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– Abstract –

The coupled motion of shallow-water sloshing in a horizontally
translating upright annular vessel is considered. The vessel mo-
tion is restricted to a single space dimension, such as for Tuned
Liquid Damper systems. For particular parameters, the system
is shown to support an internal 1 : 1 resonance, where the fre-
quency of coupled sloshing mode which generates the vessel motion
is equal to the frequency of a sloshing mode which occurs in a
static vessel. Using a Lagrangian Particle Path formation, the fully
nonlinear motion of the system is simulated using an efficient nu-
merical symplectic integration scheme. The scheme is based upon
the implicit-midpoint-rule which conserves energy and preserves the
energy partition between the fluid and the vessel over many time-
steps. Linear and nonlinear results are presented, including those
showing the system transitioning to higher frequency eigenmodes
as the fluid depth is reduced.

— September 2, 2019—

1 Introduction

Liquid sloshing within a vessel which is prescribed to move in some given time-dependent
way has long been a subject of interest within areas of science and technology. One of the
original motivations for the study of this topic was to investigate the stability of space
craft or rocket propelled missiles [1, 2, 3]. Other studies have considered engineering
motivations such as maritime and terrestrial fluid transport and fuel tank storage under
earthquake excitement. For an extensive review of these topics the reader is directed to
[4, 5] and the references therein.

In this article we focus on the problem of a dynamically coupled vessel/fluid problem.
In this case the vessel motion is not given a priori, instead the fluid and vessel motions

1Corresponding Author: m.turner@surrey.ac.uk
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are solved simultaneously, and are intrinsically coupled through the pressure force due to
the fluid impacting on the vessel walls. The first investigation of a dynamically coupled
sloshing problem was by [6], who considered a vessel partially filled with fluid, attached
to a rigid pole anchored at one end about which it rotates, the so called ‘pendulum slosh
problem’ [7, 3, 8]. The pendulum provides a restoring force on the vessel, forcing the
fluid into motion, which in turn modifies the vessel motion via the hydrodynamic force it
generates on the vessel walls. However, the rotary motion of the vessel makes the problem
difficult to theoretically study. Cooker [9] modified this experiment to a bifilar pendulum
attached to a rectangular vessel. Here the difference is that the base of the vessel re-
mains level throughout the motion so the fluid can be considered as irrotational. Cooker
constructed a shallow-water theory for this system with linear (small amplitude) vessel
displacements in order to determine the natural characteristic frequencies of the system.
The experimental and shallow-water theory of this paper were extended by [10, 11] and
[12] who studied multi-compartment rectangular vessels, an upright cylindrical vessel and
an upright wedge, all suspended as bifilar pendulums. For the rectangular and cylindrical
vessel problems, [13] formulated the finite-depth potential theory in order to identify the
effect of the evanescent waves on the solution. In the case of an infinite length bifilar
pendulum, the vessel becomes free to move due solely to the forces generated by the fluid
on the walls, without any additional restoring force. Herczyński & Weidman [14] ana-
lytically and experimentally examined this limit for various vessel geometries, including
rectangular boxes, upright cylinders, wedges, cones and upright cylindrical annuli.

The upright annular vessel has had little attention in studies when compared to the
upright cylindrical vessel, say. However, annular vessels have been associated with tuned
liquid dampers (TLDs) which are used in skyscrapers and wind turbines to damp out
oscillations caused by strong winds [15]. In a TLD the vessel is constrained to move in
a single horizontal direction with the vessel motion restored by a spring-mass-damper
model. Neglecting the damping element, the model equations for the TLD are identical
to that for the Cooker experiment in the linear, small amplitude limit [16]. Faltinsen
et al. [17] considered a nonlinear theoretical and numerical study of the forced annular
vessel with resonant forcing frequencies close to the lowest natural sloshing frequency
for sloshing in a stationary vessel. They identified bifurcations where the fluid motion
changed behaviour between planar sloshing, swirling and irregular sloshing motions. An
annular vessel was also considered by [18] who calculated the natural sloshing frequencies
in a stationary vessel when a rigid annular baffle is included at the free-surface. The study
in this current article is the first such study to consider dynamically coupled sloshing in
an annular vessel.

In this current work we identify two areas of interest, namely we identify the existence
of the 1 : 1 resonance between the coupled eigenmodes and the eigenmodes in a stationary
vessel, and we perform nonlinear shallow-water simulations. Alemi Ardakani et al. [16]
showed for a rectangular vessel that the characteristic equation for the linear system takes
the form ∆(ω) = P (ω)D(ω) , where ω is the characteristic natural frequency, D(ω) is
the characteristic equation for the coupled modes and P (ω) is the characteristic equation
for the natural sloshing frequencies in a stationary vessel. The natural frequencies for
the system come from solving ∆(ω) = 0, and if D(ω) = P (ω) = 0 (with D′(ω) 6= 0
and P ′(ω) 6= 0) then a 1 : 1 resonance occurs between the coupled modes and the
modes in the stationary vessel. Such resonances are of practical interest, as close to these
points the nonlinear system has multiple bifurcations of the periodic orbits which can

2



lead to chaotic dynamics, such as in the Faraday problem [19]. Turner & Bridges [20]
demonstrated for the Cooker experiment the existence of a heteroclinic orbit, for one fluid
depth, which linked the coupled and stationary-vessel modes, allowing them to exchange
energy, ultimately producing interesting system dynamics.

In this paper we present nonlinear simulations of the coupled annular system, assuming
that the fluid is a shallow-layer. In this case we can utilize the Lagrangian Particle Path
(LPP) formulation of the problem, first developed by [21] for dynamic sloshing problems,
to construct an accurate numerical scheme. The scheme uses the fact that the problem
has a Hamiltonian structure, which lends itself to being numerically integrated via a
geometric integration scheme, such as the implicit-midpoint-rule [22, 23]. Such schemes
conserve the symplectic structure of the system and also preserves the energy partition
between the fluid and the vessel, preventing a slow unphysical leaking of energy from the
vessel to the fluid over time. This numerical approach has been applied successfully to
related coupled sloshing problems [24, 25, 26].

The current paper is structured as follows. In §2 we derive the governing nonlinear,
finite-depth equations for the system, while in §3 we take the shallow-water limit of these
equations and formulate their LPP representation. In §4 we investigate the linear modal
solutions, derive the characteristic equation, and present results for the characteristic
frequencies and the existence of the 1 : 1 resonance. In §5 we present the symplec-
tic numerical scheme for solving the shallow-water system along with nonlinear results.
Conclusions and discussion are given in §6.

2 Governing Nonlinear Equations

We consider the coupled sloshing motion of an inviscid, incompressible fluid, of density
ρ , in an upright annular cylinder with mass mv , which is constrained to translate in the
horizontal X -direction and is connected to a solid wall by a nonlinear spring. See figure
1 for a schematic diagram of the setup. Here (X, Y, Z) is a fixed Cartesian coordinate
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Figure 1: Schematic diagram of the dynamic coupling between fluid sloshing and the
motion of an annular vessel.

system with Z pointing vertically upwards, which is related to a cylindrical polar coor-
dinate system (r, θ, z) moving with the vessel. The two coordinate systems are related
via

X = R2 + ℓ+ q(t) + r cos θ, Y = r sin θ, Z = z, (2.1)
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where q(t) is the displacement of the vessel from its equilibrium position and ℓ is the
natural length of the spring. The annular vessel has impermeable walls at r = R1 and
r = R2 > R1 and a flat impermeable bottom at z = 0, such that the fluid occupies the
region

R1 ≤ r ≤ R2, 0 ≤ θ < 2π, 0 ≤ z ≤ h(r, θ, t).

Here h(r, θ, t) is the position of the unknown free-surface which needs to be determined
as part of the solution, and t is time.

The governing nonlinear equations for the fluid motion are the Euler equations in the
moving frame, coupled to the vessel motion which is modelled as a nonlinear Duffing
oscillator. The Euler equations for a velocity field with components (ur, uθ, uz) relative
to the polar coordinates (r, θ, z) are

Dur

Dt
− u2

θ

r
+

1

ρ

∂p

∂r
= −q̈ cos θ, (2.2)

Duθ

Dt
+

uruθ

r
+

1

rρ

∂p

∂θ
= q̈ sin θ, (2.3)

Duz

Dt
+

1

ρ

∂p

∂z
= −g, (2.4)

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z
= 0, (2.5)

where g is the gravitational acceleration constant acting in the negative z -direction,

D

Dt
=

∂

∂t
+ ur

∂

∂r
+

uθ

r

∂

∂θ
+ uz

∂

∂z
,

and the overdots denote full derivatives with respect to t . Equations (2.2)-(2.5) are the
polar, three-dimensional analogue of the equations given in [21], where the cos θ and sin θ
terms on the right-hand-side give the projection of the horizontal vessel acceleration in
the radial and azimuthal directions respectively. If one were to assume an irrotational
motion and introduce a streamfunction, then (2.2)-(2.5) reduce to equations (23)-(26) in
[13]. The boundary conditions on the impermeable walls are

ur = 0 on r = R1, R2 and uz = 0 on z = 0, (2.6)

while on the free-surface the kinematic and dynamic boundary conditions are

∂h

∂t
+ ur

∂h

∂r
+

uθ

r

∂h

∂θ
= uz and p = 0 on z = h(r, θ, t). (2.7)

The governing equation for the rectilinear translation of the vessel can be derived by
considering the reduced Lagrangian approach as outlined in Appendix A of [16]. Via this
approach the resulting nonlinear equation is

(mv +mf)q̈ + νq − µq3 = − d

dt

∫ R2

R1

∫ 2π

0

∫ h(r,θ,t)

0

ρ [ur cos θ − uθ sin θ] r dz dθ dr, (2.8)

where mf =
∫ R2

R1

∫ 2π

0

∫ h(r,θ,t)

0
ρ r dz dθ dr = πρ(R2

2 − R2
1)h is the mass of the fluid, and ν

and µ are the linear and nonlinear spring coefficients respectively. Note that the RHS
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of (2.8), together with the mf q̈ term, is equivalent to the hydrodynamic force on the
walls (r = R1, R2) of the vessel from the fluid, which can be shown using the Reynolds
Transport Theorem

mv q̈ + νq − µq3 =

∫ 2π

0

∫ h(r,θ,t)

0

cos θ
(
p|r=R2

R2 − p|r=R1
R1

)
dzdθ.

We reformulate the governing equations in terms of velocities along the free-surface,
as [21] show that these equations can readily be reduced to a shallow-water system, where
the free-surface velocities are new shallow-water variables. On the free-surface we define
the free-surface fluid velocities to be

Ur = ur(r, θ, h(r, θ, t), t), Uθ = uθ(r, θ, h(r, θ, t), t), Uz = uz(r, θ, h(r, θ, t), t),

using which, we can form the following identities

Dur

Dt
=

∂Ur

∂t
+ Ur

∂Ur

∂r
+

Uθ

r

∂Ur

∂θ
,

Duθ

Dt
=

∂Uθ

∂t
+ Ur

∂Uθ

∂r
+

Uθ

r

∂Uθ

∂θ
.

Thus on the free-surface the two horizontal momentum equations become

∂Ur

∂t
+ Ur

∂Ur

∂r
+

Uθ

r

∂Ur

∂θ
− U2

θ

r
+

1

ρ

∂p

∂r
= −q̈ cos θ,

∂Uθ

∂t
+ Ur

∂Uθ

∂r
+

Uθ

r

∂Uθ

∂θ
+

UrUθ

r
+

1

rρ

∂p

∂θ
= q̈ sin θ.

The pressure gradients in these equations can be eliminated by integrating the vertical
momentum equation between some general point z and the free-surface h(r, θ, t) and
using (2.7). This leads to

p(r, θ, z, t) = ρg(h− z) + ρ

∫ h

z

Duz

Dt
ds,

which upon differentiating with respect to r and θ and evaluating on the free-surface,
leads to the internal pressure gradients

∂p

∂r
= ρ

(
g +

Duz

Dt

∣∣∣∣
z=h

)
∂h

∂r
,

∂p

∂θ
= ρ

(
g +

Duz

Dt

∣∣∣∣
z=h

)
∂h

∂θ
.

Thus we have the following exact momentum equations on the free-surface

∂Ur

∂t
+ Ur

∂Ur

∂r
+

Uθ

r

∂Ur

∂θ
− U2

θ

r
+ g

∂h

∂r
+ q̈ cos θ = − Duz

Dt

∣∣∣∣
z=h

∂h

∂r
, (2.9)

∂Uθ

∂t
+ Ur

∂Uθ

∂r
+

Uθ

r

∂Uθ

∂θ
+

UrUθ

r
+

g

r

∂h

∂θ
− q̈ sin θ = −1

r

Duz

Dt

∣∣∣∣
z=h

∂h

∂θ
, (2.10)

while the kinematic condition on the free-surface can be written as

∂h

∂t
+

1

r

∂

∂r
(rhUr) +

1

r

∂

∂θ
(hUθ) = Uz +

h

r

∂

∂r
(rUr) +

h

r

∂Uθ

∂θ
. (2.11)
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For the vessel equation we note that writing the velocities in terms of surface velocities
gives
∫ h

0

ρ (ur cos θ − uθ sin θ) r dz = ρh (Ur cos θ − Uθ sin θ) r−
∫ h

0

ρz

(
∂ur

∂z
cos θ − ∂uθ

∂z
sin θ

)
r dz,

which leads to an exact vessel equation of the form

(mf +mv)q̈ + νq +
d

dt

∫ R2

R1

∫ 2π

0

hρ (Ur cos θ − Uθ sin θ) r dθdr

=
d

dt

∫ R2

R1

∫ 2π

0

∫ h

0

ρz

(
∂ur

∂z
cos θ − ∂uθ

∂z
sin θ

)
r dzdθdr. (2.12)

3 Shallow-Water Equations and LPP Formulation

3.1 Governing Shallow-Water Equations

The exact governing equations (2.9)-(2.12) are not closed since their right-hand-sides
include terms which involve internal velocities ur , uθ and uz . A closed set of equations
for the shallow-water variables Ur , Uθ , q and h can be found by neglecting the right-
hand-sides of these equations. The principal assumptions required to neglect these terms
are ∣∣∣∣

Duz

Dt

∂h

∂r

∣∣∣∣ ≪ 1, and

∣∣∣∣
1

r

Duz

Dt

∂h

∂θ

∣∣∣∣ ≪ 1 on z = h(r, θ, t),

along with
∣∣∣∣Uz +

h

r

∂

∂r
(rUr) +

h

r

∂Uθ

∂θ

∣∣∣∣ ≪ 1,

∣∣∣∣
d

dt

∫ R2

R1

∫ 2π

0

∫ h

0

ρz

(
∂ur

∂z
cos θ − ∂uθ

∂z
sin θ

)
r dzdθdr

∣∣∣∣ ≪ 1.

It can be shown, following [21], that these assumptions are equivalent to the usual shallow-
water assumptions that the vertical accelerations throughout the fluid are small, that the
horizontal velocities ur, uθ are independent of z and that the vertical velocity uz is, at
most, linear in z . Under these assumptions the motion of the fluid and the vessel can be
considered as two-dimensional planar motion only.

The resulting shallow-water equations are then

∂Ur

∂t
+ Ur

∂Ur

∂r
+

Uθ

r

∂Ur

∂θ
− U2

θ

r
+ g

∂h

∂r
= −q̈ cos θ, (3.13)

∂Uθ

∂t
+ Ur

∂Uθ

∂r
+

Uθ

r

∂Uθ

∂θ
+

UrUθ

r
+

g

r

∂h

∂θ
= q̈ sin θ, (3.14)

∂h

∂t
+

1

r

∂

∂r
(rhUr) +

1

r

∂

∂θ
(hUθ) = 0, (3.15)

(mf +mv)q̈ + νq +
d

dt

∫ R2

R1

∫ 2π

0

hρ (Ur cos θ − Uθ sin θ) r dθdr = 0. (3.16)

We seek numerical solutions of these nonlinear equations, but in their current form the
Eulerian convective derivative makes numerical treatment difficult. Hence we consider a
Lagrangian Particle Path (LPP) formulation.
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3.2 LPP Formulation

To formulate the LPP equations we seek a solution of the form

r = r(a, b, τ), θ = θ(a, b, τ), t = t(τ),

where a, b and τ are Lagrangian marker coordinates and a Lagrangian time respectively.
The Lagrangian time variable is the same as the physical time, but we use the symbol
τ = t to clearly identify we are in the Lagrangian framework. The Lagrangian coordinates
satisfy a ∈ [R1, R2]and b ∈ [0, 2π] , as well as




dr
dθ
dt


 =




ra rb tτ
θa θb θτ
0 0 tτ






da
db
dτ


 ,

where here subscripts denote partial derivatives. Inverting this map gives




da
db
dτ


=




ar aθ at
br bθ bt
τr τθ τt






dr
dθ
dt


 =

1

J




θb −ra
1
tτ
(rbθτ − rτθb)

−θa θb − 1
tτ
(raθτ − rτθa)

0 0 J
tτ






dr
dθ
dt


 ,

(3.17)
where J = raθb−rbθa is the Jacobian of the map. To change from Eulerian to Lagrangian
variables we note that the chain rule for the derivatives are

∂

∂t
= τt

∂

∂τ
+ at

∂

∂a
+ bt

∂

∂b
,

∂

∂r
= τr

∂

∂τ
+ ar

∂

∂a
+ br

∂

∂b
,

∂

∂θ
= τθ

∂

∂τ
+ aθ

∂

∂a
+ bθ

∂

∂b
,

which, upon comparing the entries in the equivalent matrices in (3.17), we can write as

∂

∂t
=

∂

∂τ
+

1

J
(rbθτ − rτθb)

∂

∂a
− 1

J
(raθτ − rτθa)

∂

∂b
,

∂

∂r
=

θb
J

∂

∂a
− θa

J

∂

∂b
,

∂

∂θ
= −rb

J

∂

∂a
+

ra
J

∂

∂b
.

Under this change of variables, and by writing t = τ and Ur = rτ and Uθ = rθτ , the
kinematic condition (3.15) becomes

(rJh)τ = 0, =⇒ h =
χ

rJ
, (3.18)

where χ(a, b) is a τ independent function determined by the initial conditions. The two
momentum equations (3.13) and (3.14) reduce to

rττ − rθ2τ +
g

J
(θbha − θahb) = −qττ cos θ, (3.19)

rθττ + 2rτθτ +
g

rJ
(−rbha + rahb) = qττ sin θ, (3.20)
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while the vessel equation (3.16) becomes

(mv +mf )qττ + νq − µq3 = − d2

dτ 2

∫ R2

R1

∫ 2π

0

ρχr cos θ dadb. (3.21)

Before going on to construct the numerical scheme to solve (3.18)-(3.21) we first consider
the linear form of these equations. This will allow us to identify the natural frequencies
of the system and identify whether 1 : 1 resonances are possible between the modes
which couple to the vessel motion and the ‘stationary-vessel’ modes which occur in the
vessel at rest. Note that we use the term ‘stationary-vessel modes’ to refer to those time
periodic sloshing modes in a stationary vessel. These modes are frequently referred to as
‘free-sloshing modes’ in the literature, however this term is also used for sloshing modes
in a moving vessel where the vessel is not connected to a spring, i.e. there is no restoring
force. Hence we use the term stationary-vessel modes to avoid this ambiguity. The linear
solutions also provide a mechanism with which to verify the numerical scheme in §5.

4 Linear Shallow-Water Modes and Internal Reso-

nances

In order to identify the characteristic frequencies of the system, and hence any 1 : 1
resonances (where two modes oscillate with the same frequency), we consider solutions of
(3.18)-(3.21) linearised about the quiescent solution r = a , θ = b , h = h0 , q = 0. Thus
solutions have the form

r = a + r̂(a, b, τ), θ = b+ θ̂(a, b, τ), h = h0 + ĥ(a, b, τ), q = q̂(τ),

where the absolute value of the hatted variables are assumed to be small.
Firstly we observe that substitution of these expressions into (3.18) gives

χ = ah0, and ĥ = −h0

(
r̂

a
+ θ̂b + r̂a

)
. (4.22)

Next, the linear form of the two momentum equations (3.13)-(3.14) become

r̂ττ − gh0

(
r̂aa +

r̂a
a

− r̂

a2
+ θ̂ab

)
= −Qττ cos b,

aθ̂ττ −
gh0

a

(
r̂ab +

r̂b
a
+ θ̂bb

)
= Qττ sin b,

after eliminating ĥ , and the linear vessel equation is

(mv +mf )q̂ττ + νq̂ = − d2

dτ 2

∫ R2

R1

∫ 2π

0

ρχ
(
r̂ cos b− aθ̂ sin b

)
dadb.

To determine the characteristic frequencies for the system we seek harmonic solutions
in terms of an as yet unknown frequency ω , and a given azimuthal wavenumber m ∈ Z

in the following forms

r̂(a, b, τ) = e(a) cosmb cosωτ, θ̂(a, b, τ) = f(a) sinmb cosωτ, q̂(τ) = Q cosωτ. (4.23)
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The functions e, f and constant Q then satisfy
[
α2e+ e′′ + a−1e′ − a−2e+mf ′

]
cosmb+Q cos b = 0, (4.24)

[
α2a2f −me′ −ma−1e−m2f

]
sinmb−Q sin b = 0, (4.25)

−ω2(mv +mf )Q+ νQ − ω2

∫ R2

R1

∫
2π

0

ρχ (e cosmb cos b− af sinmb sin b) dadb = 0, (4.26)

where α = ω/
√
gh0 and the primes denote derivatives with respect to a . From the form

of these equations it is clear that m = 1 is required for the coupled modes, in which the
fluid motion couples to the vessel motion (Q 6= 0), while for m 6= 1 we require Q = 0 to
find a solution, these correspond to the stationary-vessel modes in a non-moving vessel.

4.1 Case m = 1: Coupled-Sloshing Modes

In this case we assume Q 6= 0, so that the vessel is moving, and thus (4.24)+(4.25) ′ leads
to e = −(a2f)′ . Substituting this back into (4.25) gives the differential equation

a2(a2f)′′ + a(a2f)′ + (α2a2 − 1)(a2f) = α2a2Q, (4.27)

which has general solution

f(a) = A
J1(αa)

a2
+B

Y1(αa)

a2
+

Q

a
, (4.28)

where J1(αa) and Y1(αa) are Bessel functions of the first and second kind respectively,
and A and B are constants to be determined. The corresponding solution for e(a) is

e(a) = −AJ ′
1(αa)− BY ′

1(αa)−Q, (4.29)

leading to the general solutions for r(a, b, τ) , θ(a, b, τ) and h(a, b, τ) of the form

r = a− [AJ ′
1(αa) +BY ′

1(αa) +Q] cos b cosωt, (4.30)

θ = b+
1

a2
[AJ1(αa) +BY1(αa) +Qa] sin b cosωt, (4.31)

h = h0 − h0α
2 [AJ1(αa) +BY1(αa)] cos b cosωt, (4.32)

where the form of ĥ comes from (4.22).
The values for A and B come from ensuring that Ur = rτ = 0 at a = R1 and a = R2

giving

A = Q
Y ′
1(αR2)− Y ′

1(αR1)

Γ1(α)
and B = −Q

J ′
1(αR2)− J ′

1(αR1)

Γ1(α)
,

where
Γm(α) = J ′

m(αR2)Y
′
m(αR1)− J ′

m(αR1)Y
′
m(αR2).

Finally, the characteristic frequencies of the system are then found by substituting (4.28)
and (4.29) into (4.26), which after substituting in for the values of A and B can be
written as the implicit equation,

D(ω) :=
G

ω2
− 1

M̂
+

1

(R2
2 −R2

1)Γ1(α)

[ 4
π
+R2 (J

′
1(αR1)Y1(αR2)− Y ′

1(αR1)J1(αR2))

+R1 (J
′
1(αR2)Y1(αR1)− Y ′

1(αR2)J1(αR1))
]
= 0, (4.33)
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where
M̂ =

mf

mv

, and G =
ν

mf

. (4.34)

Note that the characteristic equation (4.33) is an implicit equation for ω as α = α(ω) in
the argument of the Bessel functions. This equation has an infinite number of roots.

4.2 Case m 6= 1: Stationary-Vessel-Sloshing Modes

Following the same approach as for the case m = 1 but with Q = 0 we find m(4.24)+(4.25) ′

leads to e = − 1
m
(a2f)′ , which when substituted back into (4.25) gives

a2(a2f)′′ + a(a2f)′ + (α2a2 −m2)(a2f) = 0, (4.35)

and has general solution

f(a) = A
Jm(αa)

a2
+B

Ym(αa)

a2
. (4.36)

Hence one can show that

r = a− [AJ ′
m(αa) +BY ′

m(αa)] cosmb cosωt, (4.37)

θ = b+
1

a2
[AJm(αa) + BYm(αa)] sinmb cosωt, (4.38)

h = h0 − h0α
2 [AJm(αa) +BYm(αa)] cosmb cosωt. (4.39)

This time the characteristic equation for these stationary-vessel sloshing modes comes
directly from satisfying the impermeable wall conditions at a = R1 and a = R2 which
lead to

AJ ′
m(αR1) +BY ′

m(αR1) = 0, and AJ ′
m(αR2) +BY ′

m(αR2) = 0,

which is non-trivially satisfied if

Pm(ω) := Γm(α) = 0. (4.40)

This again is an implicit equation for ω , with an infinite number of roots.

4.3 Characteristic Equation Solutions and the 1 : 1 Resonance

Using the results above, the full dispersion relation for the annular vessel system is

∆(ω) = P (ω)D(ω), (4.41)

where

P (ω) =

∞∏

m=0
m6=1

Pm(ω).

This shallow-water form of the dispersion relation has an equivalent finite depth form
∆FD(ω) = P FD(ω)DFD(ω) where

PFD
m (ω) = ω2 − gkmn tanh(kmnh0), (4.42)

DFD(ω) =
G

ω2
− 1

M̂
− 1

− ω2

R2
2 −R2

1

∞∑

n=1

Bn

k1nh0

[
R2P̂ (R2)−R1P̂ (R1)

] tanh(k1nh0)

gk1n tanh(k1nh0)− ω2
, (4.43)
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where DFD(ω) can be inferred from the ν = 0 limit result in [14] and P FD(ω) can be
found in [17] and [18]. In (4.43)

P̂ (r) = Y ′
1(k1nR1)J1(k1nr)− J ′

1(k1nR1)Y1(k1nr),

Bn =
2k1n

(
Y ′
1(k1nR1)

[
R2

2J2(k1nR2)−R2
1J2(k1nR1)

]
− J ′

1(k1nR1)
[
R2

2Y2(k1nR2)−R2
1Y2(k1nR1)

])
[
P̂ (k1nR2)

]2
[(k1nR2)2 − 1]−

[
P̂ (k1nR1)

]2
[(k1nR1)2 − 1]

,

and kmn are the roots of

J ′
m(kmnR1)Y

′
m(kmnR2)− J ′

m(kmnR2)Y
′
m(kmnR1) = 0. (4.44)

(a)

-4

-2

 0

 2

 4

 0  5  10  15  20  25  30
ω

DFD, D

(b)

-4

-2

 0

 2

 4

 0  5  10  15  20  25  30
ω

DFD, D

Figure 2: Plot of the characteristic equations in shallow-water D(ω) (solid lines) and
finite depth DFD(ω) (dashed lines) for the case R1 = 0.05m, R2 = 0.2m, mv = 2kg,
ν = 50kgs−2 . In (a) h0 = 0.2m while in (b) h0 = 0.02m.

For the results presented in this section we consider vessels comprised of similar materi-
als to those used in the experiments of [14], thus we consider similar size and weight vessels
as this paper. The results in this section are presented for a vessel with R1 = 0.05m,
R2 = 0.2m and mv = 2kg. The fluid considered is water with ρ = 1000kgm−3 ,
g = 9.81ms−2 , the infinite summation in (4.43) is truncated to 200 terms and we ob-
serve qualitatively similar results for other values of the system parameters. In figure 2
we consider the forms of D(ω) (solid line) and DFD(ω) (dashed line) for the cases (a)
h0 = 0.2m and (b) h0 = 0.02m. In order to determine these figures the values of kmn

from (4.44) are calculated via Newton iterations. The results show that in scenario (a)
we are away from the shallow-water limit, with a depth ratio δ = h0

R2−R1

= 4/3 while in
(b) δ = 2/15 and the shallow-water result for the first 3 roots is in good agreement with
the finite-depth results. The interesting feature in this figure is that for both cases the
shallow-water result and finite-depth result are in excellent agreement for the first, lowest
frequency mode. Thus, for systems which are dominated by the lowest frequency coupled
mode, the shallow-water model considered here provides a good model even when con-
sidering non-shallow water fluid depths. This same curious behaviour was also observed
for a cylindrical vessel by [13], and can be seen also in the characteristic frequency plots
in figure 3. For the results in figures 3-5 the values of ω are found by solving ∆(ω) = 0
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Figure 3: Plot of the characteristic frequencies ω of (a) the coupled-mode characteristic
equation D(ω) = 0 and (b) the stationary-vessel mode characteristic equation P (ω) = 0

as a function of M̂= mf/mv for the case R1 = 0.05m, R2 = 0.2m, mv = 2kg, ν =
50kgs−2 . In (a), results 1 denote the lowest frequency mode while results 2 denote the
second lowest frequency mode. In (b), results 1 denote the first m = 0 mode while results
2 denote the first m = 2 mode. In both panels the solid lines are the finite depth result
while the dashed lines give the shallow-water result. For result 1 in panel (a) these two
results are indistinguishable.

via Newton iterations. For the coupled modes in figure 3(a) the finite-depth and shallow-

water results for the lowest frequency mode agree for the whole range of M̂ = mf/mv

considered, and the difference between the shallow-water and finite-depth results can be
shown to be less than 1% at M̂ = 10 for spring coefficients upto ν = 600 kgs−2 , hence
for a wide range of parameter values. For the 2nd coupled mode, the agreement is only
good for M̂ . 1.5, which is also the case for the lowest frequency m = 0 and m = 2
stationary-vessel-sloshing modes in figure 3(b). Thus when considering nonlinear simu-
lations in §5.4 we should place this restriction on the fluid mass to generate meaningful
results, when not considering the lowest frequency mode.

The lowest frequency coupled mode, which is well approximated by the shallow-water
theory, is particular to the coupled system and is not evident in freely oscillating vessel
work of [14]. This can be seen in figure 4 where this lowest frequency mode vanishes in
the ν = 0 limit and the second mode, given by the dashed line, becomes the observed
lowest frequency mode for that system.

A 1 : 1 internal resonance occurs in the system if there exists an ω such that P (ω) =
D(ω) = 0 and Pω(ω) 6= 0 and Dω(ω) 6= 0, i.e. if one of the stationary-vessel-sloshing
modes resonates with the same frequency as a coupled-sloshing mode. This coupling could
lead to interesting vessel motions if a heteroclinic orbit exists which allows energy to be
exchanged between the modes, as was observed for the case of a vessel with rectangular
cross-section in [20]. In this case the 1 : 1 resonance condition only exists for a single
fluid depth and it was shown that a moving vessel could come to rest with the fluid now
oscillating as a stationary-vessel-sloshing mode after the exchange of energy.
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Figure 4: Plot of the first two characteristic frequencies ω of D(ω) = 0 as a function of

ν for the case R1 = 0.05m, R2 = 0.2m, mv = 2kg, ν = 50kgs−2 and M̂= mf/mv = 2.
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Figure 5: Plot of the value of ν at which the 1 : 1 resonance occurs between the second
lowest coupled-mode frequency and (a) the lowest frequency m = 0 stationary-vessel-
mode and (b) the lowest frequency m = 2 stationary-vessel-mode for the case R1 =
0.05m, R2 = 0.2m, mv = 2kg.

For the annular vessel we determined the parameter values at which the 1 : 1 resonance
occurs by updating the value of the linear spring coefficient ν in D(ω) = 0 until the value
of ω agrees with that from P (ω) = 0, which is independent of ν . We found that in order
to obtain a 1 : 1 resonance between the lowest frequency coupled-mode (result 1 in
figure 3(a)) with either of the modes in figure 3(b) then the value of ν obtained was

unphysically large. Hence in figure 5 we identify ν(M̂) where the 1 : 1 resonance occurs

13



with the second coupled-mode (result 2 from 3(a)) with the lowest (a) m = 0 and (b)
m = 2 stationary-vessel-modes. In both cases the shallow-water approximation is valid
only for M̂= mf/mv . 1.5, and this range is also the range for physically realistic values
of ν . Hence a 1 : 1 resonance for the annular cylinder is likely to only be observed
for small mass ratios M̂ . Determining whether the 1 : 1 resonance in this system also
possesses a heteroclinic orbit connecting the modes involves an extensive normal mode
analysis and is beyond the scope of this paper.

5 Numerical Shallow-Water Simulations

The LPP formulation of the governing equations (3.18)-(3.21) can be solved numerically
using a symplectic integration scheme to simulate linear and nonlinear system scenarios.
To formulate this approach we first observe that the kinetic energy, T , and potential
energy, V , in shallow-water Eulerian variables are

T =

∫ R2

R1

∫ 2π

0

1

2
ρh

[
(Ur + qτ cos θ)

2 + (Uθ − qτ sin θ)
2] rdθdr + 1

2
mv q̇

2,

V =

∫ R2

R1

∫ 2π

0

1

2
ρgh2 rdθdr +

1

2
νq2 − 1

4
µq4,

which when converted to LPP variables become

T =

∫ R2

R1

∫ 2π

0

1

2
ρχ

[
(rτ + qτ cos θ)

2 + (rθτ − qτ sin θ)
2] dbda +

1

2
mvq

2
τ ,

V =

∫ R2

R1

∫ 2π

0

1

2
ρg

χ2

rJ
dbda +

1

2
νq2 − 1

4
µq4.

Thus we can construct the Lagrangian L =
∫ τ2

τ1
L dτ, where

L =
1

2

∫ R2

R1

∫ 2π

0

ρχ
[
(rτ + qτ cos θ)

2 + (rθτ − qτ sin θ)
2 − gχ

rJ

]
dadb+

1

2
mvq

2
τ−

1

2
νq2+

1

4
µq4.

(5.45)
Using this Lagrangian we can construct the Hamiltonian for the system and hence we can
derive the first order system of Hamilton’s equations which can then be integrated using
a symplectic integration scheme such as the implicit-midpoint-rule [22].

5.1 Hamilton’s Equations for the Nonlinear System

To construct the Hamiltonian for the system we first introduce the momentum variables
v, w, p such that

δL

δrτ
= v = rτ + qτ cos θ,

δL

δθτ
= rw = r (rθτ − qτ sin θ) ,

δL

δqτ
= p = (mv +mf)qτ +

∫ R2

R1

∫ 2π

0

ρχ (rτ cos θ − rθτ sin θ) dadb,

= mvqτ +

∫ R2

R1

∫ 2π

0

ρχ (v cos θ − w sin θ) dadb,

14



which transforms the Lagrangian (5.45) into

L =
1

2

∫ R2

R1

∫ 2π

0

ρχ
[
v2 + w2 − gχ

rJ

]
dadb+

1

2mv

(p− I)− 1

2
νq2 +

1

4
µq4,

where I =
∫ R2

R1

∫ 2π

0
ρχ (v cos θ − w sin θ) dadb . Using the Legendre transformation [27] we

then determine the Hamiltonian H (r, θ, q, v, w, p) as

H =

∫ R2

R1

∫ 2π

0

ρχ [rτv + rθτw] dadb + qτp− L,

=
1

2

∫ R2

R1

∫ 2π

0

ρχ
[
v2 + w2

]
dadb+

1

2mv

(p− I)2 +

∫ R2

R1

∫ 2π

0

1

2
ρg

χ2

rJ
dadb+

1

2
νq2 +

1

4
µq4.

Taking variations of the Hamiltonian with respect to the position and momenta vari-
ables we derive Hamilton’s equations for the nonlinear system

rτ = v − cos θ

mv

(p− I), (5.46)

θτ =
w

r
+

sin θ

mvr
(p− I), (5.47)

qτ =
1

mv

(p− I), (5.48)

−vτ = −w2

r
− w sin θ

mvr
(p− I) +

g

J

[
θb

( χ

rJ

)
a
− θa

( χ

rJ

)
b

]
, (5.49)

−wτ =
v

r

[
w +

sin θ

mv

(p− I)

]
− g

Jr

[
rb

( χ

rJ

)
a
− ra

( χ

rJ

)
b

]
, (5.50)

−pτ = νq + µq3. (5.51)

The above equations can readily be shown to be consistent with (3.19)-(3.21).

5.2 Spatial and Temporal Discretization

For the spatial discretization of (5.46)-(5.51) we divide up the annular domain by splitting
a ∈ [R1, R2] and b ∈ [0, π] into N and M regularly space regions respectively via

ai = (i− 1)∆a, i = 1, ..., N + 1, with ∆a =
R2 − R1

N
,

bj = (j − 1)∆b, j = 1, ...,M + 1, with ∆b =
π

M
,

where, for the purposes of computational cost, we have assumed a symmetric solution for
π ≤ b ≤ 2π . We do this because the focus of this section of the paper is on the flow due
to the coupled modes, for which m = 1 in §4.1 and these have this required symmetry.
Using this discretization we introduce the notation for each variable that rij = r(ai, bj , τ) .

For Hamilton’s equations the form of the spatial discretization is clear, except within
the vτ and wτ equations where the bracketed terms differentiated with respect to a and
b need to be considered with care. Here it is not obvious how to discretize these terms
which arise from the term proportional to g in the Hamiltonian. To overcome this issue
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we spatially discretize the Hamiltonian directly and then take variations with respect to
the discretized position variables and momenta rij and θij . The problematic term in the
Hamiltonian is

F (r, θ) =

∫ R2

R1

∫ 2π

0

1

2
ρg

χ2(a, b)

r(raθb − rbθa)
dadb.

To discretize this term we express the double integral as an average of four double sum-
mations, which allow the spatial derivatives to be discretized via forward or backward dif-
ferences in the four respective combinations forward-forward, forward-back, back-forward
and back-back, where the first part refers to the a derivatives and the second part refers
to the b derivatives. Therefore we write

F (r, θ) =
ρg

8

M∑

j=1

N∑

i=1

[
F FF
ij + F FB

ij + FBF
ij + FBB

ij

]
,

where

F FF
ij =

χ2
ij

rijJ
FF
ij

, F FB
ij =

χ2
i(j+1)

ri(j+1)J
FB
ij

, FBF
ij =

χ2
(i+1)j

r(i+1)jJ
BF
ij

, FBB
ij =

χ2
(i+1)(j+1)

r(i+1)(j+1)J
BB
ij

.

and

JFF
ij = (r(i+1)j − rij)(θi(j+1) − θij)− (ri(j+1) − rij)(θ(i+1)j − θij),

JBB
ij = (r(i+1)(j+1) − ri(j+1))(θ(i+1)(j+1) − θ(i+1)j)− (r(i+1)(j+1) − r(i+1)j)(θ(i+1)(j+1) − θi(j+1)),

JFB
ij = (r(i+1)(j+1) − ri(j+1))(θi(j+1) − θij)− (ri(j+1) − rij)(θ(i+1)(j+1) − θi(j+1)),

JBF
ij = (r(i+1)j − rij)(θ(i+1)(j+1) − θ(i+1)j)− (r(i+1)(j+1) − r(i+1)j)(θ(i+1)j − θij).

The spatially semi-discretized form of Hamilton’s equations are then found to be

(rij)τ = vij −
cos θij
mv

(p− I), for i = [2, N ], j = [1,M + 1], (5.52)

(θij)τ =
wij

rij
+

sin θij
mvrij

(p− I), for i = [1, N + 1], j = [2,M ] (5.53)

qτ =
1

mv

(p− I), (5.54)
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(vij)τ =
w2

ij

rij
+

wij sin θij
mvrij

(p− I)− ∆a∆bg

8χij

{
−
χ2
ij

r2ij

[
1

JFF
ij

+
1

JBB
(i−1)(j−1)

+
1

JFB
i(j−1)

+
1

JBF
(i−1)j

]

+
χ2
ij

rij

[
(θi(j+1) − θ(i+1)j)

(JFF
ij )2

+
(θi(j−1) − θ(i−1)j)

(JBB
(i−1)(j−1))

2
+

(θ(i+1)j − θi(j−1))

(JFB
i(j−1))

2
+

(θ(i−1)j − θi(j+1))

(JBF
(i−1)j)

2

]

−
χ2
(i−1)j

r(i−1)j

[
(θ(i−1)(j+1) − θ(i−1)j)

(JFF
(i−1)j)

2
+

(θ(i−1)j − θ(i−1)(j−1))

(JFB
(i−1)(j−1))

2

]

+
χ2
(i+1)j

r(i+1)j

[
(θ(i+1)j − θ(i+1)(j−1))

(JBB
i(j−1))

2
+

(θ(i+1)(j+1) − θ(i+1)j)

(JBF
ij )2

]

+
χ2
i(j−1)

ri(j−1)

[
(θ(i+1)(j−1) − θi(j−1))

(JFF
i(j−1))

2
+

(θi(j−1) − θ(i−1)(j−1))

(JBF
(i−1)(j−1))

2

]

−
χ2
i(j+1)

ri(j+1)

[
(θi(j+1) − θ(i−1)(j+1))

(JBB
(i−1)j)

2
+

(θ(i+1)(j+1) − θi(j+1))

(JFB
ij )2

]}
,

for i = [2, N ], j = [1,M + 1] (5.55)

(wij)τ = −vij
rij

(
wij +

sin θij
mv

(p− I)

)
+

∆a∆bg

8χijrij

{
χ2
ij

rij

[
(ri(j+1) − r(i+1)j)

(JFF
ij )2

+
(ri(j−1) − r(i−1)j)

(JBB
(i−1)(j−1))

2
+

(r(i+1)j − ri(j−1))

(JFB
i(j−1))

2
+

(r(i−1)j − ri(j+1))

(JBF
(i−1)j)

2

]

−
χ2
(i−1)j

r(i−1)j

[
(r(i−1)(j+1) − r(i−1)j)

(JFF
(i−1)j)

2
+

(r(i−1)j − r(i−1)(j−1))

(JFB
(i−1)(j−1))

2

]

+
χ2
(i+1)j

r(i+1)j

[
(r(i+1)j − r(i+1)(j−1))

(JBB
i(j−1))

2
+

(r(i+1)(j+1) − r(i+1)j)

(JBF
ij )2

]

+
χ2
i(j−1)

ri(j−1)

[
(r(i+1)(j−1) − ri(j−1))

(JFF
i(j−1))

2
+

(ri(j−1) − r(i−1)(j−1))

(JBF
(i−1)(j−1))

2

]

−
χ2
i(j+1)

ri(j+1)

[
(ri(j+1) − r(i−1)(j+1))

(JBB
(i−1)j)

2
+

(r(i+1)(j+1) − ri(j+1))

(JFB
ij )2

]}
,

for i = [1, N + 1], j = [2,M ] (5.56)

pτ = −νq + µq3. (5.57)

Here I is discretized using the trapezoidal rule in both the a and b directions.
Note that when (5.55) is evaluated at the boundary points M = 1 and M + 1, ghost

points for the variables are required (θi0 and θi(M+2) , for example) outside the domain.
In (5.55) because we want the flow to be symmetric across b = 0, π we use the ghost
points

ri0 = ri2 and ri(M+2) = ri(M−1),

θi0 = −θi2 and θi(M+2) = π + θi(M−1).

Also, when evaluating (5.56) at the boundary points N = 1 and N + 1 we again need
representations at the ghost points r0j and r(M+2)j etc. Here however, the situation is
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more difficult as we have no symmetry across this boundary, because from §4 we know the
basis functions are Bessel functions in the a direction. Thus some form of approximation
is required. In this paper we use a 4 grid point Lagrange polynomial extrapolation scheme
in order to approximate these values. This choice is examined in §5.3.

The discretized form of Hamilton’s equations give 4NM − 2 equations for the 4(N +
1)(M + 1) + 2 unknowns. The remaining 4(N + 1) + 4(M + 1) equations come from the
impermeable wall boundary conditions at a = R1 and R2 and the symmetry conditions
at b = 0 and π . These conditions amount to

rτ = 0 at a = R1, R2 and θτ = 0 at b = 0, π.

Therefore the boundary conditions are

r1j = R1 and r(N+1)j = R2 for j = [1,M + 1] (5.58)

θi1 = 0, and θi(M+1) = π for i = [1, N + 1], (5.59)

vij =
cos θij
mv

(p− I), for i = 1, N + 1 and j = [1,M + 1], (5.60)

wij = −sin θij
mv

(p− I), for j = 1,M + 1 and i = [1, N + 1], (5.61)

where the final two expressions come from inserting rτ = θτ = 0 in (5.52) and (5.53).
The semi-discretized equations (5.52)-(5.57), along with the boundary conditions (5.58)-

(5.61) can be written as a system of first order ODEs of the form

pτ = f(p,q), qτ = g(p,q), (5.62)

where

p = (v11, v12, ..., vNM , w11, ..., wNM , p)T ,

q = (r11, r12, ..., rNM , θ11, ..., θNM , q)T .

This system of equations can be integrated via the symplectic geometric integration
scheme, the implicit-midpoint rule [22]. Using this approach the system of ODEs be-
comes a system on nonlinear algebraic equations of the form

pn+1 = pn +∆τf

(
pn + pn+1

2
,
qn + qn+1

2

)
,

qn+1 = qn +∆τg

(
pn + pn+1

2
,
qn + qn+1

2

)
,

where n denotes the time-step, such that pn = p(n∆τ) and ∆τ is the time step. This
system of implicit equations are solved at each new time step via Newton-Armijo-GMRES
iterations [28].

For the initial conditions, we consider momenta and position conditions from the
linear theory of §4.2. We focus our attention here on non-resonant simulations, because
[20] showed for the 2D rectangular vessel that the 1 : 1 resonance occurs at one particular
fluid depth, given the system parameters, and this depth was not in the shallow-water
limit. Hence assuming the same is true for the annulus, we are highly unlikely to observe
energy transfer between modes by chance. Hence the initial condition we consider is given
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by (4.30) and (4.31) with τ = 0 and Q ≡ Q1 along with v(a, b, 0) = w(a, b, 0) = 0 and
q(0) = Q and p(0) = 0, hence we have two independent amplitude parameters Q1 and
Q . The initial condition when Q1 = Q will allow us to verify our simulations against
the exact linear solution of a single coupled mode, but in an experimental set-up it might
be difficult to generate such a condition. Hence we also consider the case when Q1 = 0
and Q 6= 0 which corresponds to a quiescent fluid in a vessel which has been displaced
a distance Q from equilibrium and then is released from rest. This type of condition is
more akin to that which can be achieved in a experiment (cf [9, 12] for example), and
consists of a superposition of coupled modes.

5.3 Linear Simulations

In order to validate the numerical scheme, we compare the numerical solution in the
linear amplitude regime with the exact linear solution for one coupled mode given by
(4.30)-(4.32). Thus we choose to set Q1 = Q = 10−5m, and µ = 0 kgm−2s−2 so that
the nonlinear terms in the governing equations are negligible. In figures 6-9 we consider
simulations with R1 = 0.1m, R2 = 0.2m, ν = 30kgs−2 , mv = 2kg, h0 = 0.05m along
with (N,M,∆τ) = (100, 100, 5× 10−3) to coincide with the vessel parameters similar to
those in §4.3. For all the results in this section the resulting system of nonlinear equations
are solved with a relative residual of 10−8 .

1.65×10-9

1.66×10-9

1.67×10-9

 0  5  10  15  20
τ

H

1

2

Figure 6: Plot of H (τ) for the lowest frequency coupled mode (ω = 2.0255s−1 ) with
Q1 = Q = 10−5m, R1 = 0.1m, R2 = 0.2m, mv = 2kg, ν = 30kgs−2 and h0 = 0.05m. In
result 1 the ghost points of (5.56) are found using 4 point Lagrange extrapolation, while
in result 2 they are found assuming symmetry about a = R1 and a = R2 .

As discussed in §5.2, there needs to be some element of approximation when determin-
ing r and θ at the ghost points of (5.56) outside the flow domain. In figure 6 we consider
the error in the solution when using the 4 point Lagrange extrapolation approximation
by plotting H (τ) when calculating the lowest frequency coupled eigenmode. As H (τ)
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is equivalent to the total system energy, we wish for this to remain constant for the du-
ration of the simulation. In figure 6 we see that this approximation gives only a 0.07%
change from its initial value over the duration of the simulation (4000 timesteps). As a
comparison, we also plot H (τ) for a simulation where the variables r and θ are assumed
to have symmetry across these boundaries, i.e. r0j = 2R1 − r2j , r(N+2)j = 2R2 − rNj ,
θ0j = θ2j and θ(N+2)j = θNj . While the energy conservation is good for this approx-
imation, the extrapolation scheme is understandably better. For the remainder of this
paper we highlight the maximum system energy percentage change for each simulation
performed, in order to indicate the reliability of the results. In table 1 we consider the

N
M

50 100 200 300

50 0.16 0.15 0.14 0.16
100 0.08 0.07 0.07 0.07
200 0.03 0.03 0.03 0.03
300 0.02 0.02 0.01 0.01

Table 1: The maximum percentage error between H (τ) and its initial value for simula-
tions such as result 1 in figure 6, for varying numerical grids and fixed ∆τ .

grid dependence of the simulation results using the extrapolation approximation, again
simulating the lowest frequency coupled eigenmode. We find that this numerical scheme
does converge as the grid size is reduced with all maximum energy errors much less than
1% after a 20 second simulation. Hence the extrapolation approximation is justified for
future simulations.

In figures 7 and 8 we validate the numerical scheme by comparing the lowest frequency
eigenmode (ω = 2.0255s−1 ) with the exact linear forms of h(x, t) (4.32) and q(τ) (4.23),
given by the black dots. The free surface elevations h(x, t)−h0 in figure 7 are plotted along
the centre-line plane of the vessel as a function of the Cartesian coordinate x = r cos θ ,
with θ = 0 and θ = π . Agreement between the simulation and the theoretical result
is excellent for all times t ∈ [0, 20]s for both the free-surface elevation and the vessel
displacement q(τ) in figure 8.

In figure 9 we observe excellent agreement between the theoretical and numerical sim-
ulation results for q(τ) for the second coupled eigenmode with frequency ω = 6.2951s−1 .
The free-surface profiles in 9(b) are taken over half a period of the motion, and as for
the lowest frequency eigenmode, have an almost linear profile. In this case however, the
magnitude of the motion for the same value of Q is almost 10 times larger than the lowest
frequency eigenmode, which is expected due to the ω2 factor in (4.32).

Now that the numerical scheme is validated, we consider an initial condition Q1 = 0m,
but with Q = 10−5m, again for the parameters R1 = 0.1m, R2 = 0.2m, mv = 2kg and
ν = 30 kgs−2 . This gives a quiescent fluid initially, with a flat free-surface and corresponds
to a condition easily generated in an experiment where the vessel is displaced by a distance
Q and released from rest. In figure 10 we consider the vessel motion q(τ) as the fluid
depth is reduced from (a) h0 = 0.05m, (b) h0 = 0.02m to (c) h0 = 0.005m. For the
two-dimensional rectangular vessel, [12] showed that for a fixed set of system parameters,
reducing the initial fluid depth h0 (or fluid mass mf ) caused the system to ‘transition’
to higher frequency eigenmodes. This was first highlighted by experimental evidence.
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Figure 7: Plot of h(x, t) − h0 for the lowest frequency coupled mode (ω = 2.0255s−1 )
with Q1 = Q = 10−5m, R1 = 0.1m, R2 = 0.2m, mv = 2kg, ν = 30kgs−2 , h0 = 0.05m,
where x = r cos θ , at (a) τ = 15.6s, (b) τ = 16.2s, (c) τ = 16.8s, (d) τ = 17.4s, (e)
τ = 18.0s, (f) τ = 18.6s. The dots denote the exact linear solution (4.32).

Here we investigate using numerical simulations whether the same effect is observable in
the annular vessel. The results in figure 10 show this to be the case, with the system
frequency in panel (a) agreeing well with the lowest frequency eigenmode (dashed line).
But as h0 is reduced, the solution becomes a superposition of two modes in (b), before
finally becoming solely the higher frequency second coupled mode in (c) at h0 = 0.005m.
Re-plotting this result in (d) against the theoretical second coupled mode result (dashed
line) shows the system has switched to this frequency. We now go on to consider the
annular system in the nonlinear regime.
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Figure 8: Plot of q(τ) for the lowest frequency coupled mode (ω = 2.0255s−1 ) with
Q1 = Q = 10−5m, R1 = 0.1m, R2 = 0.2m, mv = 2kg, ν = 30kgs−2 and h0 = 0.05m.
The dots denote the exact linear solution (4.23). The largest percentage Hamiltonian
error for this result is 0.07%.
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Figure 9: Plot of (a) q(τ) for the second coupled mode (ω = 6.2951s−1 ) with Q1 =
Q = 10−5m, R1 = 0.1m, R2 = 0.2m, mv = 2kg, ν = 30kgs−2 , h0 = 0.05m and (b)
h(x, t)−h0 at τ = 1s, 1.1s, 1.2s, 1.3s, 1.4s and 1.5s numbered 1-6 respectively. The dots
denote the exact linear solution (4.23). The largest percentage Hamiltonian error for this
result is 0.01%.

5.4 Nonlinear Simulations

In this section we consider numerical solution results where both nonlinear fluid and
nonlinear vessel effects are significant. In this section we focus on parameter values for
which the system is just outside the domain of validity of the linear solution. For the
results presented here, we again consider the experimental initial conditions with Q1 = 0m
for the vessel R1 = 0.1m, R2 = 0.2m, mv = 2kg and linear spring coefficient ν = 30kgs−2

with the simulation parameters (N,M,∆τ) = (200, 200, 5×10−3) . Figure 11(a) considers
the vessel displacement q(τ) for the case Q = 2×10−2m with µ = 0 kgm−2s−2 . The linear
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Figure 10: Plot of q(τ) (solid lines) for the system Q1 = 0m, Q = 10−5m, R0 = 0.1m,
R2 = 0.2m, mv = 2kg, ν = 30 kgs−2 and (a) h0 = 0.05m, (b) h0 = 0.02m and (c,d)
h0 = 0.005m. In panels (a)-(c) the dashed lines give the linear result (4.23) for the lowest
frequency coupled eigenmode, while in (d) it gives the second coupled eigenmode. The
largest percentage Hamiltonian error for these results is 0.08%.

result for this simulation is given by the solid line in figure 10(a). The panel contains the
nonlinear result (solid line), together with the linear result of figure 10(a) scaled up by a
factor 2000. The results are indistinguishable and highlights the same qualitative result
as for the rectangular vessel presented in [24]. That is that considering a nonlinear fluid
with a linear vessel has little effect on the motion of the vessel (at least for the vessel mass
considered). The nonlinear free-surface profiles on the other hand are modified, as seen
in figure 12, which compare the nonlinear and linear results. The main point to note here
is that the nonlinearity builds up in the fluid over time so that the free-surface profiles no
longer have rotational symmetry about x = 0 as the linear profiles do. Figures 11(b) and
(c) show that by considering nonlinear springs with µ = 1000 kgm−2s−2 (dotted line) and
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Figure 11: Plot of q(τ) for the system Q1 = 0m, R0 = 0.1m, R2 = 0.2m, mv = 2kg,
h0 = 0.05m, ν = 30 kgs−2 . In (a) µ = 0 kgm−2s−2 and Q = 2 × 10−2m (solid line)
while the indistinguishable dashed line represents the linear result with Q = 10−5m
scaled up by a factor of 2000. In (b) Q = 2 × 10−2m and µ = 0 kgm−2s−2 (solid line),
µ = 1000 kgm−2s−2 (dotted line) and µ = −1000 kgm−2s−2 (dashed line). Panel (c) is a
blow-up of the end times of panel (b). The largest percentage Hamiltonian error for these
results is 0.8%.

µ = −1000 kgm−2s−2 (dashed line) the vessel motion q(τ) can be more readily modified.
For a hard spring (µ > 0) the frequency of the vessel is decreased, while the soft spring
(µ < 0) increases the frequency of the system. This is in accord with the results for the
rectangular vessel system [24].

The small effect of nonlinearity on the vessel motion due to the fluid for h0 = 0.05m is
likely to be due to the fact that the lowest frequency eigenmode dominates the solution at
this fluid depth. In figure 13 we again consider a linear vessel equation with a nonlinear
fluid, but this time for h0 = 0.02m, a depth for which in figure 10(b) we observed two
eigenmodes existing with comparable amplitudes. Here, for a value of Q = 10−2m we see
that the effect of the fluid nonlinearity is greater, with the nonlinear result (solid line)
generally having slightly smaller peaks and troughs than the linear result, at least for the
time duration considered here. The free-surface profiles for this nonlinear result also show
considerable deviation from the linear result in figure 14, with more higher frequency
oscillations clearly visible in the nonlinear result. Here the broken rotational symmetry
of the profiles is more evident than for the h0 = 0.05m case.

Note, in order to consider larger initial vessel displacements, Q , the numerical model
would need to be modified to incorporate some form of numerical filtering to filter out
spurious high frequency dispersion waves which occur when shock waves begin to form
in the results. This is not considered here, but the interested reader can find out more
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Figure 12: Plot of h(x, t)−h0 for the case system Q = 2×10−2m, Q1 = 0m, R0 = 0.1m,
R2 = 0.2m, mv = 2kg, h0 = 0.05m, ν = 30 kgs−2 and µ = 0 kgm−2s−2 (solid lines) given
in figure 11(a), where x = r cos θ , at (a) τ = 15s, (b) τ = 30s, (c) τ = 45s, (d) τ = 60s,
(e) τ = 75s, (f) τ = 90s. The dashed lines give the linear result scaled up by a factor of
2000.

information in [24], who use such a filtering process for the rectangular vessel.

6 Conclusions and Discussion

In this paper we considered the coupled sloshing system consisting of an incompressible,
inviscid fluid within an upright annular vessel, which is attached to a wall by a nonlinear
spring. The vessel motion was confined to a single space dimension with the nonlinear
spring acting as a restoring force. The moving vessel forces the fluid to move, which in turn
impacts the rigid walls of the vessel, inducing a force which modifies the vessel’s motion,
thus resulting in a coupled fluid/vessel system. This coupling can lead to more interesting
and complex motions than occur in many forced systems, which just consider how the
fluid motion is affected by periodically oscillating the vessel with a fixed amplitude and
frequency.

Results of the linear system showed that the lowest natural frequency eigenmode of
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Figure 13: Plot of q(τ) for the system Q = 10−2m, Q1 = 0m, R0 = 0.1m, R2 = 0.2m,
mv = 2kg, h0 = 0.02m, ν = 30 kgs−2 and µ = 0 kgm−2s−2 (solid line), while the dashed
line represents the linear result with Q = 10−5m scaled up by a factor of 1000. The
largest percentage Hamiltonian error for these results is 0.05%.

the coupled system is accurately given when both a shallow-water and non-shallow-water
fluid model is considered (for ν . 600 kgs−2 where ν is the linear spring coefficient).
Also the frequency of the higher frequency eigenmodes are well predicted by a shallow-
water fluid model for M̂ = mf/mv . 1.5, where mf is the fluid mass and mv is the
vessel mass. It was also observed that as ν → 0 (i.e. the freely oscillating vessel limit
investigated by [14]) that the frequency of the lowest frequency coupled-mode tends to
zero. Therefore the lowest frequency freely oscillating eigenmode corresponds to the
second lowest coupled mode of the spring system in the appropriate limit. These results
agree with those observed for the cylindrical vessel in [13].

The characteristic equation for the linear system was shown to support the 1 : 1
resonance where one of the coupled sloshing modes which link to the vessel motion oscillate
with identical frequency to one of the stationary-vessel-sloshing modes. Turner & Bridges
[20] have shown for the rectangular vessel that the existence of a 1 : 1 resonance means
that weakly nonlinear solutions close to this point in parameter space can exhibit energy
exchange behaviour if a heteroclinic orbit exists between the modes. Thus it is likely to
expect similar behaviour for the annular vessel.

The fact that the lowest frequency mode of the system was excellently approximated
by a shallow-water fluid model was exploited by utilizing the Lagrangian Particle Path
(LPP) formulation of the governing equations to perform linear and nonlinear numerical
simulations. The numerical scheme devised was based upon the symplectic implicit-
midpoint-rule, which conserves the Hamiltonian structure, as well as the system energy,
and preserves the energy partition between the fluid and vessel motions. Results presented
for the linear system showed the system transitioning to successive higher frequency eigen-
modes as the fluid mass mf (or depth h0 ) was reduced in line with the results found by

[12]. This occurs so that the frequency of the system ω → ω0 =
√
mv/ν , which is the

frequency of the dry system (mf = 0), as mf → 0.
The nonlinear simulations showed that for a system dominated by the lowest frequency

mode, including only a nonlinear fluid with a linear vessel does not greatly modify the
vessel motion, despite the free-surface profile being modified. However, when there exists
two modes of similar amplitudes in the solution, then the nonlinear fluid effect is greater,
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Figure 14: Plot of h(x, t) − h0 for the case system Q = 10−2m, Q1 = 0m, R0 = 0.1m,
R2 = 0.2m, mv = 2kg, h0 = 0.02m, ν = 30 kgs−2 and µ = 0 kgm−2s−2 (solid lines) given
in figure 13, where x = r cos θ , at (a) τ = 10s, (b) τ = 20s, (c) τ = 30s, (d) τ = 40s,
(e) τ = 50s, (f) τ = 60s. The dashed lines give the linear result scaled up by a factor of
1000.

leading to an observable modification of the vessel motion.
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