vorticity. Bassom and
Gilbert (1999) found that applying a white noise random strain field to (1.1)
suppressed the amount of mixing in the core of the vortex. This was extended
by Turner et al. (2009a), in a nonlinear study, who found that at the edge of
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the vortex is a ‘vorticity staircase’ which forms a barrier with the core that
stops vorticity flowing out and creates a ‘surf zone’ of well mixed fluid around
the core. In this study we expect to see an enhanced mixing effect similar to
this for the multiple cat’s eye strain field as this multiple frequency forcing
is akin to a random strain, which contains all possible frequencies. The ap-
proach studied in Turner and Gilbert (2009) is an Eulerian approach which
generated results with a visual appearance of mixing, therefore the present
study quantifies this further by focusing on the Lagrangian aspects of the
flow.

The content of the paper is laid out as follows. In §2 we formulate the kinematic
integral flow model, while in §3 we discuss how the braiding results will be
calculated. These results are used in §4 where we examine the effect of the
two strain fields on the steady Gaussian vortex (1.1). In §5 we extend these
results to an unsteady viscously spreading vortex and compare the kinematic
flow model results with the dynamical flow simulations. Our conclusions and
discussions are given in §6.

2 Formulation

We study the evolution of a two–dimensional axisymmetric vortex with vor-
ticity profile ω∗0(r∗, t∗) in an externally imposed irrotational strain field with
stream function ψ∗ext(r

∗, θ, t∗) where (r∗, θ) are plane polar coordinates and the
stars represent dimensional variables. The irrotational strain field ψ∗ext(r

∗, θ, t∗)
takes the form

ψ∗ext(r
∗, θ, t∗) = q∗(t∗)r∗meimθ + complex conjugate, (2.1)

and corresponds to a strain field with an m−fold symmetry in the θ−direction
and a time dependent part q∗(t∗). The precise form of q∗(t∗) will be given
later, but we assume that it has some amplitude Â and that t∗ appears in
the combination αextt

∗, where αext is the angular velocity of the strain field.
Therefore we introduce the non–dimensional variables

t = αextt
∗, r = (αext/Γ)1/2r∗,

where Γ is the total circulation in the vortex at t = 0. Therefore, in non–
dimensional variables, the strain field (2.1) becomes

ψext(r, θ, t) = q(t)rmeimθ + complex conjugate, (2.2)

where the amplitude of q(t) is now

A =
Â

αext

(
αext

Γ

)2−m
, (2.3)
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and in the case where m = 2, corresponds solely to the ratio of dimensional
strain amplitude to the dimensional strain angular velocity.

The major part of this work focuses on the kinematic flow model where the
total stream function of the flow is given by ψ(r, θ, t) = ψ0(r, t) + ψext(r, θ, t),
and ψ0(r, t) is found by solving ω0 = −∇2ψ0 for the vortex (1.1). Therefore we
can then follow the evolution of an individual fluid particle by simultaneously
solving the equations

dr

dt
=

1

r

∂ψ

∂θ
,

dθ

dt
= −1

r

∂ψ

∂r
. (2.4)

In this kinematic flow approach, the initial vorticity field is not changed by the
strain field, while in the dynamical flow approach, there would be a nonlinear
feed back from the velocity field onto the vorticity field through the relation
ω = −∇2ψ (Turner and Gilbert, 2009). The effect of such a feedback and its
comparison to the kinematic flow approach is examined in §5.2. Although this
dynamical flow approach is more realistic in flows with large forcing amplitudes
A, the kinematic flow simulations are very useful because they contain many
of the key features seen in the fully dynamical simulations and are much easier
to simulate and understand.

In this paper we focus our attention on the viscously spreading vorticity field
(1.1) which corresponds to the flow field with stream function

ψ0(r, t) = − 1

2π

∫ r

0

1

s

(
1− exp

(
− s2

4(L2 + tR−1)

))
ds, (2.5)

where the parameter L gives the width of the Gaussian vortex at t = 0. We
set the value L = 0.04 in this study so that comparisons with the work of
Turner and Gilbert (2009), with R = 104, can be made.

The time dependent part of the strain field q(t) from (2.2) will take either of
the two forms

q1(t) = Ae−imt, (2.6)

or

q2(t) =
A

β

(
eβe

−imt − 1
)
, (2.7)

where A is the amplitude (2.3) of the forcing and β is a nonlinearity parameter.
The stream function ψext with q1(t) (which we denote as ψext1) rotates with
angular velocity of magnitude unity and generates cat’s eyes in the co–rotating
stream function ψco = ψ0 + ψext1 + r2/2 at the radius rext. The value of rext is
found by solving α(rext, t) = 1 for a particular value of t, where

α(r, t) =
1

r2

∫ r

0
ω0(s, t)s ds =

1

2πr2

(
1− exp

(
− r2

4(L2 + tR−1)

))
, (2.8)
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is the angular velocity of the vortex (1.1). From (1.1) we can see that the
vortex spreads on an O(R) timescale, and as the vortex spreads the value of
rext found by solving α(rext, t) = 1 reduces, until eventually rext = 0 and the
cat’s eyes vanish from the flow field. It can be shown that the cat’s eyes will
vanish at t = tvan which satisfies

tvan = R((8π)−1 − L2),

which for the case L = 0.04 occurs at tvan ≈ 382. For more information on this
process see §3 of Turner and Gilbert (2009). The other strain field ψext with
q2(t) (denoted by ψext2) is related to ψext1, because in the limit β → 0 both
strain fields are identical and only excite one harmonic frequency in the vortex.
However when β 6= 0 then ψext2 excites cat’s eyes at multiple radii which,
when wide enough, interact with one another and produce chaos within the
velocity field through resonance overlap (Lichtenberg and Lieberman, 1992).
We expect this chaos to produce large amounts of mixing within the vortex,
so we follow trajectories of individual particles placed in the flow field and
use this information to analyse the flow using braiding theory (Boyland et al.,
2000). For the results in this paper we set the nonlinearity parameter β = 1 as
this gives an interesting flow pattern to study. We also solely consider the case
m = 2, as m = 1 is a pure translation mode, which is of no dynamical interest,
so m = 2 is the first non–trivial solution to the dynamical flow problem, with
which we make comparisons in §5. Although we only consider m = 2 here, we
expect quantitatively similar results for m > 2.

3 Braid diagnostics

3.1 Acquiring braid patterns from the flow history

To calculate the braiding information we place N particles in the flow field at
time t = 0. We then follow their motions. As they move in two–dimensional
space and time, a three–dimensional space–time diagram can be used to record
the history of their motions. The history of each individual particle is then
captured as a curve in this diagram; the set of N curves can intertwine in some
complex fashion, forming a braid. We choose initial points for the particles at
the radial values

ri =
1

10
+

(i− 1)

2(N − 1)
, i = 1, . . . N, (3.1)

with the corresponding θi values distributed randomly in the range [0, 2π]
using a uniform distribution. We analyze the braiding in the flow using at
least N = 3 particles. In general, if we follow N particles, we can either
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examine the complete braid of N curves; or choose subsets of p curves (where
3 ≤ p < N), to obtain a distribution of braids.

The procedure we use to examine the braiding evolution of the particles is
an extension of that used by Boyland et al. (2003), Vikhansky (2003), and
Thiffeault (2005). The main aim of the method is to relate the motion of the
particles to elements of the braid group. Thiffeault (2010) uses an alternative
method to calculate the braiding exponent based on the method of Moussafir
(2006). This method is more difficult to implement numerically than the one
we use in this paper, but it has been shown to give a more accurate braiding
exponent, while the method in Thiffeault (2005) only gives a lower bound for
this value. However, we expect the results of each method to agree qualita-
tively with one another, and this is sufficient for determining the usefulness
or otherwise of using braiding on the flows considered here. If more accurate
values of the braiding exponent are required then the method in Thiffeault
(2010) should be implemented.

Initially we project the positions of the particles onto the x−axis (this choice is
purely arbitrary and any reference line can be used), and we label the particles
1 to p from the smallest x value to the largest. A crossing of two particles
occurs when they change positions on the x−axis. The interchange can occur
as an ‘over’ or ‘under’ braid, which refers to a clockwise or counterclockwise
braid respectively. Thus we define σi as the clockwise interchange of particles
i and i + 1, and σ−1

i as the counterclockwise interchange, see figure 1. By
naming all the such interchanges in this way, we note that the elements σi
for i = 1, 2, ..., p − 1 are the generators of the Artin braid group on p strings
(Murasugi, 1996).

(a)

i i+1 i+2

σ

σi

i

−1

(b)

i i+1 i+2

σi

σi
−1

Fig. 1. Diagram showing the possible detected crossings in the flow: (a) Two possible
partial crossings, each of which are associated to different braid group elements; (b)
Two crossings that give no net braid. The reference line is given by the dotted line.
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3.2 The braiding factor

We represent each element of the braid group by matrices given by the Burau
representation (Burau, 1936; Jones, 1987) of the p−braid group. Each element
of the p−braid group is represented by the (p− 1)× (p− 1) matrix defined by

[σi]kl = δkl + δk,i−1δli − δk,i+1δli,

with inverses
[σ−1
i ]kl = δkl − δk,i−1δli + δk,i+1δli,

where i, k, l = 1, ..., p − 1 and we set δk,0 = δk,p = 0. Note that here σi
represents both the interchange of two particles and its matrix in the Burau
representation of the Artin braid group. Each of these matrices has determi-
nant 1, and satisfies the ‘physical braid’ conditions (Murasugi, 1996)

σiσj = σjσi for |i− j| ≥ 2,

and
σiσi+1σi = σi+1σiσi+1.

For the case when p = 3, the two braid group elements are represented by the
2× 2 matrices

σ1 =

 1 −1

0 1

 σ2 =

 1 0

1 1

 , (3.2)

and the physical braid condition reduces to

∆ = σ1σ2σ1 = σ2σ1σ2, (3.3)

where (3.3) defines ∆.

As crossings are detected, due to the motion of the particles, we keep a running
total of the product of these matrices. We denote the product of P (t) matrices
(P (t) crossings after time t) as

M (P ) = σ(P )σ(P−1) · · ·σ(2)σ(1), (3.4)

where σ(j) ∈ {σi, σ−1
i : i = 1, 2, ..., p − 1}. From this matrix we can define

the braiding factor

λ(t) = max({|eigenvalues of M (P )|}), (3.5)

at time t .

The topological entropy µ(t) is the logarithm of this quantity. The topological
entropy can be interpreted as follows: if we repeat the braid pattern M (P ) N
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times, then at least one material line drawn in the fluid medium will lengthen
by a factor (

λ(t)
)N

= eµ(t)N . (3.6)

As we gather longer and longer histories of the flow, the braid pattern increases
in length, with a corresponding increase in maximum eigenvalue. For complex
flows this increase is exponential in time. Thus we can define the finite time
braiding exponent as

Λ(t) =
1

t
ln |λ(t)|, (3.7)

and in the limit t → ∞ we have the braiding exponent defined by Thiffeault
(2005). When this exponent is positive then we say that the braid sequence
exhibits ‘topological chaos’. We note that the quantity Λ(t) is a function of
the number of particle tracers p.

In §4 and §5 when we use the 3−braid braiding factor to analyze local regions
of the flow, we define the trio of particles starting from radii ra, rb and rc in
(3.1) as the trio of particles (a, b, c). We also use the p−braid with p > 3 to
give us a view of the braiding properties, and hence mixing properties, of the
whole flow field.

3.3 Correcting the braiding factor

Thiffeault (2005) observes that the braiding factor can often exhibit a highly
erratic behaviour. We also see this behaviour in our simulations (see figure
5(a)) where the braiding factor suddenly returns to unity at regular intervals.
In this section we explain why this happens and define a modification of the
braiding factor (3.13) which removes this behaviour.

The source of the difficulty with braiding factors lies with the effect of uniform
rotations. A uniform rotation of a flow should not lead to any mixing, as
material particles keep their relative positions. Unfortunately, the braiding
factor is not completely immune to the influence of rotations, as particles
still interchange position on the reference line and so M (P ) gets multiplied by
another interchange matrix.

For the three–braid system, a half turn of the vortex results in the braid ∆
defined in (3.3); a complete turn results in ∆2. The braid ∆2 commutes with
any other braid B, i.e. ∆2B = B∆2. We note that complete turns do not cause
any difficulties, as ∆2 has no effect on the braiding factor: the Burau matrix
is

∆2 =

−1 0

0 −1

 ; (3.8)
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thus the matrix representing a braid ∆2B has the same eigenvalues (in mag-
nitude) as the matrix representing B.

Half turns, however, have an interesting effect. They almost commute with
other braid elements, in the sense that

∆σ1 =σ2∆; ∆σ−1
1 = σ−1

2 ∆; (3.9)

∆σ2 =σ1∆; ∆σ−1
2 = σ−1

1 ∆. (3.10)

Given a braid B, let B′ be the braid obtained by switching all 1 indices with
2 indices; for example if B = σ3

1σ
−1
2 σ1, then B′ = σ3

2σ
−1
1 σ2. So we have

∆B = B′∆ (3.11)

and

∆B∆B = ∆2B′B. (3.12)

Recall that the topological entropy and the braiding factor can be interpreted
as assuming a braid pattern repeats n times; the stretching of a material line
in a mixing flow grows exponentially with n (3.6). Thus to understand the
behaviour of the braiding factor, we need to understand what happens when
a braid is repeated (see figure 2).

(a) (b) (c)

Fig. 2. (colour online) (a) The braid M = σ1σ2
−1. (b) The braid M ′ = σ2σ1

−1. (c)
The braid MM ′ = σ1σ2

−1σ2σ1
−1 = I. The last braid can be smoothed to three

straight lines.
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For example, consider the braid

M = ∆σ1
aσ2
−a,

and let it repeat:

MM = ∆σ1
aσ2
−a∆σ1

aσ2
−a,

= ∆2σ2
aσ1
−aσ1

aσ2
−a,

= ∆2.

By repeating this braid we note that we have lost the entire braid other than
the ∆2 term. This vanishing braid occurs whenever our initial braid has an odd
power of ∆. However if the power of ∆ is even, there would be no cancellation
of the braid.

Thus in any problem where a braid can acquire net rotations, such as in our
rotating fluid problem, there is expected to be some erratic behaviour in the
braiding factor as the power of ∆ in M (P ) changes from odd to even. the origin
of this behaviour can be seen in figure 5(a). Thus we modify the braiding factor
by removing the dependence on powers of ∆ altogether. We achieve this by
redefining the braiding factor as follows:

λ(t) = max({|eigenvalues of M (P )|, |eigenvalues of ∆M (P )|}). (3.13)

The result significantly smooths the plot of λ(t) vs. time, as seen in the next
section.

4 Steady kinematic flow simulations

In this section we examine the braiding properties of the inviscid kinematic
flow field generated by the vorticity field (1.1) with R = ∞ in each external
strain field ψext1 and ψext2. These steady results will provide an example flow
field where we can robustly examine the braiding diagnostic using particles
within the flow and link the regions of rapid braiding to regions of chaos within
the flow. Here we set the Reynolds number R = 1010, so that in the time frame
of the simulations, the vortex (1.1) does not spread, so we are able to integrate
(2.4) for a sufficient amount of time to see interesting behaviour in the vortex.

As the vortex does not spread in space, we can produce Poincaré sections of
the velocity field to show how individual particles placed in the flow move as
the strain field is applied. These plots for the flow ψ1 = ψ0 +ψext1 can be seen
in figure 3 and for the flow ψ2 = ψ0 + ψext2 in figure 4, both for (a) A = 0.01,
(b) A = 0.02 and (c) A = 0.03. These figures are produced by integrating the
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equations (2.4) for 20 evenly spaced particles placed along the y−axis, over
2000 periods of the strain field and plotting the position of the particle at the
end of each period. In figure 3 we see that the strain field ψext1 creates cat’s
eyes in the vortex which are clearly visible at the radius rext which satisfies
α(rext) = 1 (rext = 0.399 in this case). The cat’s eyes increase in size as the

(a) (b) (c)

Fig. 3. Poincaré sections of the flow field ψ1 = ψ0 + ψext1 for (a) A = 0.01, (b)
A = 0.02 and (c) A = 0.03. The cat’s eyes present occur at r = rext which satisfies
α(rext) = 1.

amplitude value A increases, but it is clear that these flow fields contain no
regions of chaos. Therefore we should expect no exponential increase in the
braiding factor as observed in non–chaotic flows by Thiffeault (2005).

(a) (b) (c)

Fig. 4. Poincaré sections of the flow field ψ2 = ψ0 + ψext2 for (a) A = 0.01, (b)
A = 0.02 and (c) A = 0.03.

For the multiple cat’s eye forcing (2.7), we see that for small amplitude values
in figure 4(a) the multiple cat’s eyes are clearly visible at many radii, located
between r = 0 and r = rext. Between the cat’s eyes lies a coherent flow
field with no visible regions of complex Lagrangian motion. However as we
increase the amplitude of the forcing to A = 0.02 and 0.03 in figures 4(b) and
4(c) respectively, the cat’s eyes overlap with one another and give regions of
chaos within the vortex. This resonance overlap phenomenon (Lichtenberg and
Lieberman, 1992) is a common way to generate chaos in simple systems and the
resulting flow will produce regions of braiding with a braiding factor which
grows exponentially in time. This type of external forcing which produces
multiple cat’s eyes within a fluid flow is related to random forcings which occur
naturally in flows such as the atmosphere or turbulence. Random forcings do
not contain a discrete selection of forcing frequencies, but rather a continuous
spectrum of all frequencies and so the resonance overlap phenomena naturally
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occurs. We study the forcing (2.7) as it produces similar effects to a random
forcing but is much simpler to generate and study.

Before we make comparisons between the braiding factors of the two velocity
fields ψ1 and ψ2 we first consider the braiding factor for the strain field ψext1.
In figure 5 we plot the trio of particles (3, 15, 37) (defined at the end of §3.2)
with A = 0.01. This strain field only generates one pair of cat’s eyes in the

(a) t

λ

 0

 50

 100

 150

 0  50  100  150  200  250 (b) t

λ

 0

 50

 100

 150

 0  50  100  150  200  250

Fig. 5. Plot of the braiding factor λ(t) for the trio (3, 15, 37) in the flow field ψ1. In
panel (a) λ(t) is calculated using method (3.5) and in panel (b) λ(t) is calculated
using (3.13).

vortex with no chaos in the flow field. In figure 5(a) we plot the braiding factor
as given in (3.5) which is the largest eigenvalue of the matrix M (P ), and in this
case λ(t) grows linearly in time and regularly returns to unity as the vortex
rotates. This behaviour is almost identical to that seen by Thiffeault (2005)
(cf figure 2(a) of his study).

However, this rapid returning to unity is due to the rotation of the vortex,
and can be removed by taking into consideration the effects of rotation on
Burau matrices, as discussed in the previous section. Figure 5(b) plots the
modified braiding factor for the trio in figure 5(a) using the definition (3.13).
This braiding factor contains all the same important information as the first
braiding factor, but does not keep returning to unity. The graph becomes
smoother and it is now possible to plot more than one braiding factor on
the same graph without the figure becoming congested. For these reasons we
adopt this modified braiding factor as our definition for the remainder of this
paper.

In figure 6(a) we plot the braiding factor λ(t) for the flow field ψ1 with (a)
A = 0.01 for the trios 1-(20, 21, 22), 2-(10, 20, 30) and 3-(3, 15, 37). These three
trios were chosen because result 1 gives three particles very close together and
so they will all lie within the chaotic region for the forcing ψext2, result 2
gives three particles which are well spread within the vortex and result 3 has
three particles which give one of the highest values of λ(t) at the final time
t = 250 for the strain field ψext1. These three sets of trios give a good range
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Fig. 6. Plot of the braiding factor λ(t) for the flow field ψ1 and (a) A = 0.01 with
trios 1-(20, 21, 22), 2-(10, 20, 30) and 3-(3, 15, 37) and (b) the trio (3, 15, 37) with
A = 0.03, A = 0.02 and A = 0.01 numbered from 1− 3 respectively.

Fig. 7. Plot of r(t) for the three particles from the (3, 15, 37) trio for A = 0.02 and
ψ1.

of behaviours for trios seen in the vortex. We see that results 2 and 3 give a
λ(t) which grow linearly in time with very little fluctuation, while the result
for trio 1 also gives a linear growth but at a much slower rate and with a
lot more fluctuation in λ. This linear growth in λ(t) is caused because each
particle from the trio is performing a periodic orbit in the vortex. This can
be seen in figure 7 which plots the radial coordinates, r(t) from (2.4), of the
(3, 15, 37) trio for A = 0.02. The θ(t) plot, also from (2.4), would show periodic
behaviour, but the figure is much more congested, so we do not show it here.
Figure 6(b) shows the trio (3, 15, 37) with A = 0.03, A = 0.02 and A = 0.01
numbered 1 − 3 respectively. This panel shows that as the size of the cat’s
eyes in the flow ψ1 increases, the growth rate of the braiding factor actually
decreases, while all the time remaining linear, although the overall change in
the growth rate is small. This is because even though the cat’s eyes increase
in size, the flow still remains non–chaotic, therefore we only expect the fluid
particles to interchange position along the reference line due to the vortex
rotations, and as this is the case for a vortex with smaller cat’s eyes too, we

14



expect the amount of braiding to be similar in both cases. However, for the
forcing (2.7), we expect to see significantly different results when the forcing
amplitude A is varied and when we consider different sets of trios.
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Fig. 8. Plot of the braiding factor λ(t) for the flow field ψ2 with A = 0.02 and the
trios 1-(20, 21, 22), 2-(10, 20, 30) and 3-(3, 15, 37).

(a) (b)

(c)

Fig. 9. Plot of r(t) for the flow field ψ2 with A = 0.02 for the trios (a) (20, 21, 22),
(b) (10, 20, 30) and (c) (3, 15, 37). In panel (a) the paths 21 and 22 have had the
constants 0.2 and 0.4 added to each r point respectively to separate them from one
other.

Figure 8 plots the braiding factor λ(t) for the flow field ψ2 with A = 0.02 and
the three trios (20, 21, 22), (10, 20, 30) and (3, 15, 37) labeled 1 to 3 respectively.
We observe that the trio (3, 15, 37) (result 3) which gave the largest braiding
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factor for the ψ1 case in figure 6(a) only has the largest braiding factor up to
t ≈ 200. Beyond this time the braiding factor appears to level off on the log
scale in this figure. Actually the braiding factor is still growing in this region,
only now the growth is linear in time. After t = 800 the braiding factor again
grows more rapidly. The exponential growth observed in figure 8, which means
an intense braiding of the fluid particles, was seen in the work of Thiffeault
(2005) for his chaotic flow, and so it is no surprize that we also see it here.
What is interesting about our result for the braiding factor is that we see a
region of exponential growth, i.e. a very long range of braiding, followed by
a region of linear growth, i.e. braiding where all three particles trace periodic
orbits and then another region of exponential growth. These periodic orbits
can be clearly seen in figure 9(c) which plots r(t). This figure shows that
particles 3 and 37 have periodic orbits, and particle 15 undergoes chaotic
motion initially and beyond t = 800. This change in motion agrees well with
the change in growth of the braiding factor result in figure 8. Thus, this study
shows that we only require one of the particles to undergo chaotic motion to
give an exponentially growing braiding factor (positive braiding exponent),
while the other two remain in periodic orbits.

The trio (10, 20, 30) (result 2) in figure 8 has a region of no braiding from t = 0
to t ≈ 400 where we see a region of linear growth for λ(t), then we observe a
region of rapid exponential growth for λ as particle 20 moves into a chaotic
orbit to produce a large amount of braiding in the vortex which can be seen in
figure 9(b). The result 1, which is for three particles very close to one another,
has an exponential λ(t) initially and this function remains exponential over
the time interval considered. This exponential growth of λ(t) is due to all three
particles producing chaotic orbits, so if one of the particles falls into a periodic
orbit, then there is a second particle still tracing a chaotic orbit to give the
positive braiding exponent. One thing to notice for these results is that all
of them contain regions of linear growth of λ(t) (i.e. poor mixing) some of
which are long (results 2 and 3) and some of which are much shorter as in
result 1. This sort of behaviour is to be expected of a flow which has regions of
chaos and regions of no chaos, as the exponential growth of λ(t) only requires
1 particle of the trio to have a chaotic orbit. Therefore, if this particle then
becomes close to the edge of the chaotic region, it can spend some time close
to a periodic orbit and so the braiding rate drops until the particle makes its
way back into the main part of the chaotic region where the braiding rate,
λ(t), then grows exponentially again. This is one of the major difficulties with
trying to measure the amount of mixing in these types of flows. Some of these
problems can be overcome by considering the 50−braid braiding factor (see
later) but even these results are not as clean as one would like.

In figure 10 we plot the trios (10, 20, 30) and (3, 15, 37) in panels (a) and (b)
respectively for A = 0.01, 0.02 and 0.03 numbered 1 to 3 in each panel. For
each trio the A = 0.01 result gives a linear growth in λ(t) but this could have
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Fig. 10. Plot of the braiding factor λ(t) for the flow field ψ2 and (a) the trio
(10, 20, 30) and (b) the trio (3, 15, 37) for 1- A = 0.01, 2- A = 0.02 and 3- A = 0.03.

Fig. 11. Plot of r(t) for the flow field ψ2 with A = 0.03 and the trio (10, 20, 30).

been anticipated from the Poincaré section in figure 4(a) in which the vortex
contains no visible regions of chaos. For the trio (10, 20, 30) in panel (a) we
see that as the forcing amplitude increases, the braiding factor again grows
linearly at first and then once particles 20 and 30 move into a region of chaos,
the braiding factor grows exponentially in time, interspersed with regions of
linear growth (See figure 11 for a plot of r(t) for this trio of particles where it
is difficult to distinguish between particles 20 and 30 as they trace out their
respective paths). This exponential growth of λ(t) occurs earlier as A increases
but the overall braiding exponent remains similar to the A = 0.02 result. The
exponential growth happens earlier because, as can be seen in figure 4, the
region of chaos increases in size as A increases, so particles are subject to
chaotic orbits more readily. In figure 10(b) the result for A = 0.02 (result 2)
has chaotic mixing, and an exponential growth in λ(t) for t < 200 and then a
linear growth and no mixing until t ≈ 800 where it again grows exponentially
in time. One might expect as A is increased to 0.03 that there is more mixing
within the flow, but in fact for this trio the exponential growth in λ(t) is
very similar for both A = 0.02 and 0.03. However, this could be due to the
random initialization of θi placing the particles in different positions on the
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same radius.
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Fig. 12. Plot of the braiding factor λ(t) for the flow field ψ2 with A = 0.03 and the
trio (3, 15, 50) and (b) the corresponding r(t) for this trio.

One important thing to note when analysing the 3−braid braiding factor of
a flow is, we have to be very careful about which trio of particles we pick. In
figure 12(a) we pick the trio (3, 15, 50) to analyse the chaotic forcing (2.7) for
A = 0.03 and we find that the braiding factor grows linearly with time, but we
know from the Poincaré section in figure 3(c) that this flow contains a large
region of chaos, so one might expect an exponentially growing braiding factor.
However, this case gives an example of a 3−braid where all three particles
are performing approximate periodic orbits as seen in the r(t) plot in figure
12(b). Therefore, if we try to infer information about the flow using just these
three particles then we might incorrectly assume that there is no chaos in
the flow. For this example we know that this is incorrect because we have
the Poincaré section in figure 3(c) to show us otherwise, but if one does not
have any information about the flow field, such as the Labrador sea example
in Thiffeault (2010), then one could infer incorrect characteristics of the flow
if the wrong trio is analysed. The conclusion here is, the 3−braid gives an
excellent indication of how much mixing is going on in specific regions of the
flow, but to get an overall impression of the mixing properties of the flow,
one should consider the motion of more particles and thus consider a larger
p−braid braiding factor.

In figure 13(a) we plot the p−braid braiding factor for the flow field ψ2 with
A = 0.02 and p = 5, 10, 25 and 50 numbered 1− 4 respectively. Here rather
than pick specific particles, we choose equally spaced particles from (3.1).
This gives us a braiding factor for the part of the flow we are considering i.e.
0.1 . r . 0.6. Ideally we would have particles in the entire flow field, but
as all the interesting behaviour is in this region we don’t expect the braiding
factor to change much with the inclusion of particles outside this region. As
we increase p, we see that the braiding exponent increases and as p becomes
large the braiding exponent tends to the same value for all p, but with a slow
increasing drift. This result is in accord with the findings of Thiffeault (2005)
who also found this slow drift in the braiding exponent for large p. In panel (a)
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Fig. 13. Plot of (a) the p−braid braiding factor for ψ2 with A = 0.02 for p = 5, 10, 25
and 50 numbered 1− 4 respectively. Panel (b) shows the 50−braid braiding factor
before it has been artificially smoothed to give result 4 in panel (a).

all the braiding factors have been artificially smoothed by considering a 1000
point average of the original data which has a time spacing of ∆t = 2.5×10−3,
so as to remove the rapid oscillations seen in panel (b) which shows the p = 50
braiding factor which has not been smoothed. The rapid oscillations are due
to the increased number of crossings compared to the 3−braid plots, and
unlike the 3−braid, we cannot easily remove some of these oscillations using
an argument similar to that in §3.3. This is because when we consider more
than three particles in the flow, the number of crossings increases greatly,
and just removing half turns, as we did for the 3−braid problem, makes no
significant difference to the braiding factor. To smooth out the braiding factor
one would also have to remove partial turns where only some particles have
interchanged positions, so this would involved a more complicated form of
(3.13) where the number of elements in the set to be maximised is much
larger. This would greatly increase the running time of the code and hence
make it less practical.

The use of the p−braid with p large becomes obvious if one is interested in
calculating the approximate instantaneous gradient of the lines in figure 13(a)
to give the time dependent braiding exponent Λ(t). However, the purpose of
this paper is to examine the robustness of the use of braids in more ‘realistic’
fluid flow problems. At this stage we are not interested specifically in the value
for the braiding exponent, i.e. we don’t want to state that a flow with A = 0.02
has a braiding exponent of 0.4 for example, we just want to know if λ(t) is
linear or exponential in time, and whether or not this behaviour changes as
the flow evolves in time.
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5 Unsteady kinematic flow and dynamical flow simulations

The aim of this research is two fold: Firstly to understand the mixing proper-
ties of vortices by examining their braiding factors, and secondly to compare
the results of the kinematic integral flow model with those of the dynamical
flow model to examine similarities and differences. However as discussed in
§1, we wish to compare the kinematic flow results with the dynamical flow
results of Turner and Gilbert (2009) who show that when rext ≈ rcat in a vis-
cously spreading vortex, there is a large feedback of the resonant harmonics
in the vortex which grow rapidly changing the azimuthally averaged vortex
profile and producing visual signs of mixing. The purpose of this study is to
quantify whether or not mixing actually exists in this model. The kinematic
flow approach will not experience this resonance, and so it is interesting to see
the difference between the kinematic and dynamic flow results. Thus in the
next section we examine braiding results for a viscously spreading vortex with
Reynolds number R = 104 and we compare these results with the non–linear
dynamical flow results, of Turner and Gilbert (2009). Before we begin making
comparisons between the kinematic integral flow model and dynamical flow
model results, let us first examine the braiding factor of the kinematic flow
model and make comparisons with the steady results in §4, to highlight the
key differences.

5.1 Kinematic integral flow

To see what the flow field looks like for the kinematic flow, we plot Poincaré
sections at various times in figures 14 and 15. As the vortex is viscously spread-
ing for this value of R, we produce Poincaré sections of what the flow field
would look like if it were steady at the various times (a) t = 100, (b) t = 200,
(c) t = 300 and (d) t = 350 for the velocity field ψ1 with A = 0.02 in figure
14. To produce these plots we take the form of the vortex at the appropriate
time from (1.1) and then produce a steady form of the Poincaré section. Thus
we are taking snapshots of the flow field at a time t.

We observe that as the vortex spreads, the cat’s eyes move inward to smaller
radial values, until eventually at t = tvan = 382 they disappear altogether. We
note that as these cat’s eyes move towards the origin, the forcing still does
not generate any complex Lagrangian motion in the flow. However, at a time
close to when the cat’s eyes vanish, there may be interaction between the cat’s
eyes themselves.

In figure 15 we plot the same panels as in figure 14, except this time we plot the
flow field ψ2 with A = 0.02 which does generate complex Lagrangian motion
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(a) (b)

(c) (d)

Fig. 14. Poincaré sections for the flow field ψ1 = ψ0 + ψext1 with R = 104 and
A = 0.02 at (a) t = 100, (b) t = 200, (c) t = 300 and (d) t = 350.

in the vortex. In this case we see that at early times we have complex motion
in the vortex, exactly as in the steady case, but by the time t = 200 in panel
(b) we see that the flow has become periodic everywhere and we are left with
a vortex with a large set of cat’s eyes, as in the ψext1 forcing case in figure
14(b), and a smaller set close to r = 0.2. The small set of cat’s eyes remaining
near r = 0.2 soon disappear and for the remaining times in panels (c) and
(d) we have velocity fields which look like their ψ1 counterparts of figure 14.
Hence for these flows we expect to see large amounts of braiding at early times,
λ(t) growing exponentially in time, but less braiding later, linear λ(t), once
the vortex spreads and the complex motion disappears. At this point we then
expect the flow to behave like the ψ1 flow.

In figure 16 we plot the 3−braid braiding factor for A = 0.02 for the flow
fields (a) ψ1 and (b) ψ2 for three different trios. For the flow field ψ1, both the
trios (3, 15, 37) (result 1) and (10, 20, 30) (result 2) have a similar behaviour, in
that their respective braiding factors λ(t) grow linearly up to t ≈ 200 and then
there is a brief rapid increase in λ(t), before this growth slows down and λ(t)
grows linearly again at later times. The trio (20, 21, 22) (result 3) does not see
the same increase around t = 20, and instead just grows linearly for all times,
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(a) (b)

(c) (d)

Fig. 15. Poincaré sections for the flow field ψ2 = ψ0 + ψext2 with R = 104 and
A = 0.02 at (a) t = 100, (b) t = 200, (c) t = 300 and (d) t = 350.
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Fig. 16. Plot of the braiding factor λ(t) for the case R = 104 and A = 0.02 for the
flow fields (a) ψ1 and (b) ψ2. In each panel the lines represent the trios 1–(3, 15, 37),
2-(10, 20, 30) and 3-(20, 21, 22)

just as for the steady case in §4. The increase in λ(t) is due to the particles
being shifted around in the vortex as it spreads and appears to correspond
to the time when two particles radial values coincide. This can be seen for
the (3, 15, 37) trio in figure 17(a) where we plot r(t). We see that the particle
numbered 37 lies within a cat’s eye initially and so gets drawn towards the
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(a) (b)

Fig. 17. Plot of r(t) for (a) the trio (3, 15, 37) in the flow field ψ1 with R = 104 and
(b) the trio (20, 21, 22) in the flow field ψ2 with R = 104. The amplitude A = 0.02
in both panels.

centre of the vortex as time increases, and eventually escapes the cat’s eye at
t ≈ 382 when they disappear. The other two particles on the other hand, which
lie inside the radius of the cat’s eyes rext, get thrown outwards as they meet
the inward moving cat’s eyes. However, as there is no complex Lagrangian
motion in the strain field, the particles continue to complete periodic orbits
as the vortex evolves. Maybe surprisingly, the trios considered here behave
very similarly in the flow field ψ2 for which λ(t) is plotted in figure 16(b). The
only obvious difference here is that now a different trio gives the largest value
of λ(t) at large times. When we see how the radius values of the individual
particles move in figure 17(b), we see they move similarly to the ψ1 case. The
early complex motion moves the particles around in the vortex, and particles
20 and 21 become trapped within different cat’s eyes and move inwards, while
particle 22 remains at a larger radii. Unlike the steady case, the particles are
not given enough time in the ‘chaotic’ region to braid sufficiently which would
give a positive braiding exponent, and instead the particles have periodic
orbits. This is why the results are similar to the ψ1 flow case.
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Fig. 18. Plot of the braiding factor λ(t) with R = 104 for the flow fields (a) ψ1 and
(b) ψ2 for the trio (3, 15, 37). In each panel the lines represent the forcing amplitudes
A = 0.01, 0.02 and 0.03 numbered 1 to 3 respectively.

Now that the cat’s eyes are not static in the vortex, and move towards the
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centre of the vortex, this can affect various aspects of the braiding factor
evolution. For example in figure 18(b), which shows λ(t) for the trio (3, 15, 37)
for the flow ψ2 for A = 0.01, 0.02 and 0.03 numbered 1 − 3 respectively, we
see that as A is increased, then so too does λ(t). While for the flow ψ1 in
figure 18(a) we find that the A = 0.02 case has a larger value of λ than the
A = 0.03 case at large times. This could just be a consequence of the starting
position of each particle in the different runs, as we note that the initial θ
position of each particle is random. However, these results highlight the need
to consider p−braid braiding factors for these flows with p > 3, so as to get a
good quantitative information from the entire vortex.

5.2 Comparison of the kinematic integral flow model and the dynamical flow
model

We now have a large amount of information about how braiding can be used
to determine mixing properties of flows. In this section we use this information
to make a comparison between the kinematic integral flow model in §5.1 and
the dynamical flow simulations of Turner and Gilbert (2009).

The fully nonlinear simulations in Turner and Gilbert (2009) solve the non–
dimensional Navier–Stokes equations in cylindrical polar coordinates

∂tω + J(ω, ψ + ψext) = R−1∇2ω, ∇2ψ = −ω, (5.1)

rJ(a, b) = (∂ra)(∂θb)− (∂θa)(∂rb), ψext = q(t)rmeimθ + c.c, (5.2)

by time stepping (5.1) and seeking solution for ω(r, θ, t) and ψ(r, θ, t) in the
form of a truncated sum of Fourier harmonics

ω(r, θ, t) =
Q∑

k=−Q
ωmk(r, t)e

imkθ, ψ(r, θ, t) =
Q∑

k=−Q
ψ̂mk(r, t)e

imkθ.

The external strain field ψext in (5.2) with m = 2 drives the m = 2 mode
of the vorticity field which then excites higher Fourier harmonics, as well as
modifying the basic profile ω0 via the nonlinear terms J(ω, ψ + ψext) of (5.1).
To integrate (5.1) we use the Crank–Nicolson method on the linear terms
and the second order Adams–Bashforth method on the nonlinear terms. The
discretisation in the radial direction uses a finite difference method with S
grid points in the range 0 ≤ r ≤ r0, and the Poisson equation for ψ(r, θ, t)
in (5.1) is solved by inverting a tridiagonal matrix system. The code uses Q
Fourier harmonics and for this study typical resolution values are (Q,S, r0) =
(128, 1500, 6) for R = 104.

Turner and Gilbert (2009) only consider the effect of the strain field ψext1,
and they find that when rext ≈ rcat, the natural quasi–mode radius in the
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vortex at which cat’s eyes can persists with no external forcing, there is a
resonance effect in the vortex and the vorticity spreads out rapidly until the
cat’s eyes vanish. For more information on quasi–modes and the resonant effect
the reader is referred to this paper. Although this paper did not consider the
external forcing ψext2, we expect similar results to the ψext1 forcing because
we saw in figure 15 that the initial complex Lagrangian motion disappears as
the vortex spreads leaving a single set of cat’s eyes as in ψext1.

(a)

(b)

Fig. 19. (colour online) Plot of the vorticity field for the dynamical flow simulations
with R = 104 and A = 0.03 for (a) ψext1 and (b) ψext2. In each panel the vorticity
has been scaled so that red (dark grey at the origin) denotes the maximum at that
time value.

In figure 19 we plot the vorticity field for the nonlinear simulations with R =
104 and A = 0.03 for (a) ψext1 and (b) ψext2. The addition of the complex
motion in ψext2 makes very little difference in these figures, possibly because
at this Reynolds number the viscous spreading of the vortex is too fast for
the complex motion to have a significant effect. However, the complex motion
in ψext2 does slow the rate of decrease of ω(r = 0, t) which can be seen in
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figure 20. In figure 20 line 1 gives the slow viscous decrease of the vorticity
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Fig. 20. Plot of the vorticity value at the origin, ω(r = 0, t) for the dynamical flow
simulations with R = 104. Result 1 is the value taken by the kinematic flow model,
results 2 and 3 are for ψext1 and ψext2 with A = 0.01, results 4 and 5 are for ψext1

and ψext2 with A = 0.02 and results 6 and 7 are for ψext1 and ψext2 with A = 0.03.
The top horizontal line indicates when rext ≈ rcat while the lower horizontal line is
when the cat’s eyes vanish from the vortex.

at the origin for the kinematic flow model. We can see that the inclusion of
the feedback between the external forcing and flow field causes the value of
ω(r = 0, t) to drop more rapidly due to the resonance effect discussed earlier.
Result 6 which is for A = 0.03 and ψext1 shows the effect of one set of cat’s
eyes in the vorticity field as reported in Turner and Gilbert (2009). The new
result here is the result 7 which gives ω(r = 0, t) for ψext2, and we see that the
inclusion of the complex Lagrangian motion has made the result differ from
result 1 earlier, but also that the rapid decline in ω(r = 0, t) is now slower. We
try to quantify this difference in behaviour using the 50–braid braiding factor
below.

When we look at the 50–braid braiding factor for the external forcing ψext1 in
figure 21, we see that both the figures for (a) the kinematic flow simulations
and (b) the dynamical flow simulations look very similar. While curves 2 and
3 in each panel seem to increase slightly around the time that the cat’s eyes
vanish (300 ≤ t ≤ 400 in panel (a) and 100 ≤ t ≤ 200 for panel (b)) the
growth in λ(t) is too rapid to tell whether or not it is exponential in time
at this point, giving a positive braiding exponent, which would then imply
complex Lagrangian motion in the vortex. The reason we don’t see any clear
exponential growth could be one of three reasons: firstly there may not actually
be any complex motion in the vortex as the cat’s eyes vanish, secondly the
amount of complex motion might be small, so the rapid spreading of the vortex
might not give us enough time to see such an event or thirdly, we did not place
particles close enough to the centre of the vortex to see any complex motion.
One could increase the Reynolds number in an attempt to see any complex
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Fig. 21. Plot of the 50−braid braiding factor for the external forcing ψext1 for (a) the
kinematic flow simulations and (b) the dynamical flow simulations forA = 0.01, 0.02
and 0.03 numbered 1− 3 respectively.

motion as the cat’s eyes vanish, but Turner and Gilbert (2009) showed that
even for R = 105 (the top end of the computational time for their code) the
time spent with the vortex having cat’s eyes close to vanishing is very short.
An examination of the 50–braid braiding factor for ψext2 in figure 22 shows
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Fig. 22. Plot of the 50−braid braiding factor for the external forcing ψext2 for (a) the
kinematic flow simulations and (b) the dynamical flow simulations forA = 0.01, 0.02
and 0.03 numbered 1− 3 respectively.

that this gives a much more interesting result. We find that for the kinematic
flow simulations in panel (a) only λ(t) for the A = 0.03 result (result 3)
has an obvious region of exponential growth, and this occurs up to t ≈ 200.
Beyond this time the complex motion disappears and so the growth in λ(t)
becomes linear in time again. The A = 0.02 result (result 2) has a small
region of exponential growth up to t ≈ 100, but the small amplitude result
(result 1) appears to just have linear growth. While the A = 0.01 result for
the dynamical flow simulations in panel (b) appears to grow linearly like its
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kinematic counterpart, the other two results both have regions of exponential
growth up to t ≈ 100 which is the time when the rapid spread of vorticity
occurs. This figure also shows that the rate of increase of λ(t) with time is
greater for the dynamical simulation and, at least for A = 0.03, the value of
λ(500) is less than the kinematic value. This means that the material lines in
the chaotic region will be stretched more in the kinematic model but the rate
of stretching is faster in the dynamic model. The reason they are stretched
more in the kinematic model is solely due to the fact that they are stretched
for a longer period of time. Approximate values for the braiding exponents
of both the A = 0.03 results are 0.08 and 0.1 for the kinematic integral flow
model and dynamical flow model respectively. Therefore the outcome is that
the nonlinear feedback of the strain field on the vorticity field suppresses the
total amount of braiding (and hence mixing), but the maximum rate at which
braiding occurs is increased.

6 Conclusions and Discussion

This work studied the effectiveness of using the braiding diagnostic to quantify
the amount of mixing within coherent vortical structures. We used the method
detailed in Thiffeault (2005) which represented each of the braiding elements as
matrices using their Burau representation. These matrices are then multiplied
together as the trajectories of the fluid elements braid and we computed the
braiding factor λ(t) which is the largest eigenvalue of the matrix M (P ) defined
in (3.4). Other useful invariants could have been computed from the resulting
braid (Berger, 2001), but we believe the braiding factor gives the clearest
interpretation of mixing in the flow, and thus is the best diagnostic to consider.
We also defined a modification of the braiding factor which removes spurious
effects on the Burau matrices caused by rotation.

We found that the braiding factor (and hence the braiding exponent) for three
particles gave useful information about the mixing properties of the vortex,
but only if all three particles are located in the same region of the flow. When
this is the case we found a very clear braiding exponent which increased in
regions with more chaos. When the three particles were more spread out in the
flow we still found a positive braiding exponent as long as at least one particle
traced out a chaotic trajectory. Usually in this case the regions of exponential
growth in λ(t) are interspersed with regions of linear growth, this suggests
that mixing is occurring and then stopping on a regular basis. However, for
the flow examples in this paper we knew this was not the case and thus this is a
limitation of the 3–braid braiding factor. We found that this limitation can be
overcome by considering more fluid particles that span a larger area of the flow
field. By using the 50–braid braiding factor we found more consistent results,
and if we know information about the flow field, then we can cluster the points
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around the region where mixing is expected to take place. One problem that
comes from this multiple particle approach is the uncertainty of how many
particles should be used. Fifty particles gave a good, approximately straight
line (for example see result 4 in figure 13(a)) but this took approximately 16
hours of CPU time, whereas 25 particles takes only a quarter of this time due
to the p2 nature of the algorithm, where p is the number of particles. Therefore
a balance needs to be achieved between time taken to compute the braiding
factor and the number of particles used in the computation. The other issue
comes from the slow increase in the braiding factor as the number of particles
is increased. This slow drift means that it will be difficult to give a definitive
braiding exponent for a flow, but as long as p is large enough then the results
should be consistent.

Using this 50–braid braiding factor we examined the mixing properties of
a multiple frequency strain field which exhibits resonance overlap (akin to a
random forcing) for both the kinematic flow model and dynamical flow model.
The results showed that braiding occurred faster in the dynamical flow model
(i.e. has a larger maximum rate), while the total braiding was slightly more in
the kinematic flow model. This was because, the vortex in the dynamical flow
model spreads more rapidly, due to the enhanced mixing and therefore there
was less time where the vortex contained complex Lagrangian motion.

We conclude that using the braiding diagnostic is useful for determining the
amount of mixing within a flow field and we believe that it is beneficial over
diagnostics such as Lyapunov exponents because information of the flow field
and its derivatives is not required. Although, it is important to consider a
sufficient amount of particles in the flow to give a good global picture of the
mixing. Further investigation of other invariants of the braid itself is now
required to determine if they can improve the understanding of dynamical
fluid problems.
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