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Summary

This paper focuses on the problem of inviscid, irrotational, incompressible fluid
sloshing in a rectangular vessel with rigid, impermeable side-wall baffles, and
investigates the feasibility of using time-dependent conformal mappings to numerically
simulate the evolution of the unknown free-surface in fully-dynamic simulations. An
algorithm which uses conformal mappings of a multiply-connected domain to relate
the conjugate harmonic functions along the free-surface is documented, and kinematic
results presented for a prescribed free-surface motion. The results show that the
specific mapping for an infinite depth fluid has one free, within specific bounds,
mapping parameter, while the mapping for finite depth fluids has two free mapping
parameters. It is shown that having two free parameters gives a wider range of
situations under which the conformal mapping can be computed, and it is concluded
that the finite depth mapping should be used (in the appropriate limit) even for infinite
depth simulations. Overall it is found that a computationally efficient algorithm can
be devised to relate the conjugate harmonic functions along the free-surface of the
flow domain.

1. Introduction

A simply connected domain with a suitably smooth boundary can be mapped conformally
to the interior of the unit disc or to the periodic half-plane {ξ = µ+iν : Im(ξ) < 0}, as shown
in Fig. 1(a). Mappings such as this, have applications in water wave problems, because
one major advantage of this approach is that the real and imaginary parts of any complex
analytical function evaluated on the boundary (know as conjugate harmonic functions), are
related via the Hilbert transform. This makes the numerical evaluation of either conjugate
harmonic function, given the other, particularly fast. In the case of a doubly-connected
domain, see Fig. 1(b), the domain is mapped to the interior of an annulus or the infinite
periodic strip. In this case the mapping is more complex, and it has a conformal invariant,
known as the conformal modulus, which needs to be correctly identified such that the
mapping is conformal (1; 2). This conformal modulus is related to the ratio of the radii of
the annulus. The conjugate harmonic functions on the inner and outer radii of the domain
are linked together via the Hilbert-Garrick transformation (3; 1; 2; 4) which again allows
for fast, effective numerical computations of the conjugate harmonic functions.
The interest in the current paper is multiply-connect domains which can be mapped

‡ Email: m.turner@surrey.ac.uk

Q. Jl Mech. Appl. Math. (2018) xx (y), 1–29 c© Oxford University Press 2018



2 M. R. Turner

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

(b)

(a)

(c)

Fig. 1 (a) Conformal map of a simply-connected domain to the periodic half-plane, (b) conformal
map of a doubly-connected domain to the periodic strip and (c) conformal map of a multiply-
connected domain to the periodic strip with horizontal baffles.

to the interior of the unit disc with multiple circular regions removed, or to the periodic
half-plane with infinitely thin horizontal strips removed, see Fig. 1(c). In this paper we
formulate a novel algorithm which allows one conjugate harmonic function on each of the
disc boundaries to be determined given information about its associated function. The
motivation for this is to ultimately compute the evolution of water waves with submerged
horizontal baffles in a fast, effective manner. Note, in the multiply-connected case there are
many conformal invariants to calculate, which are related to the centre positions and radii
of the removed circular regions.
The particular water wave problem considered in this this paper is the ‘sloshing’ problem

of a two-dimensional spatial wave in a bounded domain (5). The domain consists of a
rectangular vessel with submerged horizontal baffles attached to the side walls, such as
that depicted in the schematic diagram in Fig. 2. In such problems the position of
the free-surface interface is not known a priori and evolves with time, thus making them
computationally difficult (6). One approach used extensively in the corresponding problem
without submerged baffles is to map the moving domain to a fixed domain, specifically a
rectangular or circular domain, and of particular interest here are those mappings which
are conformal. Time-dependent conformal mappings have been used extensively on water



fluid sloshing with side wall baffles using conformal mappings 3

y = Lf(x∗)

x∗

y∗

0 L

b(1) b(2)

b(N)

−LH

Fig. 2 Schematic dimensional diagram of N horizontal submerged baffles connected to the side-
walls of a rectangular vessel. The dotted line signifies the undisturbed free-surface.

wave problems in both infinite depth (7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18) and finite
depth (14; 19; 20; 21; 22).
The baffled problem considered in Fig. 2 maps conformally to the multiply-connected

circular domain in Fig. 1(c). As far as the author is aware there have been no studies
investigating time-dependent mappings in this case. The main reason for this is because it
has only been in the last decade or so that the theoretical and numerical mechanisms for
constructing conformal maps to and from multiply-connected domains has been developed
comprehensively via use of the Schottky–Klein prime function (23; 24; 25; 26; 27). Of
particular significance is the work of Crowdy et al. (28) who have developed a suite
of numerical MATLAB R© subroutines which readily evaluate these Schottky–Klein prime
functions. Despite the existence of these routines the process for relating the conjugate
harmonic functions on the domain boundary still remains complex and this process is the
fundamental focus of this paper. While the motivation for this paper is to model two-
dimensional free-surface sloshing problems with submerged baffles, the method presented is
more general and its application has a wider impact to problems which contain a periodically
deformed surface with submerged horizontal boundaries.
In a time-dependent water wave problem, the mapping (i.e. the centre positions and

radii of the removed discs in Fig. 1(c)) is time dependent, therefore as the position of the
unknown free-surface is updated at each time-step, so the conjugate harmonic functions
on the domain boundary need to be determined. In order to focus on the second part of
this process in this paper, the calculation of the conjugate harmonic functions, we do not
consider the full dynamic time-dependent problem, but instead we consider a parametric,
kinematic problem where the free-surface is prescribed by a parameter, t, which mimics the
time-dependence of the full problem. This will allow for a systematic study on the use of
conformal mappings to solve the sloshing problem with side-wall baffles.
The paper is laid out as follows. In §2 the conformal mapping problem is set out, and

the solution procedure in terms of Cauchy’s integral theorem presented. The numerical
procedure for solving the resulting equations is found in §3 and numerical results for both
infinite depth and finite depth fluids are given in §4. Conclusions and a discussion of how
this procedure helps us to solve the dynamic time-dependent problem are found in §5.
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2. Mathematical Formulation

We are interested in investigating the dimensional sloshing problem in a rectangular vessel
depicted in the schematic diagram in Fig. 2. The problem consists of a free-surface elevation
y∗ = Lf(x∗), a solid bottom at y∗ = −LH and N rigid, impermeable baffles, b(n) n =
1, ..., N , attached to the vertical side walls of the vessel, each with an associated length LLn

and at a depth −Lyn. Infinite depth fluid results, occur in the limit when LH → ∞. Here
the stars denote dimensional quantities. We choose to non-dimensionalize the system by
setting (x, y) = L−1(x∗, y∗). In order to use the conformal mapping techniques presented
in this paper we first extend the scenario in Fig. 2 to one which is periodic by forming the
even extension of the physical problem from x ∈ [0, 1] to x ∈ [−1, 1] as depicted in Fig.
3(a). The unknown position of the free-surface f(x), makes numerical computations difficult
and hence we map the domain in the physical z-plane, where z = x + iy, to a rectangular
domain the ξ-plane, where ξ = µ + iν, given in Fig. 3(b). In the ξ-plane x = −1, 0, 1

maps to µ = −1, 0, 1, y = −H maps to ν = −Ĥ and y = f(x) maps to ν = 0. The upper
and lower surfaces of each baffle b(n) get mapped to the upper and lower surfaces of the
horizontal baffles b̂(n). Note that in this plane each baffle remains centred on either µ = 0
or µ = 1 to preserve the problem symmetry, but the baffles now have length 2L̂n and are
positioned at ν = −ŷn. The case when L̂n = Ln and ŷn = yn only occurs when f(x) = 0
and thus the baffle lengths and depths in the ξ-plane need to be computed as part of the
solution.
In the ξ-plane the physical coordinates are x(µ, ν) and y(µ, ν), satisfy the Cauchy-

Riemann equations
xµ = yν , and xν = −yµ,

in the ξ-plane and thus both satisfy Laplace’s equation

xµµ + xνν = 0, yµµ + yνν = 0.

When these coordinates are evaluated on the free-surface ν = 0, they give a parametric
representation of the free-surface

(X0(µ), Y0(µ)) = (x(µ, 0), y(µ, 0)) for µ ∈ [−1, 1]. (2.1)

Similarly we obtain parametric representations for the baffles

(Xn(µ), Yn(µ)) = (x(µ,−ŷn), y(µ,−ŷn)), for n = 1, ..., N, (2.2)

and µ ∈ [−L̂n, L̂n] for baffles centred at µ = 0 (left-hand wall baffles) and µ ∈ [−1,−1 +

L̂n] ∪ [1 − L̂n, 1] for baffles centred at µ = 1 (right-hand wall baffles). On ν = −Ĥ the
bottom has the parametric form

(XN+1(µ), YN+1(µ)) = (x(µ,−Ĥ), y(µ,−Ĥ)), for µ ∈ [−1, 1]. (2.3)

In order to use Cauchy’s integral theorem to link the conjugate harmonic functions on
the free-surface, bottom and baffles, we further map the ξ-plane conformally to the η-plane
in Fig. 3(c) using

η = exp (−iπξ) . (2.4)
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(a)
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y = f (x)
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b(1)
b(2)
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z − plane

(b)

ν
ξ − plane

̂
b(2)

µ

0 1
̂
b(1) ̂

b(2)
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b(N)

−
̂
H
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(c)

ĉ(1)

ĉ(2) ĉ(N)

ĉ(N+1)

ĉ(0)

η − plane

(d)

c(1)c(2) c(N)c(N+1)

c(0)

ζ − plane

Fig. 3 Schematic diagrams depicting (a) the z-plane, (b) the ξ-plane, (c) the η-plane and (d) the
ζ-plane for the given problem in Fig. 2. The conformal mappings from (b) to (c) and (c) to (d) are
given by (2.4) and (2.6) respectively. The dotted line in (a) denotes the undisturbed free-surface,
while the dashed lines in (c) and (d) represent branch cuts separating different periodic windows
of the flow.

In the η-plane the free-surface ν = 0 is mapped to the unit circle, ĉ(0), the bottom ν = −Ĥ

maps to the circle ĉ(N+1), centered on the origin with radius e−πĤ and each baffle b(n) maps
to an arc of a circle ĉ(n), centered on the origin. In Fig. 3(c) the dashed line represents the
branch cut linking different Riemann sheets, with µ = −1 above the cut and µ = 1 below.
Finally, the η-plane is conformally mapped to the ζ-plane in Fig. 3(d) where Cauchy’s
integral theorem can be successfully applied. The exact form of this mapping depends upon
whether we consider a finite depth or infinite depth fluid. In the case of an infinite depth
fluid, the circle ĉ(N+1) is not present, and this conformal mapping is the circular slit map

ηinf(ζ;α) = R0(ζ;α) =
ω(ζ, α)

|α|ω(ζ, α−1)
, (2.5)

where α is a constant mapping parameter (in fact it is the point in the ζ-plane which
maps to the origin in the η-plane) and ω(·, ·) is the Schottky-Klein prime function for the
particular multiply connected ζ-plane (29; 30; 23). In the finite depth case the conformal
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mapping from the ζ-plane to the η-plane is given by

ηfin(ζ;α) = S0(N+1)(ζ;α) = B
R0(ζ;α)

RN+1(ζ;α)
, (2.6)

where

RN+1(ζ;α) =

[
ω(ζ, α)ω(χN+1(ζ), χN+1(α))

ω(ζ, χN+1(α))ω(χN+1(ζ), α)

]1/2
,

and

χN+1(ζ) = δN+1 +
q2N+1

ζ − δN+1
,

with δN+1 and qN+1 denoting the centre and radius of c(N+1) respectively, and the over-bars
denoting the complex conjugate. The normalization constant B is defined such that the
unit circle c(0) is mapped to the unit circle ĉ(0). For full details on the above conformal
mappings and for more details on the Schottky-Klein prime function the reader is referred
to (23; 27) and the references therein. Full details of these mappings are not required in
order to construct the algorithm in this paper, we just need the fact that the mappings
exist and can be numerically evaluated using MATLAB R© subroutines, courtesy of (28).

C

Fig. 4 The ζ-plane with the dashed line depicting the closed contour C used to evaluate Cauchy’s
integral theorem.

In the ζ-plane we apply Cauchy’s integral theorem such that any complex analytical
function κ(ζ) can be written as

κ(ζ) = −
1

2πi

∮

C

κ(ζ′)

ζ′ − ζ
dζ′, (2.7)

where C is the clockwise traversed contour depicted in Fig. 4. For our problem the analytic
function we consider is

κ(ζ) = (x(ζ) − µ(ζ)) + i(y(ζ) − ν(ζ)) = x̃(ζ) + iỹ(ζ).
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Note, while (µ, ν) = (µ(ξ), ν(ξ)) implicitly, they can be considered as functions of either η
or ζ via the mappings (2.4) with either (2.5) or (2.6) respectively. For simplicity in notation
we write (µ, ν) = (µ(ζ), ν(ζ)) explicitly with the understanding that (2.5) and (2.6) have
been applied to the values of ξ. The integrals along the parallel strips of the contour cancel
out and (2.7) reduces to integrals over the individual circles c(n), each of which can be
parameterized via

ζ′ = δn + qne
iθ, θ ∈ [−π, π], for n = 0 and N + 1,

and
ζ′ = δn + qne

iφ, φ ∈ [0, 2π], for n = 1, ..., N,

where δn and qn are the centre and radius of c(n) respectively, with δ0 = 0 and q0 = 1.
Having exactly circular contours in the ζ-plane has numerical advantages for evaluating the
Cauchy-type integral in (2.7) and hence the use of the conformal mappings (2.5) and (2.6)
is further justified. Thus in the ζ-plane (2.7) becomes

x̃(ζ) + iỹ(ζ) =
1

2π

∫ π

−π

x̃0(θ) + iỹ0(θ)

eiθ − ζ
eiθ dθ −

N∑

n=1

qn
2π

∫ 2π

0

x̃n(φ) + iỹn(φ)

δn + qneiφ − ζ
eiφ dφ

−
qN+1

2π

∫ π

−π

x̃N+1(θ) + iỹN+1(θ)

δN+1 + qN+1eiθ − ζ
eiθ dθ. (2.8)

Therefore, in order to fully define the conformal mapping we need to firstly determine
the centres and radii of the circles c(n) n = 1, ..., N + 1 required to map the ζ-plane to
the configuration of baffles in the ξ-plane, and secondly to determine the functions x̃n(s)
and ỹn(s) for n = 0, ..., N + 1 required to map to the original z-plane configuration. The
process for determining the functions x̃n and ỹn involves evaluating (2.8) on the free-surface,
each baffle and, in finite depth, the bottom and solving the resulting system of integral
equations. For example, evaluating (2.8) on the free surface given in the ζ-plane by ζ = eiσ

for σ ∈ [−π, π] leads to

x̃0(σ) + iỹ0(σ) =
1

2π

∫ π

−π

(x̃0(θ) + iỹ0(θ)) dθ −
i

2π
PV

∫ π

−π

cot

[
1

2
(θ − σ)

]
(x̃0(θ) + iỹ0(θ)) dθ

−

N∑

n=1

qn
π

∫ π

−π

Fn0(σ, φ)(x̃n(φ) + iỹn(φ)) dφ −
qN+1

π

∫ π

−π

F(N+1)0(σ, θ)(x̃N+1(θ) + iỹN+1(θ)) dθ,(2.9)

where

Fnm(t, s) =
eis

δn + qneis − δm − qmeit
, (2.10)

and the Sokhotski-Plemelj theorem is used to evaluate Cauchy’s integral theorem on the
boundary of the domain. The principal value integral in (2.9) is the representation of the
Hilbert transform on the unit disc (2), and follows from (2.10) as

Fnn(t, s) =
1

2qn

(
1− i cot

[
1

2
(s− t)

])
, ∀ n.

Taking the real and imaginary parts of (2.9) gives two integral equations, which when
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combined with the equivalent integral equations from (2.8) evaluated on each baffle and the
bottom, leads to 2N + 4 equations which need to be satisfied by the functions x̃n and ỹn
for n = 0, ..., N + 1. Writing out the full list of equations for the general N baffle problem
is cumbersome, but we display the six equations for the N = 1 baffle case in a finite depth
fluid in appendix A. In the equations presented in appendix A, we have halved each domain
size by noting that we expect each x̃n(s) to be an odd function about θ = 0 and φ = π, and
each ỹn(s) to be an even function about this point. The reason for doing this is to halve
the number of grid points required in the numerical scheme set out in §3, hence speeding
up the numerical evaluation.
As the position of the baffles and impermeable bottom are fixed in the z-plane, and we

assume a known free-surface elevation y = f(x) (this assumption is consistent for the time-
dependent sloshing problems for which this conformal mapping approach is being devised),
we need not solve for both the real and imaginary parts of κ(ζ) as ỹn(s) for n = 0, ..., N +1
will be known. Therefore we need only solve N +2 equations, allowing the remaining N +2
equations to be used to update the lengths and positions of the baffles, and the bottom
position in the ξ-plane, ŷn, L̂n and Ĥ . The solution for the conformal mapping has to be
found numerically, and the algorithm for this is set out in §3.

3. Numerical Approach

The numerical process to calculate the conformal mapping for a given set of baffles b(n),
a bottom depth −H and a free-surface elevation y = f(x), contains two main processes:
determining the mapping from the η-plane to the ζ-plane and then solving the integral
equations of the form (2.9) for x̃(s) n = 0, ..., N +1. The algorithm used in this paper is as
follows:

—START—

1. Choose initial guesses for the values of ŷn, L̂n, for n = 1, ..., N and Ĥ in the ξ-plane,
and also for n = 0, ..., N + 1 the functions x̃n, and map this domain to the η-domain
via (2.4).

2. Invert the conformal mapping (2.6) giving the values of qn, δn for n = 1, ..., N + 1 and
α in the ζ-plane.

3. Calculate the values of ỹn for n = 0, ..., N+1 from the given information in the z-plane
(f(x), Ln, yn etc.), and solve the real parts of the integral equations (2.9) for x̃n for
n = 0, ..., N + 1.

4. Use the imaginary parts of the integral equations from (2.9) to update the values of

ŷn, L̂n and Ĥ.

5. Repeat items 2, 3 and 4 until the algorithm converges.

—END—

We now look deeper into the the numerical processes behind steps 2-4 above. To simplify
the discussion we highlight these numerical processes for the case of one baffle N = 1 in a
finite depth fluid, for which the six integral equations are given in appendix A.
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ĉ(1)

ĉ(2)

ĉ(0)

A

B

C

D

Fig. 5 The η-plane for the case N = 1 baffle on the left-hand wall of the vessel in finite depth.
The points A, B, C and D denote the parts of the ξ-plane which are used to determine the
parameters in the ζ-plane when numerically inverting (2.6). The dashed line represents the branch
cut separating different periodic windows of the flow.

When we invert the conformal map (2.6) for N = 1, we have 8 unknowns which need to
be determined, namely q1, q2, δ1r, δ1i, δ2r, δ2i, αr and αi where the subscripts r and i
denote the real and imaginary part respectively. These unknowns are found by using the
4 fixed values in the η-plane as shown in Fig. 5, namely the position of the branch cut
A (such that µ = −1 above the cut and µ = 1 below), the real and imaginary parts of
point B, the real or imaginary part of point C and the radius of the circle corresponding
to the bottom, D. As there are more unknowns than fixed points, we are free to choose
(within certain limits) a set of these parameter values in the ζ-plane. In this study we
choose to set δ1i = δ2i = αi = 0 as this fixes the point A, fixes point C to be the complex
conjugate of B, and gives a ζ-plane circle configuration as in Fig. 3(d). Thus we have 5
remaining unknowns and 3 fixed values, therefore we are still free to choose two. It turns
out that this is not a completely free choice and it is in fact restricted to a set of values
from which a free choice can be made. In this study we choose to fix the baffle circle radius
q1 and mapping parameter α and determine the other 3 parameters. As the inverse of
(2.6), η−1

fin , has no analytic form, the 3 remaining parameters q2, δ1r, and δ2r are found via
Newton iterations until updates to these values are less than 10−10 in magnitude. As we
are choosing δ1, δ2, α ∈ R, we drop the subscript r in the subsequent discussion with the
implicit assumption they are real parameters.
In order to evaluate the functions ỹn and solve the integral equations (A.2)-(A.7) for x̃n,

n = 0, 1, 2 we first discretize the domains σ ∈ [−π, 0], both on the free-surface (c(0)) and
bottom (c(2)), via

σj = −π +
π

P
(j − 1), j = 1, ..., P + 1, (3.1)
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and ψ ∈ [0, π] on the baffle (c(1)) via

ψj =
π

2Q
(j − 1), j = 1, ..., 2Q+ 1. (3.2)

Note, it is not necessary to have an equal number of grid points along both the free-surface
and the bottom, but we choose to do so for simplicity. Similarly in the multiple baffle case,
the discretization for each baffle could contain a different number of points.
The values of ỹn(σj) = ỹnj , for n = 0, 2 and ỹ1(ψj) = ỹ1j for each j are then given by

ỹ0j = f(µj + x̃0j), j = 1, ..., P + 1,

ỹ1j = −y1 + ŷ1, j = 1, ..., 2Q+ 1,

ỹ2j = −H + Ĥ, j = 1, ..., P + 1,

where µj = µ(σj) evaluated on the free-surface. This furnishes 2P +2Q+3 unknowns (x̃0j ,
j = 1, ..., P+1, x̃1j , j = 1, ..., 2Q+1 and x̃2j , j = 1, ..., P+1) to be calculated by solving the
discretized form of the integral equations (A.2), (A.4) and (A.6). The discretized equations
are evaluated at the mid-points of the domains

σm
j =

1

2
(σj + σj+1), j = 1, ..., P, (3.3)

ψm
j =

1

2
(ψj + ψj+1), j = 1, ..., 2Q, (3.4)

as this allows the principle value integrals to be evaluated directly using the trapezoidal
rule (31).
The discretized form of the equations (A.2)-(A.7) evaluated at (3.3) and (3.4) are given

in (A.8)-(A.13) in appendix A. The 2P +2Q equations (A.8), (A.10) and (A.12) along with
the conditions

x̃01 = x̃11 = x̃21 = 0,

are solved via Newton iterations.
After each iteration, step 4 of the algorithm updates the values of ŷ1, L̂1 and Ĥ using

the residues of (A.11) and (A.13) which we call R̂2j and R̂3j respectively, such that

ŷ†1 = ŷ1 +
1

2
sgn

(
R̂2j

)
max

(∣∣∣R̂2j

∣∣∣
)
, (3.5)

Ĥ†
1 = Ĥ1 +

1

2
sgn

(
R̂3j

)
max

(∣∣∣R̂3j

∣∣∣
)
, (3.6)

L̂†
1 =

{
L̂1 +

1
2 (µJ + x̃1J + L1), left-wall baffle

L̂1 +
1
2 (µJ + x̃1J + L1 − 1), right-wall baffle

(3.7)

where µJ = µ(ψJ ) is the point on the baffle where µ(ψj) obtains its minimum value. The †
on the variables in (3.5)-(3.7) denotes the updated value at the next iteration. The Newton

iteration for the solution for x̃nj and updates for ŷ1, Ĥ and L̂1 continue until the maximum
tolerance between updates of these quantities is less than 10−6.
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Note in (3.7) we find it more appropriate to update L̂1 via this approach rather than using

the residues R̂1j , but this alternative approach could be used. In the current algorithm

setup, the maximum value of R̂1j is a measure for the accuracy of the solution, hence we

want to choose enough grid points P, Q such that max
(∣∣∣R̂1j

∣∣∣
)
= O(10−6) which is the

same error magnitude we allow for the other residues.
Numerical results for various physical scenarios are given in §4.

4. Results

To demonstrate the conformal mapping approach outlined in §2 and §3 and to highlight
the dependence of the mapping parameters on the form of the free-surface f(x), we present
numerical results in this section for the free-surface profile

f(x) = f(x; t) = ǫ cos (πx) cos(t), x ∈ [−1, 1], (4.1)

where ǫ is an amplitude parameter. This profile is the lowest order free-sloshing mode
in the unbaffled problem, and the parameter t is synonymous with time in the dynamic
problem. In the results which follow, we will consider t = 0, except when demonstrating
the dependence of the mapping parameters on the free-surface shape.

4.1 Infinite Depth

For the scenario of N = 1 baffle in an infinite depth fluid, the ζ-plane consists solely of the
unit circle with an interior circle, c(1), removed. The convergence qualities of the numerical
algorithm from §3 are shown in Fig. 6 for the case L1 = 1/3, y1 = −1/3 and q1 = 0.166

for a baffle on the left-hand wall. Here we plot the max
(
|R̂1j |

)
with Q = P for ǫ = 10−4

(result 1) and ǫ = 10−2 (result 2). This shows that the scheme converges ∝ P−2 for both
free-surface amplitudes considered. In dynamic simulations, such as in (34; 4; 33), the
largest amplitudes achievable in those simulations before overturning occurs is O(10−2) so
this is the largest amplitude for which would wish this conformal mapping approach to
work, hence is the largest amplitude we consider here. For larger amplitude waves with
steep interfaces, the conformal mapping approach becomes less efficient as equally spaced
grid points in the ζ-plane become concentrated around the crests. In these type of problems
a more efficient method would be the boundary element method (32). The residue R̂2j is
used to update ŷ1, and as we assume convergence when the iterative updates are < 10−6,

we really only need to consider a value of P such that max
(∣∣∣R̂1j

∣∣∣
)
< 10−6. Hence for all

results presented here we consider Q = P = 500 and the results presented have converged
to graphical accuracy. An example of the ζ-, η- and z-plane for the case 1 in table 1 along
with a depiction of the conformal mapping is given in Fig. 7.
The mapping plotted in Fig. 7 is for the case when q1 = 0.166, but as mentioned in §2,

there is a range of q1 values for which the mapping exists, this range is plotted in Fig. 8
for ǫ = 10−4 and t = 0. The results in Fig. 8 show that the range of possible q1 values
is restricted due to α becoming zero at q1 ≈ 0.1658 and because q1 = δ1 at q1 ≈ 0.1817.
This shows that in the mapping, α cannot move through the origin, nor can the circle c(1)

encompass the origin. We will see later that this range is actually further restricted for the
time-dependent problem.
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Fig. 6 Error residue max
(∣∣∣R̂1j

∣∣∣
)
as a function of P = Q for the scenario N = 1 baffle in infinite

depth for ǫ = 10−4 (result 1) and ǫ = 10−2 (result 2). Here L1 = 1/3, y1 = −1/3, q1 = 0.166 and
t = 0 in (4.1).

Parameter Case 1 Case 1.1 Case 2 Case 3 Case 4
L1 0.3333 0.3333 0.3333 0.3333 0.5000
y1 -0.3333 -0.3333 -0.2500 -0.5000 -0.3333
q1 0.1660 0.1740 0.2200 0.1030 0.2290

L̂1 0.3303 0.3303 0.3294 0.3315 0.4964
ŷ1 -0.3358 -0.3358 -0.2533 -0.5014 -0.3350
δ1 0.3165 0.2413 0.3433 0.1535 0.3021
α -0.0244 -0.1083 -0.1051 -0.0535 -0.0320

Table 1 Table of parameters for N = 1 left-hand wall baffle in infinite depth with ǫ = 10−2

and t = 0 in (4.1).

Fig. 9 plots the variation of the mapping parameters δ1 and α for the cases 1-4 in table 1
as a function of the free-surface amplitude, ǫ. In each case both δ1 and α reduce linearly with
increasing ǫ at very similar rates, except for the longer baffle case, case 4. This variation of
δ1 and α is expected, because as ǫ increases the free-surface in the z-plane moves further
from the baffle (when t = 0 and the baffle is situated on the left-hand wall, x = 0), hence
the space between the baffle c(1) and the free-surface c(0) in the ζ-plane should also increase.
If we were to consider t = π in (4.1), then as ǫ increases the spacing between the baffle and
the free-surface would reduce for baffles on the left-hand wall and hence δ1 and α would
be increasing functions of ǫ. This case would mean α approaching zero, which we know is
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Fig. 7 Plot of (a) the ζ-plane, (b) the η-plane and (c) the z-plane showing the conformal mapping
for the scenario N = 1 baffle in infinite depth for ǫ = 10−2 and t = 0 in (4.1). The parameters for
this scenario are given by case 1 in table 1.

problematic from Fig. 8(a). The resulting solutions for x̃0(θ) and x̃1(φ) are given in Fig.
10. At first glance they appear almost sinusoidal, but higher order terms are also present,
in particular case 4 in Fig. 10(a) has a steeper gradient around θ = 0. The results for

x̃1(φ) implicitly give the value of L̂1 − L1 for each case, as the results are constrained such

that max(L̂1 + x̃1(φ)) = L1, hence max(x̃1(φ)) = L1 − L̂1. Thus the longer baffle in case
4 shortens more in the ξ-plane than the result in case 1 which occurs at the same depth
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Fig. 8 Plot of (a) δ1(q1) and (b) α(q1) for the conformal mapping for the scenario N = 1 baffle
in infinite depth, with ǫ = 10−4 and t = 0 in (4.1). The dashed line in panel (a) denotes the line
δ1 = q1.
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Fig. 9 Plot of (a) δ1(ǫ) and (b) α(ǫ) for the conformal mapping for the scenario N = 1 baffle in
infinite depth with t = 0 in (4.1). In each panel the results numbered 1-4 correspond to the cases
1-4 in table 1.
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Fig. 10 Plot of (a) x̃0(θ) and (b) x̃1(φ) for the conformal mapping for the scenario N = 1 baffle in
infinite depth, with ǫ = 10−2 and t = 0 in (4.1). In each panel the results numbered 1-4 correspond
to the cases 1-4 in table 1.

y1 = −1/3. However the percentage change between the two cases is very similar, with the
max(x̃1(φ)) ≈ ǫL1 for these two cases.
The main reason for carrying out this feasibility study into the conformal mappings

presented in this paper is to determine whether or not they could be applied to the time-
dependent dynamic sloshing problem with side-wall baffles. In order to understand whether
or not this is possible, we consider the time evolution of (4.1) from t = 0 to t = π, this is
equivalent to simulating a wave sloshing over half a period. This would capture the two
extremes of the free-surface position at t = 0 and t = π and checks that mappings can
be found for all parameter values in between. The results for δ1(t), α(t), L̂1(t) and ŷ1(t)
are given in Fig. 11 for the cases in table 1. The results show that all 4 parameters are
clearly time-dependent and move to more positive values as the wave sloshes away from the
left-hand side-wall of the vessel containing the baffle. Although the results appear to have
rotational symmetry about t = π/2 this is not the case and the parameters move a different
magnitude depending whether the free-surface is above or below the mean quiescent level
above the baffle.
The interesting result here is the case 1 result, which ceases just after t = π/2, at

t = 1.634, at which point α ≈ 0. Therefore this value of q1 would not be suitable to
simulate the time-dependent sloshing problem with ǫ = 10−2. However, when we increase
this value to q1 = 0.174 (case 1.1) we are able to solve for the conformal mapping parameters
up to t = π. Therefore it appears that the conformal mapping approach presented here is
feasible to use in the dynamic problem, but it is sensible to check the kinematic problem
presented here first to find a suitable value of the parameter that is to be fixed. Another
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Fig. 11 Plot of (a) δ1(t) − δ1(π/2) and α(t) − α(π/2) and (b) L̂1(t) − L1 and ŷ1(t)− y1 for the
conformal mapping for the scenario N = 1 baffle in infinite depth, with ǫ = 10−2 for the cases
given in table 1.

Parameter Case 5 Case 6 Case 7 Case 8
L1 0.3333(l) 0.2500(l) 0.3333(l) 0.3333(l)
y1 -0.3333 -0.5000 -0.3333 -0.3333
L2 0.1667(l) 0.3333(l) 0.1667(r) 0.5000(r)
y2 -0.2500 -0.2500 -0.4000 -0.4000
q1 0.1550 0.0458 0.1700 0.1700
q2 0.1030 0.2274 0.0682 0.1577

L̂1 0.3303 0.2487 0.3303 0.3302
ŷ1 -0.3358 -0.5015 -0.3358 -0.3356

L̂2 0.1640 0.2963 0.1681 0.5029
ŷ2 -0.2537 -0.2535 -0.3972 -0.3985
δ1 0.1048 -0.3027 0.2658 0.0660
δ2 0.3949 0.0480 -0.3160 -0.4158
α -0.2146 -0.4335 -0.0715 -0.2045

Table 2 Table of parameter quantities for N = 2 baffles in infinite depth with ǫ = 10−2

and t = 0 from (4.1). The (l) and (r) in rows 1 and 3 signify whether the baffle is located
on the left-hand wall or right-hand wall respectively.

approach may be to make q1 time-dependent in such a way that α is moved away from zero
if it becomes too close.
In Fig. 12 (and table 2) we consider cases 5-8 which contain two baffles either on the same

wall or on different walls of the vessel. All the mappings have a very similar structure and
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Fig. 12 Plot of the z-plane, showing the conformal mapping for the scenario N = 2 baffles in
infinite depth for ǫ = 10−2 and t = 0 in (4.1). The panels (a)-(d) correspond to the cases 5-8 in
table 2 respectively.

the interaction between the baffles is more apparent as the baffles become closer together
as can be seen in the gaps between the baffles in Fig. 12(a) and 12(d). In each of the
cases in Fig. 12 the dependence of the parameters on ǫ, for example, are similar to those
as in the 1 baffle case so we do not present those results here for two baffles, but what
we are interested in, is whether or not we are able to simulate time-dependent dynamic
sloshing over the half-period of the flow. The results for the time-dependence of the ζ-plane
parameters δ1, δ2, q2 and α for cases 5-8 are plotted in Fig. 13. The results are very similar
to those for N = 1 baffle, but with some interesting differences. The results again do not
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Fig. 13 Plot of (a) δ1(t)− δ1(π/2) and δ2(t)− δ2(π/2) and (b) q2(t)− q2(π/2) and α(t)−α(π/2)
for the conformal mapping for the scenario N = 2 baffles in infinite depth, with ǫ = 10−2 for the
cases given in table 2.

have rotational symmetry about t = π and in cases 5, 7 and 8, δ1, δ2 and α all increase as t
increases. However, one interesting case is case 6, where δ1 increases while δ2 and α decrease
for increasing t, but the magnitude of this movement is small. The top panel of Fig. 13(b)
shows that it is the large variation of q2, relative to the other parameters, which modifies
the mapping in this case. Case 8 has parameters which vary the most in the ζ-plane over
one period of the flow, and this is due to the larger interaction between the two baffles
compared to the other cases. The significant conclusion to the results presented in Fig. 13
is that for the fixed values of q1 used, we are able to find conformal maps for t ∈ [0, π], i.e.
there are no cases where the numerical scheme breaks down. This shows that this method
can be used for the dynamic problem in the general case in infinite depth fluids. We now
consider finite depth fluids in §4.2 to understand the effect, if any, this has on the mapping
results given in this section.

4.2 Finite Depth

When we consider finite depth fluids, the only change to the theoretical analysis is the
conformal mapping from the ζ-plane to the η-plane is now given by (2.6) instead of (2.5).
The first question to consider is how do the parameters of this mapping compare with those
of the infinite depth mapping (2.5) as H → ∞? The answer to this question is given in Fig.
14, where we again consider the N = 1 baffle scenario given by case 1 in table 1. What we
find is that as H → ∞, δ1 → 0.3165 (given by the upper dotted line), which is the same
value as in the infinite depth calculation, and q2 → 0, which we should expect, as we wish
the radius of ĉ(2) to tend to zero to be consistent with (2.4). However, what is interesting is
that δ2 → −0.0244, which is the value of α from the infinite depth calculation (lower dotted
line), thus c(2) in the finite depth mapping (2.6) plays the same role in the mapping as α
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Fig. 14 Plot of (a) δ1(H) and δ2(H) and (b) q2(H) for the conformal mapping for the scenario
N = 1 baffle in finite depth, with ǫ = 10−2. Here q1 = 0.166, α = −0.5 and t = 0, and the horizontal
dotted lines correspond to δ1 = 0.3165 and α = −0.0224 from the infinite depth calculation.

does in the infinite depth map (2.5). This is not totally unexpected though, as both c(2) in
finite depth and α in infinite depth get mapped to the origin in the η-plane. This however,
then means that the parameter α in the finite depth mapping becomes arbitrary, except for
the fact that it must lie inside c(0), on the real axis, and not on the inversion contour C

of Cauchy’s integral theorem. The resulting conformal mapping for α = −0.5 and H = 0.5
is plotted in Fig. 15. The results in Fig. 14 show that the infinite depth limit occurs for
H & 1.
In Fig. 16 we investigate the restriction on the arbitrary mapping parameter q1 for the

case depicted in Fig. 15 for H = 1 and H = 0.5 with α = −0.5. For the similar result
in infinite depth (see Fig. 8) we only found solutions for the mapping when t = 0 and
ǫ = 10−4, for q1 ∈ [0.1658, 0.1817]. In the finite depth case this restriction is relaxed and we
can compute the mapping for q1 ∈ (0, 0.1881] for H = 1 and q1 ∈ (0, 0.1860] for H = 0.5.
In both cases δ1 and δ2 move towards 1 as q1 → 0 and for q1 > 0 the solutions cease when
δ1 becomes zero. Therefore this shows that the finite depth mapping (2.6) appears to be
more robust than the infinite depth mapping, and it is more likely that a solution map
can be found because the available range of q1 values is larger. As part of the numerical
process, as we have currently defined it, involves choosing a value of q1 in advance, the finite
depth mapping makes it more likely that an appropriate value is chosen. This coupled with
the results in Fig. 14, show that the mapping (2.6) should also be used for infinite depth
calculations, with H chosen appropriately large, as in this limit the range of possible q1
values is still larger than those found in Fig. 8.
One final check to test the potential benefit of using the finite depth mapping (2.6) over

the infinite depth mapping (2.5) is to calculate the time-dependent solution for the cases



20 M. R. Turner

(a)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re(ζ)

Im(ζ)

(b)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Re(η)

Im(η)

(c)
-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

y

x

Fig. 15 Plot of (a) the ζ-plane, (b) the η-plane and (c) the z-plane showing the conformal mapping
for the scenario N = 1 baffle in finite depth for ǫ = 10−2, H = 0.5 and t = 0 in (4.1). Here we
have set q1 = 0.166 and α = −0.5.

considered in Fig. 16. For the infinite depth scenario the solution when q1 = 0.166 ceased
at t = 1.634 when α became zero (see case 1 in Fig. 11). This time, with δ2 behaving as
α from the infinite depth mapping, we find that time-dependent results are possible for all
t ∈ [0, π].
To complete this study we plot the infinite-depth conformal maps from Fig. 12 in finite

depth with H = 0.6 in Fig. 18. The mappings are very similar to those in infinite depth,
with some slight variations around the baffles. The final thing to note here is that the
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Fig. 16 Panel (a) δ1(q1) (results 1 and 3) and δ2(q1) (results 2 and 4) for H = 1 (results 1 and 2)
and H = 0.5 (results 3 and 4). Panel (b) q2(q1) for H = 1 (result 1) and H = 0.5 (result 2). Both
panels are for the scenario of N = 1 baffle in finite depth with α = −0.5, ǫ = 10−4 and t = 0.

parameter α from (2.6) is arbitrary, but as stated above, must be chosen to lie inside c(0),
on the real axis and not on C of (2.7). For the cases in panels (a) and (b) this is straight
forward and α is chosen to lie significantly far from the origin along the negative real axis,
but in panels (c) and (d) it must lie between c(2) and c(3) in the ζ-plane. This sounds straight
forward, but these large amplitude results are obtained using parameter continuation with
ǫ increased from 10−3 to 10−2 (the code would not converge with ǫ = 10−2 with zero initial
guesses for x̃0, x̃1, x̃2 and x̃3), and so the circles c(2) and c(3) move during this process. If
you are unlucky, then the overlap region of possible α values at ǫ = 10−2 and ǫ = 10−3

is the empty set, as is the case for Fig. 18(d). In this case we found it beneficial to also
update α during the parameter continuation by placing α midway between at each iterative
step c(2) and c(3) via

α =
1

2
(δ2 + q2 + δ3 − q3) .

5. Conclusions and Discussion

In this paper we performed a feasibility study investigating the suitability of using time-
dependent conformal mappings of multiply-connected domains to numerically simulate the
evolution of the unknown free-surface in fully-dynamic free-surface flows. The particular
flow investigated was that of an inviscid, irrotational, incompressible fluid sloshing in a
rectangular vessel with rigid, impermeable baffles connected to the side-walls. We show
that this flow can be mapped conformally to a ζ-plane where the unknown free-surface is
mapped to the unit circle and the surface of the N baffles and the impermeable bottom
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Fig. 17 For the scenario of N = 1 baffle in finite depth with ǫ = 10−2, plots of (a) δ1(t)− δ1(π/2),

δ2(t) − δ2(π/2) (top panel) and q2(t) − q2(π/2) (bottom panel) and (b) L̂1(t) − L1 (top panel)
and ŷ1(t) − y1 (bottom panel). In the top panel of (a) results for δ1(t) and δ2(t) with H = 1 and
H = 0.5 are almost indistinguishable, while in the other panels H = 1 and H = 0.5 correspond to
results 1 and 2 respectively.

(in finite depth flows) are mapped to N + 1 circles cut-out from this domain. Thus the
domain is (N + 2)-fold connected for a finite depth fluid ((N + 1)-fold connected in an
infinite fluid). An algorithm is devised using Cauchy’s integral theorem which relates the
conjugate harmonic functions along the unknown free-surface. This algorithm could then
be incorporated into time-dependent dynamic simulations to model the time-evolution of
the free-surface. The algorithm makes use of the Schottky–Klein prime function in order
to map from the ζ-plane described above to one where the circles representing the baffles
are mapped to circular arcs (23).
The results presented in the paper showed that for infinite depth fluids the conformal

mapping contained one free parameter (q1 in our case) to be chosen by the user from a
range of possible values. However for the finite depth conformal mapping there were two
free parameters (q1 and α in our case) to be chosen which gave a wider tolerance to the
user when determining these values for the initial iteration step. Results of the mappings
are presented in both infinite and finite depth fluids, and the variation of the mapping
parameters were examined as functions of the amplitude of the free-surface elevation and
an imposed time variation, where this variation was chosen to simulate a wave sloshing from
the left-hand wall of the vessel to the right-hand wall. The kinematic time-dependent results
presented in infinite depth show that the sloshing wave can only complete its progress to
the right-hand wall for a small range of q1 values, where q1 is fixed for the duration of the
motion. This restriction can be lifted slightly if we allow q1 to also vary in some prescribed
way during the sloshing motion. However, in the dynamic time-dependent problem, when
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Fig. 18 Plot of the z-plane, showing the conformal mapping for the scenario N = 2 baffles in
finite depth with H = 0.6 for ǫ = 10−2 and t = 0 in (4.1). The panels (a)-(d) correspond to the
cases 5-8 in table 2 respectively.

the free-surface is not known a priori, deciding how to vary q1 is unclear and thus would be
difficult to incorporate into a numerical algorithm which works in a wide range of situations.
For the finite depth mapping this situation is more straightforward to deal with, because
q1 can be fixed throughout the duration of the motion, and α can be considered as time-
dependent with the property that it always lies midway between the centres of the circles in
the ζ-plane representing the bottom, c(N+1), and the lowest baffle on the right-hand wall.
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If there is no baffle on the right-hand wall then halfway between the centre of c(N+1) and
the point −1 will suffice.
The reason for carrying out this feasibility study was to discover if conformal maps could

be used to simulate the fully dynamic sloshing problem in a rectangular vessel with side-wall
baffles, in order to calculate quantities such as the natural frequencies of the linear modes, as
well as nonlinear free-surface profiles for larger amplitude motions. This conformal mapping
approach has been utilized in the case without side-wall baffles in free sloshing (4), forced
sloshing (33) and dynamic sloshing (34) problems. In the dynamic problems the parametric
form of the free-surface from (2.1) is not known a priori and is governed by a pair of PDEs
of the form

∂Y0
∂t

= F1(X0, Y0,Φ,Ψ),
∂Φ

∂t
= F2(X0, Y0,Φ,Ψ), (5.1)

where F1 and F2 are functions (whose form for specific problems can be found in (4; 33; 34)).
The complex potential φ + iψ is another analytic variable which can utilize the conformal
mapping in this paper, to link the velocity potential, φ, and the streamfunction, ψ, on
the free-surface, given respectively by Φ(µ) = φ(µ, 0) and Ψ(µ) = ψ(µ, 0). Equations
(5.1) are integrated forward in time using an explicit integration scheme from some initial
condition, and at each time step, once the new form of Y0(µ) and Φ(µ) are calculated,
the conformal mapping approach from this paper can be used to generate the conjugate
harmonic functions X0(µ) and Ψ(µ) at that time-step. The solution for X0(µ) is calculated
using the algorithm documented in this paper directly, while the solution of Ψ(µ) would
require a slightly modified algorithm to solve the imaginary parts of the equations similar
to (2.9), i.e. determining the imaginary part of the conjugate harmonic function given the
real part. The incorporation of this algorithm in dynamic simulations is currently under
consideration in future work.
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APPENDIX A

Governing integral equations for N = 1 baffle in an infinite depth fluid

For the scenario of N = 1 baffle in a finite depth fluid, Cauchy’s integral theorem becomes

x̃(ζ) + iỹ(ζ) =
1

2π

∫ π

−π

x̃0(θ) + iỹ0(θ)

eiθ − ζ
eiθ dθ −

q1
2π

∫ 2π

0

x̃1(φ) + iỹ1(φ)

δ1 + q1eiφ − ζ
eiφ dφ

−

q2
2π

∫ π

−π

x̃2(θ) + iỹ2(θ)

δ2 + q2eiθ − ζ
eiθ dθ. (A.1)
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Evaluating this on the free-surface, the baffle and the bottom, and halving the domain by assuming
ỹ0, ỹ1 and ỹ1 are even function about θ = 0 and φ = π, while x̃0, x̃1 and x̃2 are odd functions leads
to the six integral equations

x̃0(σ) =
1

2π
PV

∫ 0

−π

[
cot

[
1

2
(θ − σ)

]
− cot

[
1

2
(θ + σ)

]]
ỹ0(θ) dθ

−

q1
π

∫ π

0

[Re (F10(σ, φ)− F10(σ, 2π − φ)) x̃1 − Im (F10(σ, φ) + F10(σ, 2π − φ)) ỹ1] dφ

−

q2
π

∫ 0

−π

[Re (F20(σ, θ)− F20(σ,−θ)) x̃2 − Im (F20(σ, θ) + F20(σ,−θ)) ỹ2] dθ, (A.2)

ỹ0(σ) =
1

π

∫ 0

−π

ỹ0(θ) dθ −
1

2π
PV

∫ 0

−π

[
cot

[
1

2
(θ − σ)

]
+ cot

[
1

2
(θ + σ)

]]
x̃0(θ)

−

q1
π

∫ π

0

[Im (F10(σ, φ)− F10(σ, 2π − φ)) x̃1 +Re (F10(σ, φ) + F10(σ, 2π − φ)) ỹ1] dφ

−

q2
π

∫ 0

−π

[Im (F20(σ, θ)− F20(σ,−θ)) x̃2 +Re (F20(σ, θ) + F20(σ,−θ)) ỹ2] dθ, (A.3)

x̃1(ψ) =
1

π

∫ 0

−π

[Re (F01(ψ, θ)− F01(ψ,−θ)) x̃0 − Im (F01(ψ, θ) + F01(ψ,−θ)) ỹ0] dθ

−

1

2π
PV

∫ π

0

[
cot

[
1

2
(θ − ψ)

]
− cot

[
1

2
(θ + ψ)

]]
ỹ1(θ) dφ

−

q2
π

∫ 0

−π

[Re (F21(ψ, θ)− F21(ψ,−θ)) x̃2 − Im (F21(ψ, θ) + F21(ψ,−θ)) ỹ2] dθ,(A.4)

ỹ1(ψ) =
1

π

∫ 0

−π

[Im (F01(ψ, θ)− F01(ψ,−θ)) x̃0 +Re (F01(ψ, θ) + F01(ψ,−θ)) ỹ0] dθ

−

1

π

∫ π

0

ỹ1(φ) dφ+
1

2π
PV

∫ π

0

[
cot

[
1

2
(φ− ψ)

]
+ cot

[
1

2
(φ+ ψ)

]]
x̃1(φ) dφ

−

q2
π

∫ 0

−π

[Im (F02(ψ, θ)− F02(ψ,−θ)) x̃2 +Re (F02(ψ, θ) + F02(ψ,−θ)) ỹ2] dθ,(A.5)

x̃2(σ) =
1

π

∫ 0

−π

[Re (F02(σ, θ)− F02(σ,−θ)) x̃0 − Im (F02(σ, θ) + F02(σ,−θ)) ỹ0] dθ

−

q1
π

∫ π

0

[Re (F12(σ, φ)− F12(σ, 2π − φ)) x̃2 − Im (F12(σ, φ) + F12(σ, 2π − φ)) ỹ2] dφ

−

1

2π
PV

∫ 0

−π

[
cot

[
1

2
(θ − σ)

]
− cot

[
1

2
(θ + σ)

]]
ỹ1(θ) dθ, (A.6)

ỹ2(σ) =
1

π

∫ 0

−π

[Im (F02(σ, θ)− F02(σ,−θ)) x̃0 +Re (F02(σ, θ) + F02(σ,−θ)) ỹ0] dθ

−

q1
π

∫ π

0

[Im (F12(σ, φ)− F12(σ, 2π − φ)) x̃1 +Re (F12(σ, φ) + F12(σ, 2π − φ)) ỹ1] dφ

−

1

π

∫ 0

−π

ỹ2(θ) dθ +
1

2π
PV

∫ π

0

[
cot

[
1

2
(θ − σ)

]
+ cot

[
1

2
(θ + σ)

]]
x̃2(θ) dθ, (A.7)

where Fnm(t, s) is given in (2.10). Discretizing the equations via (3.1) and (3.2) and evaluating at
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the mid-points (3.3) and (3.4) gives

1

2

(
x̃0j + x̃0(j+1)

)
−

1

2π

N∑

k=1

[
cot

[
1

2
(θk − σmj )

]
− cot

[
1

2
(θk + σmj )

]]
ỹ0k∆θ

+
q1

π

2M∑

k=1

[
Re

(
F10(σ

m
j , φk)− F10(σ

m
j , 2π − φk)

)
x̃1k − Im

(
F10(σ

m
j , φk) + F10(σ

m
j , 2π − φk)

)
ỹ1k

]
∆φ

+
q2

π

N∑

k=1

[
Re

(
F20(σ

m
j , θk) − F20(σ

m
j ,−θk)

)
x̃2k − Im

(
F20(σ

m
j , θk) + F20(σ

m
j ,−θk)

)
ỹ2k

]
∆θ = 0,(A.8)

1

2

(
ỹ0j + ỹ0(j+1)

)
−

1

π

N∑

k=1

y0k∆θ +
1

2π

N∑

k=1

[
cot

[
1

2
(θk − σmj )

]
+ cot

[
1

2
(θk + σmj )

]]
x̃0k

+
q1

π

2M∑

k=1

[
Im

(
F10(σ

m
j , φk) − F10(σ

m
j , 2π − φk)

)
x̃1k + Re

(
F10(σ

m
j , φk) + F10(σ

m
j , 2π − φk)

)
ỹ1k

]
∆φ

+
q2

π

N∑

k=1

[
Im

(
F20(σ

m
j , θk) − F20(σ

m
j ,−θk)

)
x̃2k + Re

(
F20(σ

m
j , θk) + F20(σ

m
j ,−θk)

)
ỹ2k

]
∆θ = 0,(A.9)

1

2

(
x̃1j + x̃1(j+1)

)
−

1

π

N∑

k=1

[
Re

(
F01(ψ

m
j , θk)− F01(ψ

m
j ,−θk)

)
x̃0k − Im

(
F01(ψ

m
j , θk) + F01(ψ

m
j ,−θk)

)
ỹ0k

]
∆θ

+
1

2π

2M∑

k=1

[
cot

[
1

2
(θk − ψm

j )

]
− cot

[
1

2
(θk + ψm

j )

]]
ỹ1k ∆φ

+
q2

π

N∑

k=1

[
Re

(
F21(ψ

m
j , θk)− F21(ψ

m
j ,−θk)

)
x̃2k − Im

(
F21(ψ

m
j , θk) + F21(ψ

m
j ,−θk)

)
ỹ2k

]
∆θ = 0, (A.10)

1

2

(
ỹ1j + ỹ1(j+1)

)
−

1

π

N∑

k=1

[
Im

(
F01(ψ

m
j , θk)− F01(ψ

m
j ,−θk)

)
x̃0k +Re

(
F01(ψ

m
j , θk) + F01(ψ

m
j ,−θk)

)
ỹ0k

]
∆θ

+
1

π

2M∑

k=1

ỹ1k ∆φ−
1

2π

2M∑

k=1

[
cot

[
1

2
(φk − ψm

j )

]
+ cot

[
1

2
(φk + ψm

j )

]]
x̃1k ∆φ

+
q2

π

N∑

k=1

[
Im

(
F02(ψ

m
j , θk)− F02(ψ

m
j ,−θk)

)
x̃2k +Re

(
F02(ψ

m
j , θk) + F02(ψ

m
j ,−θk)

)
ỹ2k

]
∆θ = 0, (A.11)

1

2

(
x̃2j + x̃2(j+1)

)
−

1

π

N∑

k=1

[
Re

(
F02(σ

m
j , θk)− F02(σ

m
j ,−θk)

)
x̃0k − Im

(
F02(σ

m
j , θk) + F02(σ

m
j ,−θk)

)
ỹ0k

]
∆θ

+
q1

π

2M∑

k=1

[
Re

(
F12(σ

m
j , φk) − F12(σ

m
j , 2π − φk)

)
x̃2k − Im

(
F12(σ

m
j , φk) + F12(σ

m
j , 2π − φk)

)
ỹ2k

]
∆φ

+
1

2π

N∑

k=1

[
cot

[
1

2
(θk − σmj )

]
− cot

[
1

2
(θk + σmj )

]]
ỹ1k ∆θ = 0, (A.12)

1

2

(
ỹ2j + ỹ2(j+1)

)
−

1

π

N∑

k=1

[
Im

(
F02(σ

m
j , θk)− F02(σ

m
j ,−θk)

)
x̃0k + Re

(
F02(σ

m
j , θk) + F02(σ

m
j ,−θk)

)
ỹ0k

]
∆θ

+
q1

π

2M∑

k=1

[
Im

(
F12(σ

m
j , φk)− F12(σ

m
j , 2π − φk)

)
x̃1k +Re

(
F12(σ

m
j , φk) + F12(σ

m
j , 2π − φk)

)
ỹ1k

]
∆φ

+
1

π

N∑

k=1

ỹ2k ∆θ +
1

2π

N∑

k=1

[
cot

[
1

2
(θk − σmj )

]
+ cot

[
1

2
(θk + σmj )

]]
x̃2k ∆θ = 0, (A.13)
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where ∆θ = π/N and ∆φ = π/(2M).


