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– Abstract –

Shallow-water fluid sloshing in the Lagrangian Particle Path formula-
tion, with the addition of an energy-extracting porous baffle, is sim-
ulated numerically using a symplectic numerical scheme which cap-
tures, in an essential way, the energy exchange. The fluid motion in a
rectangular vessel is dynamically coupled to a surface-piercing porous
baffle. The fluid transmission through the baffle is characterized by a
nonlinear Darcy-Forchheimer model equation. The numerical scheme
is symplectic, based on the implicit-midpoint rule, and thus is strate-
gically designed to maintain the energy partition between the fluid and
vessel throughout numerous time steps. Our results demonstrate the
non-conservative nature of the system, with the porous baffle effec-
tively dissipating energy from the overall system. Furthermore, we
present findings that demonstrate the role of time-periodic variations
in baffle porosity on energy dissipation. By manipulating the frequency
and magnitude of this time-dependent variability, it is established that
a greater amount of energy can be extracted from the system compared
with the optimal fixed porosity baffle. These results shed new light on
potential strategies for enhancing energy dissipation in such configura-
tions.

1 Introduction

Research into fluid sloshing motions in vessels forced to move in prescribed manners is a vast
area of research in both science and technology (see [1] and [2] and references therein). The
motion of the fluid is typically complex, and as the fluid interacts with the walls of the vessel
it generates forces and moments on these walls which can have unintended consequences, such
as causing faults in fuel tanks which have been excited by phenomena such as earthquakes [3].
Other possible scenarios where fluid sloshing may occur might include maritime and terrestrial
fuel transport [4]. If the vessel is free to move (either fully, or in some constrained way) then
those fluid forces and moments can generate movement of the vessel, which in turn feedback
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into the motion of the fluid. This coupled motion is very complex, and can lead to devastating
destabilization consequences, such as capsizing King crab boats [5, 6] and the spilling of coffee
from a mug while walking [7]. In order to mitigate against destabilization it is important to
recognize when destabilization is occurring and put measures in place to control the system.
For example, a ‘carry cradle’ has been shown to be very successful in reducing fluid sloshing in
carried coffee mugs [8]. The novel feature of this paper is we consider a time-dependent porous
baffle as a mechanism to control the system.

Baffles that are non-porous have been utilized in sloshing systems to reduce the negative conse-
quences of the sloshing fluid, essentially by blocking the flow [9, 1]. This blocking of the flow
leads to a change in the natural frequency of the system which can alter the forces generated
inside the vessel, making them less severe. Such a scenario was considered by [10] who con-
sidered a rectangular vessel with N surface-piercing baffles and found the natural frequency of
the system increased as N was increased. Porous baffles can also modify the system’s natural
frequency [11], but they play a more significant role by extracting energy from the system and
damping the motion [12, 13]. There have been significant experimental and numerical studies
on the effect of porous baffles on forced systems (not dynamically coupled), in particular fo-
cusing on their position, size and material construction [14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
The key features of the baffles turn out to be their size and construction. The baffle construc-
tion, i.e is it a randomly drilled porous block or perforated plate, is particularly significant to
its overall damping properties. In numerical simulations of the baffle systems in the literature,
the flow though the baffle is not explicitly calculated, and instead fluid transmission through
the baffle is modelled via a model equation. Such an equation can include using Darcy’s law
in linear and weakly nonlinear scenarios [24, 25, 26, 27], using a nonlinear pressure drop con-
dition for highly nonlinear scenarios [28, 29] or using a Darcy-Forchheimer condition [30] for
intermediate conditions. The Darcy-Forchheimer condition has proved particularly successful
in modelling the sloshing motion of a fluid in a tuned liquid damper filled with a porous media
[31, 32]. Turner [11] examined the linear normal modes for the coupled sloshing problem, and
investigated how the frequency of these modes varied with the system parameters.

In the current paper we perform, to the best of our knowledge, the first numerical simulations of
a dynamically coupled system, to include porous baffles. To model the system, we approximate
the fluid as a shallow-water layer, and use the Lagrangian Particle Path (LPP) approach, devel-
oped for dynamic sloshing systems by [33]. This approach has been widely implemented in
similar dynamic sloshing problems [34, 35, 36] due to the fact that the scheme has a symplectic
structure and, hence, can be integrated by a geometric integration scheme such as the implicit-
midpoint rule [37, 34, 38]. Such a scheme preserves the partition of energy between the vessel
and the fluid, and bounds any numerical leakage of energy from the fluid to the vessel. This is
particularly important when we allow the porosity of the baffle to vary with time.

The current paper is laid out as follows. In §2 we formulate the governing equations for the
nonlinear system and then take the shallow-water approximation of these equations. In §3 we
consider the linear solution to these equations for scheme validation, while §4 formulates the
numerical scheme in both the nonlinear and linear regimes. Results of the scheme are presented
in §5. Linear validation results and weakly nonlinear simulations are found in §5.1, while a
mode switching phenomena in the limit as the fluid layer depth goes to zero is presented in
§5.2. Section 5.3 investigates the control properties on the system when a baffle with time-
dependent porosity is considered. Concluding remarks can be found in §6.
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2 Formulation of Governing Equations

2.1 Finite Depth Fluid Equations

The problem we consider is that of a two-dimensional vessel with rectangular cross-section.
The vessel is of length L and contains a surface piercing porous baffle at x = L1, while the
impermeable rigid side walls of the baffle lie at x = 0 and x = L = L1 + L2. The vessel is
partially filled with an inviscid, incompressible, irrotational fluid of constant density ρ, which
has a mean depth of H , meaning that the vessel is filled with a fluid of mass mf = ρHL. Figure
1 depicts a schematic of the problem of interest, where variables are indexed by subscripts 1
and 2 in the left and right compartments respectively.

Y

X0

x
q(t)

ν

0

y L1 L2

h1(x, t) h2(x, t)

Figure 1: Schematic diagram of the problem under investigation. The rectangular vessel under-
goes rectilinear motion in the X-direction and is partially filled with an inviscid, incompressible
fluid which is allowed to pass through the porous baffle at x = L1. The vessel restoring force is
given by the linear spring connecting the vessel to X = 0.

In the spatial frame the coordinates are X = (X, Y ), while in the body frame fixed to the
vessel, the rectangular coordinates are x = (x, y) as shown in figure 1. The vessel undergoes
unidirectional motion parallel to the x-direction, of amplitude q(t) and hence the two reference
frames are related via

X = X0 + x+ q(t) and Y = Y0 + y ,

where (X0, Y0) is a constant displacement. The vessel is attached to a wall at X = 0 by a linear
spring, which acts as a restoring force on the vessel, hence the function q(t) is determined as
part of the solution. In each compartment the fluid occupies the region

0 ≤ y ≤ hj(x, t), with xj−1 ≤ x ≤ xj ,

for j = 1, 2, where x0 = 0 and x2 = L. We represent the fluid velocity field via the
two-dimensional vector (uj(x, y, t), vj(x, y, t)) and the pressure field via the scalar quantity
pj(x, y, t). Thus the Eulerian representation of the fluid momentum equations and the conser-
vation of mass equation in each compartment, relative to the body coordinates, are given by the
Euler equations

Duj

Dt
+

1

ρ

∂pj
∂x

= −q̈ ,
Dvj
Dt

+
1

ρ

∂pj
∂y

= −g ,
∂uj

∂x
+

∂vj
∂y

= 0 , (2.1)
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for j = 1, 2. Here g is the gravitational constant,
D

Dt
:=

∂

∂t
+ uj

∂

∂x
+ vj

∂

∂y
is the two-

dimensional material derivative and the overdots denote derivatives with respect to t.

On the free surface of the fluid in each compartment, the pressure and velocity fields satisfy the
dynamic and kinematic boundary conditions, namely

pj = 0, and
∂hj

∂t
+ uj

∂hj

∂x
= vj , at y = hj (x, t) , for j = 1, 2 . (2.2)

The boundary conditions on the rigid side-walls and vessel bottom are

u1 (0, y, t) = u2 (L, y, t) = 0,
vj (x, 0, t) = 0, for j = 1, 2

(2.3)

while the baffle at x = x1 = L1 is porous and thus fluid can be exchanged between the two
compartments. We do not explicitly calculate the flow through the baffle, and instead we model
the transmission of the fluid through the baffle with a model equation. We assume that at the
baffle the fluid velocities and the fluid pressure satisfy a Darcy-Forchheimer model [30] and
hence these quantities are related via

γuj(L1, y, t)+β|uj (L1, y, t) |uj (L1, y, t) = −βγ

ρ

[
p2(L1, y, t)−p1(L1, y, t)

]
for j = 1, 2.

(2.4)
The coefficient β ∈ R is a measure of the porosity of the baffle and γ ∈ R is known as the
internal permeability. If β or γ are zero, with the other nonzero, then we have an impermeable
baffle [34], while if β and γ are infinite then the baffle is no longer present, and we now have a
single compartment vessel [33].

Using (2.2) and the second equation of (2.1), we can modify the right-hand-side of the trans-
mission boundary condition (2.4) at the baffle such that it is written in terms of the surface
elevations hj rather than the pressures pj . To do this we integrate the second equation of (2.1)
with respect to y to give

pj(x, y, t) = ρg(hj − y) +

∫ hj

y

Dvj
Dt

ds, for j = 1, 2, (2.5)

using the dynamic boundary condition. Thus

p2(x1, y, t)− p1(x1, y, t) = ρg (h2(x1, t)− h1(x1, t)) +

∫ h2

y

Dv2
Dt

ds−
∫ h1

y

Dv1
Dt

ds. (2.6)

This is an exact equation for the pressure difference between the two compartments, which will
simplify further once we make assumptions about the depth of the fluid layer in §2.2.

Rather than using the velocity field throughout the whole fluid, we instead choose to express
the momentum equations (2.1) in terms of the surface velocity field, defined by

Uj(x, t) := uj(x, hj(x, t), t) and Vj(x, t) := vj(x, hj(x, t), t) . (2.7)

This transformation is laid out in detail in [33] for the single compartment vessel, and so here
we just quote the result, which is that the surface velocity components in each compartment
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satisfy the two exact equations

∂Uj

∂t
+ Uj

∂Uj

∂x
+ g

∂hj

∂x
+ q̈ = −Dvj

Dt

∂hj

∂x
,

∂hj

∂t
+

∂(hjUj)

∂x
= Vj + hj

∂Uj

∂x
,

(2.8)

at y = hj(x, t) for j = 1, 2, where (2.5) has been used to eliminate the pressure.

The motion of the vessel is determined by a forced pendulum equation and is derived using a
variational principle. This derivation was laid out clearly for the impermeable baffle problem in
[34], and hence we just state the equation as

d
dt

(
2∑

j=1

∫ xj

xj−1

ρhjUjdx+ (mv +mf ) q̇

)
+ νq =

d
dt

2∑
j=1

∫ xj

xj−1

∫ hj

0

ρy
∂uj

∂y
dydx , (2.9)

where mf is the fluid mass. Note, in this work we only consider a linear spring equation, but a
nonlinear spring can easily be incorporated by including a −ν2q

3 term on the LHS of (2.9) [34].

2.2 Shallow-Water Approximation to Governing Equations

The exact set of equations for the motion of the system (2.8) and (2.9) are not closed because
the terms on the right-hand sides contain terms involving vj(x, y, t), uj(x, y, t) and Vj(x, t). In
order to close this set of equations we need to neglect the right-hand sides of (2.8) and (2.9),
which can be achieved by making the shallow-water assumption for our problem. The principle
assumptions in this limit are then ∣∣∣∣Dvj

Dt

∣∣∣∣y=hj
∣∣∣∣ ≪ g ,∣∣∣∣Vj + hj

∂Uj

∂x

∣∣∣∣ ≪ U0 ,∣∣∣∣ ddt
n∑

j=1

∫ xj

xj−1

∫ hj

0

ρy
∂uj

∂y
dydx

∣∣∣∣ ≪ |νq| ,


(2.10)

for j = 1, 2, where U0 is an order one reference velocity. These assumptions are the usual
shallow-water fluid theory assumptions. Namely, that the vertical Lagrangian acceleration at
the free-surface is smaller than the gravitational restoring force, and that the horizontal velocity
is independent of the vertical coordinate y. The first condition in (2.10) is a special case of
the more common shallow-water assumption that the Lagrangian acceleration in the vertical
direction is small everywhere [39], while if we assume ∂uj/∂y = 0 in each compartment
then integrating the continuity equation leads to vj + y∂uj/∂x = 0 which leads to the second
condition when evaluated on the free-surface. The third condition is then a consequence of this
assumption.
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Applying these assumptions to our governing equations from §2.1 gives the shallow-water equa-
tions for the fluid motion as

∂Uj

∂t
+ Uj

∂Uj

∂x
+ g

∂hj

∂x
= −q̈ ,

∂hj

∂t
+ hj

∂Uj

∂x
+ Uj

∂hj

∂x
= 0 ,

 for xj−1 ≤ x ≤ xj , (2.11)

for j = 1, 2, and these are coupled to the vessel motion via the forced pendulum equation which
is written as

d
dt

(
2∑

j=1

∫ xj

xj−1

ρhjUj dx+ (mv +mf ) q̇

)
+ νq = 0 . (2.12)

In the shallow-water regime the rigid side-wall boundary conditions and the porous baffle trans-
mission condition become

U1(0, t) = U2(L, t) = 0, (2.13)

γUj(L1, t) + β|Uj(L1, t)|Uj(L1, t) = −βγg [h2(L1, t)− h1(L1, t)] for j = 1, 2. (2.14)

The governing shallow-water equations above can be determined by the Euler-Lagrange equa-
tions of the Lagrangian functional

L =

∫ t2

t1

L dt,

and

L(x, h, q) =
2∑

j=1

∫ xj

xj−1

[
1

2
hj(Uj + q̇)2 − 1

2
gh2

j + λj(hjt + (hjUj)x)

]
ρ dx+

1

2
mv q̇

2 − 1

2
νq2,

+λ3 [γU1(x1, τ) + β|U1(x1, τ)|U1(x1, τ) + βγg(h2(x1, τ)− h1(x1, τ))]

+λ4 [γU2(x1, τ) + β|U2(x1, τ)|U2(x1, τ) + βγg(h2(x1, τ)− h1(x1, τ))] , (2.15)

where λi are Lagrange multipliers. This Lagrangian is of the form

L = KE − PE + constraints

where the kinetic (KE) and potential (PE) energies are

KE =
2∑

j=1

∫ xj

xj−1

1

2
hj(Uj + q̇)2ρ dx+

1

2
mv q̇

2,

PE =
2∑

j=1

∫ xj

xj−1

1

2
gh2

jρ dx+
1

2
νq2,

with the constraints imposed. It is also possible to show that the total energy of the system

E(t) =
2∑

j=1

∫ xj

xj−1

[
1

2
hj(Uj + q̇)2 +

1

2
gh2

j

]
ρ dx+

1

2
mv q̇

2 +
1

2
νq2, (2.16)

decays with time, see appendix A.

In the next section we consider the solution of the shallow-water equations in the linear regime
of small amplitude motions.
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3 Linear Coupled Problem

The solution of the shallow-water problem in the linear regime of small amplitude motions
allows us to determine the natural frequencies of the system, i.e. those frequencies at which
the system wants to naturally oscillate. To consider the small amplitude motions of the system,
we seek small velocity perturbations about a quiescent free-surface at y = H and hence the
governing shallow-water equations in each compartment reduce to

∂hj

∂t
+H

∂Uj

∂x
= 0,

∂Uj

∂t
+ g

∂hj

∂x
= −q̈ , (3.17)

for j = 1, 2, with the boundary conditions given by (2.13) and (2.14). The linearised form of
(2.14) for small velocities about a quiescent system is

U1(L1, t) = U2(L1, t) = −βg [h2(L1, t)− h1(L1, t)] , (3.18)

while the coupled linear vessel equation, linearised about q = 0 reduces to

d
dt

(
2∑

j=1

∫ xj

xj−1

ρHUj dx+ (mv +mf )q̇

)
+ νq = 0 . (3.19)

To identify the characteristic equation for this system of equations, we consider a normal mode
decomposition of the perturbation quantities, hence we let

hj(x, t) = ĥj(x)e
iωt + c.c, Uj(x, t) = Ûj(x)e

iωt + c.c, q(t) = q̂eiωt + c.c,

where c.c denotes the complex conjugate. This leads to the linearised set of equations

iωĥj +HÛjx = 0, iωÛj + gĥjx = ω2q̂,

for j = 1, 2, where here the subscripts denote partial derivatives. Eliminating ĥj from each pair
of equations leads to a governing equation for each Ûj as

Ûjxx + α2Ûj = −iωα2q̂,

where α2 =
ω2

gH
.

Solving this expression for j = 1, 2 gives

Û1 = A1 cosαx+B1 sinαx− iωq̂,
Û2 = A2 cosα(x− L) +B2 sinα(x− L)− iωq̂,

for unknown constants Aj , Bj . The two side-wall conditions from (2.13) imply that

A1 = A2 = iωq̂,

giving
Û1 = iωq̂ (cosαx− 1) +B1 sinαx,

Û2 = iωq̂ (cosα(x− L)− 1) +B2 sinα(x− L),
(3.20)
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while the second two equations lead to the pair of equations

B1 sinαL1 +B2 sinαL2 = iω(cosαL2 − cosαL1)q̂,(
sinαL1 −

iβω
α

cosαL2

)
B1 +

iβω
α

B2 = −iω(cosαL1 − 1)q̂ +
βω2

α
(sinαL1 + sinαL2)q̂,

where L2 = L− L1 is the length of the second compartment.

The case when sinαL1 = sinαL2 = 0 was examined in [11] and this case leads to symmetric
sloshing modes in a stationary vessel, i.e. modes which do not link to the vessel motion. For
the case when these quantities are non-zero the above pair of equations are solvable, giving

B1 =
1

α|∆0|2
[
βω2 tan

1
2
αL1 + tan 1

2
αL2

sinαL1

+i
(
ωα tan

1

2
αL1 +

β2ω3

α
tan

1

2
α(L1 + L2) (cotαL1 + cotαL2)

2

)]
q̂,

B2 = − 1

α|∆0|2
[
βω2 tan

1
2
αL1 + tan 1

2
αL2

sinαL2

+i
(
ωα tan

1

2
αL2 +

β2ω3

α
tan

1

2
α(L1 + L2) (cotαL1 + cotαL2)

2

)]
q̂,

where
∆0 = 1− iωβ

α
(cotαL1 + cotαL2) .

The linearised vessel equation gives a third equation linking B1, B2 and q̂. To evaluate this
equation we use the fact that∫ L1

0

Û1 dx =
iω
α
q̂ sinαL1 − iωL1q̂ +

B1

α
(1− cosαL1),∫ L1+L2

L1

Û2 dx =
iω
α
q̂ sinαL2 − iωL2q̂ −

B2

α
(1− cosαL2),

giving the third equation as

iωρH
α

(1−cosαL1)B1−
iωρH
α

(1−cosαL2)B2−
ω2ρH

α
(sinαL1+sinαL2)q̂+νq̂ = 0. (3.21)

Writing these three equations as a matrix system and solving for non-trivial solutions leads to a
characteristic equation of the form

−(ν − ω2mv)α
2

(
sinαL1 sinαL2 −

iβω
α

sinα(L1 + L2)

)
+2αρHω2(tan

1

2
αL1 + tan

1

2
αL2) sinαL1 sinαL2

−2iω3ρHβ (1− cosα(L1 + L2)) = 0. (3.22)

The above formulation gives the natural frequencies of the system. These natural frequencies
give the eigenbasis for the nonlinear formulation of the problem, i.e. nonlinear solutions are

8



superpositions of these linear eigenmodes. These linear solutions are also vital for providing
initial conditions allowing us to validate the numerical scheme against known results. We dis-
cuss the solutions to (3.22) in §5.1 to which there are an infinite number of modes, the lowest
frequency ones of which are plotted in figure 2.

4 Numerical Scheme for Nonlinear Simulations

The numerical scheme used to solve the governing shallow-water equations is based on a La-
grangian Particle Path (LPP) formulation [33], and is very similar to that laid out for the imper-
meable baffle problem in [34]. The reader is referred to [34] for more details of the formulation.

The LPP formulation comes from converting from Eulerian to Lagrangian coordinates via the
non-degenerate mapping

(τ, a) 7→ (t(τ), x(a, τ)) , with 0 ≤ a ≤ L , τ ≥ 0 , (4.23)

which when substituted into (2.11) and (2.12) gives

∂2x

∂τ 2
+

g
∂χ(j)

∂a(
∂x

∂a

)2 − gχ(j)(
∂x

∂a

)3

∂2x

∂a2
= −∂2q

∂τ 2
, (4.24)

for 0 < a < aB for j = 1 and aB < a < L for j = 2. Here aB is the unknown Lagrangian
coordinate which fixes the position of the baffle in the Eulerian framework and needs to be
determined as part of the solution. The vessel equation becomes

d2

dτ 2

(
2∑

j=1

∫ aj

aj−1

ρχ(j)xda+ (mv +mf )q

)
+ νq = 0 , (4.25)

where

χ(j)(a) = hj
∂x

∂a

∣∣∣∣
τ=0

, (4.26)

comes from the mass conservation equation and a0 = 0, a1 = aB and a2 = L. Here χ(j)(a) is
independent of τ and hence is fixed at τ = 0. From this equation we are able to determine the
free-surface elevation via hj = χ(j)/xa. In this LPP formulation the unknowns are x(a, τ) and
q(τ).

The above equations (4.24) and (4.25) in Lagrangian coordinates can be determined from a
variational principle from the Lagrangian (2.15) where we use (4.23) to convert the Lagrangian
to these Lagrangian coordinates. Converting the Lagrangian and performing a Legendre trans-
formation leads to a non-autonomous Hamiltonian functional

H (x, q, w, p, τ) =
2∑

j=1

∫ aj

aj−1

(
1

2
w2 + g

χ(j)

2
(
∂x
∂a

)) ρχ(j)da

+
1

2mv

(
p−

2∑
j=1

∫ aj

aj−1

wρχ(j)da

)2

+
1

2
νq2, (4.27)
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where the constraints hold and (x,w, q, p) are the canonical variables with momentum variables

w(a, τ) =
∂x

∂τ
(a, τ) +

∂q

∂τ
(τ), p(τ) =

2∑
j=1

∫ aj

aj−1

w(a, τ)ρχ(j)da+mv
∂q

∂τ
. (4.28)

The governing equations can be written in Hamiltonian form as

∂w

∂τ
= −δH

δx
=

−gχ
(j)
a(

∂x

∂a

)2 +
gχ(j)(
∂x

∂a

)3

∂2x

∂a2
,

0 < a < aB for j = 1
aB < a < L for j = 2,

∂x

∂τ
=

δH

δw
= w − 1

mv

p+
1

mv

2∑
j=1

∫ aj

aj−1

wρχ(j)da ,
0 < a < aB for j = 1
aB < a < L for j = 2,

∂p

∂τ
= −δH

δq
= −νq ,

∂q

∂τ
=

δH

δp
=

1

mv

p− 1

mv

2∑
j=1

∫ aj

aj−1

wρχ(j)da .


(4.29)

The impermeable side wall boundary conditions to be solved together with (4.29) are

x(0, τ) = 0, and x(L, τ) = L, ∀ τ, (4.30)

and

w(0, τ) = w(L, τ) =
1

mv

p− 1

mv

2∑
j=1

∫ aj

aj−1

w(a, τ)ρχ(j)da ∀ τ . (4.31)

For the conditions at the porous baffle, the transmission conditions are

x(aB, τ) = L1, ∀ τ (4.32)

and from (2.4)

γ

[
w(aB, τ)−

1

mv

p+
1

mv

2∑
j=1

∫ aj

aj−1

wρχ(j)da

]

+β

∣∣∣∣∣w(aB, τ)− 1

mv

p+
1

mv

2∑
j=1

∫ aj

aj−1

wρχ(j)da

∣∣∣∣∣
[
w(aB, τ)−

1

mv

p+
1

mv

2∑
j=1

∫ aj

aj−1

wρχ(j)da

]

+βγg

χ(2)

∂x

∂a

− χ(1)

∂x

∂a

 = 0, (4.33)

which implicitly gives an equation for the unknown variable w at a = aB. Equation (4.32)
essentially defines the position of the baffle aB in the Lagrangian framework. However, we
find the form (4.32) troublesome to work with, as aB needs to be found via interpolation which
introduces unnecessary errors. This can be overcome by forming an ODE for the value of aB(τ)
by differentiating (4.32) with respect to τ to give

∂x

∂τ
(aB, τ) +

∂aB
∂τ

∂x

∂a
(aB, τ) = 0.
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Using (4.29) we can then write this equation as

∂aB
∂τ

=

(
∂x

∂a

)−1
(
−w +

1

mv

p− 1

mv

2∑
j=1

∫ aj

aj−1

wρχ(j)da

)
at a = aB. (4.34)

Note that the introduction of the condition (4.33) means that this system, unlike the impermeable
baffle problem in [34], is no longer conservative and thus energy is not conserved. However, it
has been shown that symplectic integration schemes work very well for symplectic equations
with dissipative perturbations, even capturing the actual dissipation better than non-symplectic
schemes [38]. They have also been shown to be very efficient at preserving the energy budget
between the fluid and the vessel [33], hence we choose to use a symplectic scheme here.

4.1 The Semi-Discretization of (4.29)

The challenging numerical aspect of solving the system (4.29)-(4.34) is that the Lagrangian
coordinate aB is a function of τ , and so the domains on which the governing equations are
solved is not fixed. To overcome this we make the following change of variables to a fixed
domain in each region, namely

τ := τ, (4.35)

a :=

{
ξ1(τ)A

(1) for 0 ≤ A(1) ≤ 1,
aB(τ) + ξ2(τ)A

(2) for 0 ≤ A(2) ≤ 1
, (4.36)

where ξ1(τ) = aB(τ) and ξ2(τ) = L− aB(τ).

The domains A(1) and A(2) can then be regularly discretized by setting

A
(1)
i =

(i− 1)

N
, for i = 1, ..., N + 1,

A
(2)
i =

(i− 1)

M
, for i = 1, ...,M + 1,

where N and M are integers and we define ∆A(1) = 1/N and ∆A(2) = 1/M . Notationally we
write x

(j)
i (τ) := x(A

(j)
i , τ) and w

(j)
i (τ) := w(A

(j)
i , τ) where j = 1, 2 denotes the region of the

vessel.

The change of variables and discretization of the equations (4.29)-(4.34) is relatively straightfor-
ward, except for the wτ equation, which requires a variational discretization, where the Hamil-
tonian function (4.27) is first discretized and then variations of this are then taken. In this case,
following [33], these equations become

∂w
(1)
i

∂τ
− ξ1τA

(1)

ξ1

(
w

(1)
i+1 − w

(1)
i−1

2∆A(1)

)
=

ξ1g∆A(1)

2χ
(1)
i

(
(χ

(1)
i−1)

2

(x
(1)
i − x

(1)
i−1)

2
− (χ

(1)
i )2

(x
(1)
i+1 − x

(1)
i )2

)
,(4.37)

∂w
(2)
i

∂τ
− (aBτ + ξ2τA

(2))

ξ2

(
w

(2)
i+1 − w

(2)
i−1

2∆A(2)

)
=

ξ2g∆A(2)

2χ
(2)
i

(
(χ

(2)
i−1)

2

(x
(2)
i − x

(2)
i−1)

2
− (χ

(2)
i )2

(x
(2)
i+1 − x

(2)
i )2

)
,(4.38)
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Thus the full semi-discretization of the transformed equations are then given by (4.37) and
(4.38) together with

∂x
(1)
i

∂τ
− ξ1τA

(1)

ξ1

(
x
(1)
i+1 − x

(1)
i−1

2∆A(1)

)
= w

(1)
i − 1

mv

p+
1

mv

σ
(1)
N +

1

mv

σ
(2)
M ,

∂x
(2)
i

∂τ
− (aBτ + ξ2τA

(2))

ξ2

(
x
(2)
i+1 − x

(2)
i−1

2∆A(2)

)
= w

(2)
i − 1

mv

p+
1

mv

σ
(1)
N +

1

mv

σ
(2)
M ,

∂p

∂τ
= −νq ,

∂q

∂τ
=

1

mv

p− 1

mv

σ
(1)
N − 1

mv

σ
(2)
M ,


(4.39)

where i = 2, . . . , N for j = 1 and i = 2, . . . ,M for j = 2, and where

σ
(1)
N (τ) := ξ1

N∑
i=2

w
(1)
i ρχ

(1)
i ∆A(1) + 1

2
ρξ1

(
χ
(1)
1 w

(1)
1 + χ

(1)
N+1w

(1)
N+1

)
∆A(1) ,

σ
(2)
M (τ) := ξ2

M∑
i=2

w
(2)
i ρχ

(2)
i ∆A(2) + 1

2
ρξ2

(
χ
(2)
1 w

(2)
1 + χ

(2)
M+1w

(2)
M+1

)
∆A(2),

(4.40)

are the integral terms in (4.29) which have been discretized using the trapezoidal rule.

The semi-discretization of the side-wall boundary conditions are

x
(1)
1 (τ) = 0 , and x

(2)
M+1(τ) = L ,

and
w

(1)
1 (τ) = w

(2)
M+1(τ) =

1

mv

(
p− σ

(1)
N − σ

(2)
M

)
,

while at the porous baffle the conditions (4.32)-(4.34) are

x
(1)
N+1(τ) = x

(2)
1 (τ) = L1, (4.41)

w
(1)
N+1(τ) = w

(2)
1 (τ) = wB, (4.42)

∂aB
∂τ

= Γ−1

[
−wB +

1

mv

(
p− σ

(1)
N − σ

(2)
M

)]
, (4.43)

(4.44)

where wB is a solution of

γ(τ)

[
wB − 1

mv

(
p− σ

(1)
N − σ

(2)
M

)]
+β(τ)

∣∣∣∣wB − 1

mv

(
p− σ

(1)
N − σ

(2)
M

)∣∣∣∣ [wB − 1

mv

(
p− σ

(1)
N − σ

(2)
M

)]
+β(τ)γ(τ)g

(
ξ2χ

(2)
1 ∆A(2)

x
(2)
2 − x

(2)
1

− ξ1χ
(1)
N+1∆A(1)

x
(1)
N+1 − x

(1)
N

)
= 0, (4.45)
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and

Γ =
1

2

[
x
(1)
N+1 − x

(1)
N

ξ1∆A(1)
+

x
(2)
2 − x

(2)
1

ξ2∆A(2)

]
,

is the average of the
∂x

∂a
values at A(1) = 1 and A(2) = 0.

Under the change of variables (4.35) and (4.36), equation (4.26) no longer states that χ is inde-
pendent of τ , and in fact the conservation of mass equation now states that we must additionally
solve

∂χ
(1)
i

∂τ
− ξ1τA

(1)

ξ1

(
χ
(1)
i+1 − χ

(1)
i−1

2∆A(1)

)
= 0, i = 2, ..., N (4.46)

∂χ
(2)
i

∂τ
− (aBτ + ξ2τA

(2))

ξ2

(
χ
(2)
i+1 − χ

(2)
i−1

2∆A(2)

)
= 0, i = 2, ...,M, (4.47)

with the corresponding forward and backward forms of
∂x

∂a
to evaluate the four end points

i = 1, N + 1 for j = 1 and i = 1,M + 1 for j = 2. Now the free surface elevation is given by

hj(A
(j)) =

χ(j)

ξjx
(j)
A

,

for j = 1, 2.

4.2 Time Discretization using the Implicit Midpoint Rule

The semi-discretization of the governing equations above have the form

∂p

∂τ
= g (q,p) ,

∂q

∂τ
= f (q,p) , (4.48)

where

p = (p, w
(1)
1 , . . . , w

(1)
N+1, w

(2)
1 . . . , w

(2)
M+1),

q = (q, aB, x
(1)
1 , . . . , x

(1)
N+1, x

(2)
1 , . . . , x

(2)
M+1, χ

(1)
1 , . . . χ

(1)
N+1, χ

(2)
1 , . . . χ

(2)
M+1) .

We discretize τ such that τn = n∆τ where ∆τ is a fixed time-step, and introduce the notation
q(τn) = qn. Then, equations of this form can be integrated by applying the implicit midpoint
rule [38], which is second order accurate in time and discretizes the equations as

qn+1 = qn +∆τ f

(
qn + qn+1

2
,
pn + pn+1

2

)
,

pn+1 = pn +∆τg

(
qn + qn+1

2
,
pn + pn+1

2

)
.

(4.49)

The implicit nature of this algorithm means that larger time-steps, ∆τ , can be taken compared
to an explicit scheme, which helps in keeping the scheme computationally fast when weakly
nonlinear simulations are considered which require a higher spatial resolution.
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The system of nonlinear equations and boundary conditions (4.40)-(4.45) is a system of 3(N +
M) + 9 equations with 3(N +M) + 9 unknowns. We define the vector of unknown variables
at time τn as

Xn =
[
(x

(1)
1 )n, . . . , (x

(1)
N+1)

n, (x
(2)
1 )n, . . . , (x

(2)
M+1)

n, (w
(1)
1 )n, . . . , (w

(1)
N+1)

n, (w
(2)
1 )n, . . . , (w

(2)
M+1)

n,

(χ
(1)
1 )n, . . . , (χ

(1)
N+1)

n, (χ
(2)
1 )n, . . . , (χ

(2)
M+1)

n, anB, q
n, pn

]T
.

The system of nonlinear algebraic equations is solved using Newton’s method, where iterations
are continued until ||Xn+1 −Xn||2/||Xn+1||2 < 10−8.

5 Numerical Results

In this section we present numerical results to the nonlinear equations (4.39)-(4.45). One of the
limitations of the shallow-water model used in this paper is, for sloshing problems the equations
are only able to sustain a weak amount of nonlinearity before wave-breaking occurs. Thus we
are limited to parameter regimes where wave overturning does not occur and the nonlinearities
observed are weak. In cases where the scheme approaches breaking, the code breaks down due
to the free-surface becoming multiply defined. Therefore, we find that at most, our results are
weakly nonlinear. Hence we choose to fix γ(τ) = 1 in the nonlinear transmission condition
throughout this section, and find no quantitative difference to the results presented if this value
is significantly varied.

In all the results presented in this manuscript the parameters N, M and ∆τ , which govern the
resolution of the numerical scheme, were varied to ensure the presented results have converged.

5.1 Scheme Validation and Weakly Nonlinear Example

In this section we validate our numerical scheme by making direct comparisons with the linear
results presented in §3. Before we compare the numerical simulation results, we first consider
what frequencies of solution, ω = ωr + iωi, we expect to observe by solving the characteristic
equation (3.22). Note that the value of ωi denotes the exponential decay rate of the mode as
we only find solutions with ωi ≥ 0. In figure 2 we consider plots of ωr(β) and ωi(β) for (a,b)
L1 = L2 = 0.5m and (c,d) L1 = 0.25m, L2 = 0.75m with the other parameters given by

ρ = 1000 kgm−3, H = 0.05m, mv = 10 kg, ν1 = 70 kg s−2, q̂ = 5× 10−5m, (5.50)

with N = M = 100 and ∆τ = 10−3 s. The results show that those modes for which ωr varies
considerably as β → 0, also have the largest decay rates. The lowest frequency modes (labelled
1) are likely to be the modes observed in a physical system, as these modes typically decay the
slowest. More discussion on the modal results and how the various system parameters affect
these results can be found in [11], while more information on this type of eigenvalue spectrum
for similar coupled fluid/vessel systems without baffles can be found in [40, 41, 42, 43].

For the validation of our numerical scheme we consider three cases from figure 2, namely for
L1 = L2 = 0.5m we consider mode 1 when β = 0.508 sm−1, mode 6 when β = 0.995 sm−1
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Figure 2: Plots of (a,c) normal mode frequencies ωr(β) and (b,d) normal mode decay rates
ωi(β) from (3.22) for (a,b) L1 = L2 = 0.5m and (c,d) L1 = 0.25m, L2 = 0.75m. The
other parameters are fixed and given in (5.50). The circles at β = 0 signify modes which are
symmetric modes in a stationary vessel in this limit. Here β has units sm−1 and ωr, ωi have
units rad s−1.

and for L1 = 0.25m L2 = 0.75m, we consider mode 1 when β = 0.380 sm−1. For each of
these cases we consider the exact linear initial condition, namely

q(0) = q̂ + c.c, (5.51)

x(1)(A(1), 0) = ξ1A
(1) −

(
i
ω
Û1(ξ1A

(1)) + c.c.

)
, (5.52)

x(2)(A(2), 0) = aB + ξ2A
(2) −

(
i
ω
Û2(aB + ξ2A

(2)) + c.c.

)
, (5.53)

w(1)(A(1), 0) = Û1(ξ1A
(1)) + iωq̂ + c.c, (5.54)

w(2)(A(2), 0) = Û2(aB + ξ2A
(2)) + iωq̂ + c.c, (5.55)

p(0) = (imvωq̂ + c.c) +
2∑

j=1

∫ 1

0

ξjw(A
(j), 0)ρH dA(j), (5.56)

aB(0) = L1 − x(1)(1, 0), (5.57)

where Ûj are given in (3.20) for j = 1 and j = 2. The c.c. denotes the complex conjugate.
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Figure 3: Plots of the vessel displacement q(t) and Lagrangian coordinate value at the baffle
aB(t) − L1 for the parameters in (5.50) with (a,b) L1 = L2 = 0.5m and (c) L1 = 0.25m,
L2 = 0.75m. In (a) β = 0.508 sm−1 and ω = 1.027 + 0.032i rad s−1, in (b) β = 0.995 sm−1

and ω = 10.225 + 2.529i rad s−1 and in (c) β = 0.380 sm−1 and ω = 1.019 + 0.023i rad s−1.
Here t has units of s while q and aB − L1 have units of m.

In figures 3-6 we compare the numerical (solid black lines) and the exact analytical results
(dashed red lines) for the three cases noted above. In all cases, the exact and analytical results for
the vessel displacement q(t) and the free-surface elevations h(x, t) are in excellent agreement.
Note that we plot our results in terms of the Eulerian variables (x, t) as these are more intuitive
than (A(j), τ). In this linear case t = τ and x = [ξ1A

(1), (aB + ξ2A
(2))]. The mode 6 result has

ω = 10.225+2.529i rad s−1 and so decays very quickly compared to the other two cases where
ω = 1.027 + 0.032i rad s−1 and ω = 1.019 + 0.023i rad s−1 respectively. However, even in
this case the agreement for q(t) and aB(t)− L1 in figure 3(b) is excellent. For the free-surface
profiles, h(x, t), in figure 5 we see some numerical round off errors in the black numerical
results, but the overall agreement is still excellent.

As q̂ is increased the problem becomes more nonlinear, however the parameter window to ob-
serve the nonlinearity is limited, because if we increase q̂ too much, then we get wave breaking
and the numerical scheme breaks down. Hence we can only realistically model weakly nonlin-
ear situations with this scheme, which we consider in figures 7 and 8 with q̂ = 0.05m. In these
figures the spatial resolution has been increased to N = M = 400 to give converged results.

In figure 7 we consider the evolutions of q(t) and aB(t) where we have subtracted off the
equivalent linear solution functions. The results show small O(q̂2) corrections to these values,
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Figure 4: Free-surface profiles h(x, t) for the case 1 in figure 3(a,b) at t =
7.5, 15, 22.5, 30, 37.5, 45, 52.5 and 60 s respectively. Here h and x have units of m.
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Figure 5: Free-surface profiles h(x, t) for the case 6 in figure 3(a,b) at t =
0.6, 1.3, 1.9, 2.5, 3.1, 3.8, 4.4 and 5 s respectively. Here h and x have units of m.
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Figure 6: Free-surface profiles h(x, t) for the case 1 in figure 3(c,d) at t =
7.5, 15, 22.5, 30, 37.5, 45, 52.5 and 60 s respectively. Here h and x have units of m.
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Figure 7: Plots of the nonlinear vessel displacement from the linear result q(t) − qlinear(t) and
the nonlinear Lagrangian coordinate value at the baffle difference aB(t) − alinearB (t) for the
parameters in (5.50) with L1 = L2 = 0.5m, β = 0.2, sm−1 and q̂ = 0.05m and with the
resolution N = M = 400. Here t has units of s while q and aB have units of m.

with higher frequency oscillations appearing for the duration of the simulation. We saw in
figure 2 that these higher frequency modes typically have faster decay rates than the lowest
frequency mode and so these modes decay away as time evolves. The nonlinear terms grow
in magnitude over t ∈ [0, 50] s before decaying as the porous baffle removes the energy from
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the system. The weakly nonlinear free-surface profiles in figure 8 also show the presence of
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Figure 8: Free-surface profiles h(x, t) for the case in figure 7 at t =
12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5 and 100 s respectively and with the resolution
N = M = 400. Here h and x have units of m.

nonlinear oscillations, and in these appear to persist throughout the whole simulation.

Now that the numerical scheme is validated, we go on to highlight an interesting mode switching
phenomena in the next section, before investigating the effects on the system of incorporating a
baffle with time-dependent porosity.

5.2 Mode Switching Phenomena as H → 0

In the zero-baffle problem considered by [44] they found a curious feature of the system where
the dominant behaviour in the system switches to ever higher frequency modes, as the fluid
depth H → 0, in order that the correct dry vessel oscillation frequency is achieved in the H = 0
limit. In the porous baffle case we would expect the same behaviour to occur, but it is less
clear as to how the decay rate of the system would behave as this limit is approached. This is
investigated in this section.

The problem [44] considered is slightly different to that in figure 1, and actually comprises of
a vessel hung as a bifilar pendulum with string lengths l, see figure 9, where here q(t) denotes
the angle of the string to the vertical. However, in the linear regime, where this mode switching
phenomena is observable, both problems are identical if the linear spring coefficient is allowed
to vary with mf (H) via

ν =
g

l
(mv +mf ). (5.58)
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q(t) l

L1 L2

Figure 9: Schematic diagram of the bifilar pendulum problem considered by [44], with the
addition of a porous baffle at x = L1, which demonstrates the model switching phenomena
examined in §5.2. In the linear regime this problem is equivalent to that in figure 1 with ν =
g

l
(mv +mf ).

We use (5.58) together with the system parameters

ρ = 1000 kgm−3, mv = 16 kg, L1 = 0.25m, L2 = 0.25m, q̂ = 5×10−5m, β = 1.0 sm−1,
(5.59)

with N = M = 100 and ∆τ = 10−3 s, which match those parameters used by [44] in their
calculation. In this section we consider an initial condition such that

q(0) = q̂ + c.c.,

x(1)(A(1), 0) = ξ1A
(1),

x(2)(A(2), 0) = aB + ξ2A
(2),

w(j)(A(j), 0) = 0, for j = 1, 2

p(0) = 0,

aB(0) = L1.

This initial condition is one which is more readily observed in an experimental setup, and com-
prises of a condition where the vessel is displaced from its equilibrium position, extending the
spring or placing the hanging string at a non-zero angle, and then being released from rest. The
solution in this case comprises of a superposition of all the modes of the system, with differing
amplitudes.

We conduct a series of numerical simulations and from each of these we consider the values of
ωr and ωi as a function of mf/mv (which is equivalent to varying H for fixed mv, ρ, L1 + L2)
in figure 10. In this figure the five black lines signify the values of the five lowest frequency
modes found by solving the characteristic equation (3.22), while the circles are estimates taken
from the numerical simulations. The dashed line is the dry vessel frequency

√
g/l, and hence

is the system frequency at mf = 0.
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Figure 10: Plot of (a) the normal mode frequencies ωr(mf/mv) and (b) the normal mode decay
rates ωi(mf/mv) for the system parameters given (5.59). The black lines give the exact values
from solving the characteristic equation (3.22) while the circles are results of the numerical
simulations. Here mv and mf have units kg and ωr, ωi have units rad s−1.

To calculate the values of the circles we compute the vessel motion q(t) from t = 0 to t = 10 s.
We then use the MATLAB subroutine findpeaks to identify the local maxima of this function,
and then use each pair of successive maxima to estimate a value for ωr and ωi. We denote the
numerical estimates by ωnum

r and ωnum
i respectively. Finally we average these values over all

maxima in [0, 10] s to get the estimate value we plot in figure 10.

These numerical results show the frequency of the simulations switching from the mode labelled
1 to the mode labelled 2 around mf/mv ≈ 0.6. The peculiar feature of the result here is
that this transition does not occur exactly at the point where the two ωi values intersect. The
numerical results follow mode 1 beyond this point (mf/mv ≈ 0.7) and then switch. What
this switching actually amounts to is the time-dependent amplitude of the modes switching
dominance, such that mode 2 has the largest amplitude for mf/mv ≲ 0.5, as the numerical
solution is a superposition of all these modes. As mf/mv is reduced below 0.5, eventually the
numerical results agree with the dry vessel result given by the dashed line. The decay rate of
the solution reduces as mv/mf → 0, but very close to zero (mf/mv ≈ 0.04) there is a small
increase in ωi before going to zero in the dry vessel limit.

This mode switching in the function q(t) can be seen in figure 11. In figure 11(a) the value
of mf/mv = 1.0 and it is clear that the frequency and decay rate agree very well with the
exact linear result of mode 1, given by the red dashed line. For mf/mv = 0.5 in figure 11(b)
we are in the transition region between the two modes and clearly there are oscillations of a
shorter wavelength (larger ωr) emerging, but there is a modulation similar to the frequency of
the mode 1 result. Then at mf/mv = 0.25 in figure 11(c) it is clear that both ωr is larger and
ωi is smaller and in this figure the red dashed line gives the exact result for mode 2, showing
excellent agreement.

Such a switching phenomena could be significant in oscillating systems where the fluid is slowly
being drained out. In such cases, being able to change the porosity of the baffle remotely might
then be desirable, in order to control the system. In the next section we consider baffles with
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Figure 11: Plot of the vessel displacement q(t) for the system parameters in (5.59) for (a)
mf/mv = 1, (b) 0.5 and (c) 0.25. The black lines are the result of the numerical simulations,
while the red dashed lines are the exact linear result for the mode labelled 1 in figure 10(a,b)
and for the mode labelled 2 figure 10(c). Here t has units s and q has units m.

time-dependent porosity to try to understand how such systems behave, and whether they allow
for the system to be controlled.

5.3 Time-Dependent Baffle Porosity

In this section we again consider the system from figure 1, but we investigate the effect of
prescribing the porosity of the baffle to vary with time. Such a baffle could consist of a regular
holed slat screen [29], where the holes are mechanically opened and closed in some prescribed
manner. The interest in this problem is to try and understand how the system behaves, with the
main interest in whether the decay rate of the system can be increased from the maximum decay
rate for the lowest frequency mode, by periodically oscillating the baffle’s porosity.

For the results in this section we again consider the system parameters (5.50) with L1 = L2 =
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0.5m and q̂ = 5× 10−4m. We consider five periodic forms for

β(τ) =

{
0 τ < Ton

β1−5(τ) τ ≥ Ton
(5.60)

where

β1(τ) = tanh−1

[
1

2
(1− cos (Ω (τ − Ton)))

]
, (5.61)

β2−5(τ) =
A

2
(1− cos (Ω (τ − Ton))) , (5.62)

with the constant amplitudes A = A2 = 2 sm−1, A3 = 1 sm−1, A4 = 4 sm−1 and A5 =
0.5 sm−1.
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τ − Ton

β

1

2

3

4

5

Figure 12: Plot of different porosity functions β1−5(τ) which are labelled from 1-5 respectively.
Here τ has units s, and β has units sm−1.

The forms of these functions are plotted in figure 12. The function β1(τ) is chosen as it uses
the whole range of value of β ∈ [0,∞), while for β2−5(τ) the time variations are a simpler
periodic function with constant amplitude, and hence are more likely to be manufacturable and
implementable.

In figure 13 we consider the numerical decay rate ωnum
i for simulations with β = β1(τ), in

the (Ω, Ton)-plane. The values of ωnum are calculated as in §5.2 except here we average over
the time period τ ∈ [0, 100] s. The black contour corresponds to the maximum linear decay,
ωmax
i = 0.03218 rad s−1, rate for a fixed baffle with β = βmax = 0.508 sm−1. The lighter

regions (green-yellow) signify parameter regions where the system decay rate is above ωmax
i , i.e.

the system decays faster than would be seen in a system with a fixed baffle with β = βmax. What
this figure shows is at low frequencies Ω ≲ 8 s−1 there is some dependence on the Ton value
when the baffle porosity switches on, but above this frequency the results are independent of this
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Ω

Ton

Figure 13: Contour plot of the numerical decay rate ωnum
i in the (Ω, Ton)-plane for the system

parameters (5.50) with L1 = L2 = 0.5m and q̂ = 5 × 10−4m and porosity function β1(τ).
The black contours gives the value ωi = ωmax

i which is the maximum linear decay rate for the
system if the baffle has β = βmax. Here Ω has units s−1, Ton has units s and ωi has units rad s−1.

value. The system results fall into stripes of regions with ωnum
i > ωmax

i and ωnum
i < ωmax

i . There
is no pattern for the sizes of these regions, but it appears that the peak values of ωnum

i > ωmax
i

increase with Ω. The largest peaks we find have ωnum
i ≈ 0.057 rad s−1 around Ω = 25 s−1,

which is approximately to 80% larger than ωmax
i .

What we believe is happening here is a resonance between β(τ) and the frequency ωr(τ) of the
dominant mode in the system. If the two values of these are such that the velocity of the fluid
is relatively low at the baffle when the baffle is closed or partially open, then very little energy
is removed from the system (hence a low ωnum

i ), whereas if the velocity at the baffle is high at
these times then the energy removed is larger (hence higher ωnum

i ).

In figure 14 we consider plots of ωnum
i (Ω) for fixed Ton = 2 s for β1(τ) to β5(τ). For the β1(τ)

case in figure 14(a) this corresponds to a horizontal slice though figure 13. This figure shows
clearly those values of Ω where ωnum

i > ωmax
i and it is clear that the magnitude of the peak decay

rate increases with Ω. When we consider β2(τ) in figure 14(b) we find that overall, the decay
rate is lower, with no significant frequencies with ωi > ωmax

i until Ω > 10 s−1, and even then,
these regions are small. It is again true that the magnitude of the peak decay rate increases with
Ω. For β3 and β4 in panels (c) and (d) the amplitude of the porosity function is, on the whole,
smaller and larger respectively than β2. What is curious is that the smaller amplitude case in (c)
has significant values of Ω where ωnum

i > ωmax
i , whereas the larger amplitude function in (d)

has predominantly ωnum
i < ωmax

i . The reason for this could be down to the fact that β1(τ) and
β3(τ) have a similar asymptotic behaviour close to τ − Ton = 2nπ/Ω, n ∈ Z, as can be seen
in figure 12. Overall, the peak values of ωnum

i are smaller in figure 14(c) than figure 14(a), and
so opening up the baffle completely (β → ∞) is important, but the most significant aspect is
the rate at which the baffle is opened from the closed (β = 0) position. In figure 14(e) where
A = A5 = 0.5 sm−1 we see that the decay rate drops again and ωnum

i < ωmax
i for all values of
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Figure 14: Plot of the numerical decay rate ωnum
i as a function of the time dependent porosity

function frequency Ω from simulations with system parameters (5.50), L1 = L2 = 0.5m,
Ton = 2 s and porosity functions (a) β1(τ), (b) β2(τ), (c) β3(τ), (d) β4(τ) and (e) β5(τ). The
black dashed line gives the value ωi = ωmax

i which is the maximum linear decay rate for the
system if the baffle has β = βmax. Here Ω has units s−1, and ωi has units rad s−1.

Ω here.

While the porosity function β1 appears to perform the best at controlling the decay rate of the
coupled system, it is unlikely that such a baffle could be manufactured which has β ∈ [0,∞),
and it is more likely that a mechanical system with a more sinusoidal porosity would be possible.
To this end we examine the porosity function (5.62), but we allow A to vary in figure 15 for
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Figure 15: Plot of the numerical decay rate ωnum
i as a function of the time dependent porosity

function amplitude A for the system parameter (5.50), L1 = L2 = 0.5m and the porosity
function β2−5(τ) in (5.62) with (a) Ω = 5 s−1 and (b) Ω = 25 s−1. The black dashed line gives
the value ωi = ωmax

i which is the maximum linear decay rate for the system if the baffle has
β = βmax. Panels (c) and (d) give plots of the corresponding q(τ) figures for cases (Ω, A) =
(0, 0.508) - red dashed line, (5, 1.2) - blue dot-dashed line and (25, 2) - black line. Here A has
units sm−1, ωi has units rad s−1, τ has units of s and q has units of m.

Ton = 2 s and (a) Ω = 5 s−1 and (b) Ω = 25 s−1. The results from figure 14 suggested that there
is an amplitude value for which ωnum

i is maximised for each Ω, and this appears to be the case
in figure 15. In panel (a) we find ωnum

i > ωmax
i for A ∈ [0.7, 1.76] sm−1 with maximum decay

rate ωnum
i = 0.0358 rad s−1 at A = 1.2 sm−1. For the more rapidly varying baffle in figure

15(b), the range of amplitudes where ωnum
i > ωmax

i increases to A ∈ [0.64, 6.40] sm−1 and the
maximum value ωnum

i = 0.059 rad s−1 occurs at A = 2 sm−1. In this case the maximum decay
rate is 86% larger than the dashed line result. In figure 15(c) we consider the evolution of q(τ)
for the case when β = βmax and the two amplitudes giving the maximum values of ωnum

i in
panels (a) and (b). The results demonstrate the faster decay rate of the time-dependent baffle,
in particular highlighting the significant decay of the system for Ω = 25 s−1 (black line). Panel
(d) gives a zoomed in plot of the final 50 seconds of the simulation where the changes in vessel
amplitude are more clearly observed.

When we consider a larger range of (Ω, A) values in figure 16, we see that the largest decay
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Figure 16: Contour plot of the numerical decay rate ωnum
i as a function of the time dependent

porosity function parameters (Ω, A) for the system parameters (5.50), L1 = L2 = 0.5m and
Ton = 2s. The black contours gives the value ωi = ωmax

i which is the maximum linear decay
rate for the system if the baffle has β = βmax. Here Ω has units s−1, A has units sm−1 and ωi

has units rad s−1.

rates are concentrated in small regions of Ω around Ω = 15 s−1 and Ω = 25 s−1 with the peak
amplitudes close to A = 2 sm−1, akin to the figure 15(b) result. As well as the small regions
of large decay rates, there are also larger regions, which are periodic in Ω, for amplitudes
A ∈ [1, 2]m s−1. These regions are more akin to the result in figure 15(a) where the maximum
decay rate is only about 20− 25% larger than the dashed line. What these results show is that it
is entirely possible to control the decay rate of the coupled sloshing system in figure 1 using a
time-dependent baffle, at least at the lower fluid velocities considered here, where (2.14) is valid.
Clearly, changing the porosity value of the baffle from one constant value to another constant
value is one way to control the system, but if you wish to damp out the system oscillations faster
than would occur with a fixed baffle, then periodically oscillating the porosity of the baffle is
the best approach, although the amount of variation and the frequency of the variation depends
carefully upon the parameters of the system.

6 Conclusions

In this work we considered the coupled vessel-fluid dynamic system. In the system a rectangular
vessel partially filled with an inviscid incompressible fluid was allowed to move in a rectilinear
motion connected to a linear spring, and the fluid was allowed to slosh back and forth in the
vessel. The fluid and the vessel exhibit forces on one another, giving complex coupled motions.
The main focus of this paper was to model these complex motions when a vertical, surface-
piercing, porous baffle is inserted into the vessel, which was found to extract energy from the
system causing the motion to decay in time. The fluid transmission condition at the baffle
was modelled using a nonlinear Darcy-Forchheimer model to more accurately deal with the
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nonlinearity of the porous baffle in weakly nonlinear scenarios.

The complex motion was determined numerically via a fast and efficient numerical scheme
which approximated the fluid layer as a shallow-water fluid and used a Lagrangian Particle Path
approach. This approach was used together with a symplectic time-integration scheme based on
the implicit-mid-point rule as this approach preserved the energy partition between the vessel
and the fluid and effectively captured the dissipation. The implicit nature of the scheme also
allowed for larger time-steps than an explicit scheme, such as Störmer-Verlet. Using an implicit
scheme is beneficial because a larger time step can be used (typically 10-100 times larger than
for an explicit scheme) which, despite the added iterations of the implicit scheme, generally
make it faster than an explicit scheme.

Results were presented for a single baffle system, which splits the vessel into two compartments,
in both the linear and weakly nonlinear regimes and excellent agreement was found with the
exact linear solution for various test cases. Simulations were presented for a scenario where the
baffle was assumed to mechanically open and close, such that its porosity properties varied in a
time-periodic manner. It was shown that under such circumstances the average decay rate of the
system over a fixed period of time, can be larger than the maximum decay rate for the lowest
frequency solution for a fixed porosity baffle. This showed that time-dependent baffles are an
effective mechanism to control the decay rate of the coupled system.
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A Energy Dissipation of System

In this appendix we demonstrate the energy dissipation properties of the porous baffle by show-
ing that the total energy (2.16) is a decreasing function with time. Before going on to show this
we first find it convenient to re-express the integral term in (2.12). We can show using (2.11)
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that

d
dt

2∑
j=1

∫ xj

xj−1

ρhjUj dx, =
2∑

j=1

∫ xj

xj−1

ρ [hjUjt + hjtUj] dx,

=
2∑

j=1

∫ xj

xj−1

ρ [−hj(UjUjx + ghjx + q̈)− Uj(hjUj)x] dx,

= −
2∑

j=1

∫ xj

xj−1

ρ

[
(hjU

2
j )x +

1

2
g(h2

j)x + hj q̈

]
dx,

= −mf q̈ −
2∑

j=1

∫ xj

xj−1

ρ

[
(hjU

2
j )x +

1

2
g(h2

j)x

]
dx,

and so (2.12) can be expressed as

mv q̈ + νq =
2∑

j=1

∫ xj

xj−1

ρ

[
(hjU

2
j )x +

1

2
g(h2

j)x

]
dx. (A-1)

To show that the baffles are dissipative we note that

dE
dt

=
2∑

j=1

∫ xj

xj−1

[
1

2
hjt(Uj + q̇)2 + hj(Uj + q̇)(Ujt + q̈) +

1

2
ghjhjt

]
ρ dx+ (mv q̈ + νq) q̇,

=
2∑

j=1

∫ xj

xj−1

[
1

2
(hjU

3
j )x + q̇2(hjUj)x + g(h2

jUj)x

]
ρ dx,

=
1

2
h2(L1, t)U2(L1, t)

[
U2(L1, t)

2 + q̇2
]
+ gh2(L1, t)

2U2(L1, t)

−1

2
h1(L1, t)U1(L1, t)

[
U1(L1, t)

2 + q̇2
]
+ gh1(L1, t)

2U1(L1, t), (A-2)

after using (A-1), (2.11) and integrating with respect to x. Here we have used the fact that
x1 = L1 and that U1(x0 = 0, t) = U2(x2 = L, t) = 0.

In order to demonstrate that the quantity on the right-hand-side is negative, we consider two
limits of (2.13), the small velocity limit and the large velocity limit, with the understanding that
the general case lies in between.

A.1 Small velocity case

In this case (2.13) simplifies to (3.18) which upon insertion to (A-2) gives

dE
dt

= −1

2
βg[h2(L1, t)−h1(L1, t)]

2

(
q̇2+β2g2[h2(L1, t)−h1(L1, t)]

2+2g[h2(L1, t)+h1(L1, t)]

)
.

This term is clearly negative definite and hence the baffle is dissipative.
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A.2 Large velocity case

In this case (2.13) simplifies to

|U1(L1, t)|U1(L1, t) = |U2(L1, t)|U2(L1, t) = −γg[h2(L1, t)− h1(L1, t)].

Hence from this we deduce that

|Uj| =
√

γg|h2(L1, t)− h1(L1, t)|,

and thus

Uj = −
√

γg

|h2(L1, t)− h1(L1, t)|
[h2(L1, t)− h1(L1, t)],

for j = 1, 2.

Inserting this into (A-2) gives

dE
dt

= −1

2

√
γg

|h2(L1, t)− h1(L1, t)|
[h2(L1, t)− h1(L1, t)]

2

(
q̇2

+
γg

|h2(L1, t)− h1(L1, t)|
[h2(L1, t)− h1(L1, t)]

2 + 2g[h2(L1, t) + h1(L1, t)]

)
,

which is again negative definite.
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