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– Abstract –

Suspending a rectangular vessel which is partially filled with fluid from a sin-
gle rigid pivoting pole produces an interesting theoretical model with which
to investigate the dynamic coupling between fluid motion and vessel rotation.
The exact equations for this coupled system are derived with the fluid motion
governed by the Euler equations relative to the moving frame of the vessel,
and the vessel motion governed by a modified forced pendulum equation. The
nonlinear equations of motion for the fluid are solved numerically via a time-
dependent conformal mapping, which maps the physical domain to a rectangle
in the computational domain with a time dependent conformal modulus. The
numerical scheme expresses the implicit free-surface boundary conditions as
two explicit partial differential equations which are then solved via a pseudo-
spectral method in space. The coupled system is integrated in time with a
fourth-order Runge-Kutta method. The starting point for the simulations is
the linear neutral stability contour discovered by Turner, Alemi Ardakani &
Bridges (2014, J. Fluid Struct. 52, 166-180). Near the contour the nonlinear
results confirm the instability boundary, and far from the neutral curve (pa-
rameterised by longer pole lengths) nonlinearity is found to significantly alter
the vessel response. Results are also presented for an initial condition given by
a superposition of two sloshing modes with approximately the same frequency
from the linear characteristic equation. In this case the fluid initial conditions
generate large nonlinear vessel motions, which may have implications for sys-
tems designed to oscillate in a confined space or on the slosh-induced-rolling
of a ship.
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1 Introduction

The pendulum-slosh problem consists of a vessel, partially filled with fluid, rigidly attached
to a pivot point in the plane, with coupling between the fluid motion and rotation of the
vessel about the pivot point. This problem is the simplest configuration which couples
vessel rotation and fluid motion, and provides a simplified model for the slosh-induced
rolling of a ship as shown schematically in Figure 1. An example of a roll destabilization
due to sloshing occurs on Alaskan king crab boats which can capsize when water trapped
on the deck sloshes from side to side creating unintended moments enhancing the roll
motion of the boat (Dillingham, 1981; Caglayan and Storch, 1982; Adee and Caglayan,
1982).

Figure 1: Interaction between fluid sloshing and ship roll motion.

The pendulum-slosh problem was one of the first examples of slosh-vessel interaction to
be studied (Moiseev, 1953; Abramson et al., 1961; Moiseyev and Rumyantsev, 1968). Moi-
seyev and Rumyantsev (1968) derived the governing linear equations, and consequently
the characteristic equation, by considering the added mass coefficients for the fluid and
a Lagrangian construction for the vessel. The pendulum-slosh problem is more difficult,
due to the rotary motion of the vessel, than coupling with horizontal motion, such as
tuned liquid damping (TLD) systems (e.g. Frandsen (2005); Xue et al. (2000); Idir et al.
(2009); Gardarsson et al. (2001); Alemi Ardakani and Bridges (2010)). The motion of a
fluid in a stationary or forced vessel, whether studied experimentally, theoretically or nu-
merically, is already very complicated. The works by Moiseyev and Rumyantsev (1968),
Ibrahim (2005) and Faltinsen and Timokha (2009), and the references therein, highlight
the problems in these areas. The problem of coupled dynamics, particularly with vessel
rotation, adds an additional layer of complexity to this already difficult problem because
it can happen that the waves are excited or calmed by the vessel’s motion, or the vessel’s
motion may be excited or calmed by the motion of the waves.

The starting point for this paper is the linear analysis of the pendulum-slosh problem
of Turner et al. (2015). They studied the linear system for a vessel with rectangular cross-
section in depth and discovered an instability when the pivot point l = l̂ + d satisfies

(1 +R)l <
1

2
h0 +

1

12

L2

h0

,

where
R =

mv

mf

,
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is the ratio of the dry vessel mass mv and the fluid mass mf . Here L is the vessel length,

d its height, l̂ is the rigid pole length and h0 is the mean fluid height as shown in the
schematic diagram in figure 2. A remarkable feature of the above instability is that l can
be larger than h0 , i.e. above the height of the quiescent fluid, depending on the parameter
values of the system. the configuration in figure 2 is free to rotate in the vertical plane
such that the rigid pole makes an angle θ with the downward vertical, and the vessel is
partially filled with an inviscid, incompressible fluid of mass mf and constant density ρ ,

mf =

∫ L

0

ρh(x, t) dx , with
d

dt
mf = 0 .

Here y = h(x, t) is the free surface of the fluid and x = (x, y) is a coordinate system
fixed to the moving vessel with the origin at the bottom left-hand corner of the vessel,
and we also define X̂ = (X̂, Ŷ ) to be a planar fixed coordinate system with the origin at
the point at which the vessel pivots.

θ

̂X

Lx
y

h(x, t)

d

̂Y

0

l̂ l

Figure 2: Schematic of the pendulum-slosh problem.

In this paper we present numerical simulations of the fully nonlinear two-dimensional
equations for a variety of parameter values both close to, and away from the above linear
neutral stability contour. There has been much work on numerical solutions to both free
and forced sloshing problems using techniques such as finite difference, pseudo-spectral,
Lagrangian-Eulerian boundary fitted grids, finite elements and domain mappings (e.g. Tel-
ste, 1985; Ferrant and Le Touze, 2001; Ushijima, 1998; Hirt and Nichols, 1981; Frandsen,
2004). The main problem with numerical simulations is how to treat the unknown position
of the free-surface. Numerical models tend to use either a Lagrangian method to track
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the free-surface or mapping to a simpler domain. The disadvantage of the first approach
is that surface velocities are difficult to predict correctly, hence free-surface smoothing
is often used which introduces errors into the solution. The use of mappings overcomes
this problem, but they cannot easily predict features such as wetting and drying of the
vessel bottom. In shallow water, the Lagrangian particle path approach is more fruitful,
and Alemi Ardakani and Bridges (2010) constructed a fast-numerical algorithm based on
a symplectic integrator to simulate coupled TLD motion. However, this approach can
not be easily extended to finite depth fluids. To solve the two-dimensional nonlinear cou-
pled system in this paper we present a method based upon a time-dependent conformal
mapping, in which the volume of the fluid bounded by the vessel and the unknown free-
surface in physical space, is mapped to a rectangle with a time-dependent aspect ratio in
the mapped computational domain.

The idea of time-dependent conformal mappings for water wave simulations goes back
to Byatt-Smith (1971) and Whitney (1971), but the approach we use is based upon that of
Dyachenko et al. (1996) who used the Hilbert transform to relate the conjugate harmonic
functions along the free surface and then introduced a fast numerical algorithm based upon
pseudo-spectral methods for spatially periodic flows. This efficient numerical algorithm is
possible because Dyachenko et al. (1996) formulated the implicit kinematic and dynamic
boundary conditions on the free surface into two explicit partial differential equations
for the free surface evolution. This theory was originally developed for infinite depth
flows, but has since been extended to finite depth flows (Dyachenko et al., 1999; Choi and
Camassa, 1999; Li et al., 2004; Viotti et al., 2013), and a review article following up on
this approach with extensive references was published by Shamin (2009). The method for
the finite depth case centres around defining a time-dependent conformal mapping which
maps the boundary of the physical fluid domain to a rectangle in the mapped domain with
a time-dependent aspect ratio known as the conformal modulus, which has to be found
as part of the solution (Challis and Burley, 1982; Seidl and Klose, 1985; Papamichael and
Stylianopoulos, 2010).

Curiously, previous studies do not emphasize the significance of the conformal modulus
which is time-dependent and has to be solved for as part of the solution. The conformal
modulus is a purely geometric requirement of the mapping and does not appear to have
any physical significance. Hence there is a temptation to find a strategy that allows fixing
the conformal modulus at a chosen value. When the flow is steady the mapping is fixed
and the conformal modulus is fixed. In this case, if the specific value of the mean depth
is not important, the value of the conformal modulus can be fixed, and then the value of
the depth determined as part of the solution. This strategy is used in Vanden-Broeck and
Schwartz (1979) and Constantin et al. (2014). However, this strategy fails in the time-
dependent case since fixing the conformal modulus will lead to a time-dependent value of
the depth! The work of Turner and Bridges (2015) showed both analytically and numeri-
cally that the explicit time-dependent form of the conformal modulus is vital in order to
correctly determine the evolution of the free-surface, especially in nonlinear interactions.
They also presented a numerical scheme which generalises that of Dyachenko et al. (1996)
by introducing the “Garrick-Hilbert transform”, which is the required generalisation of
the Hilbert transform to doubly-connected regions, as well as a numerical scheme for the
conformal modulus. In this paper we derive the corresponding explicit free-surface PDEs
for the pendulum-slosh problem and solve them along with a non-linear pendulum equa-
tion for the vessel motion using a generalisation to the coupled system of the approach
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presented in Turner and Bridges (2015).
Nonlinear results are presented for non-breaking waves on either side of the linear

neutral stability contour in parameter space. Nonlinear results are also presented as the
pole length is varied (for a fixed fluid mass) highlighting the vessel behaviour far from the
neutral contour. In these simulations the initial conditions for the fluid are given by the
linear form of the fundamental linear sloshing mode. These results are then compared
to the vessel motion obtained for experimentally realistic initial conditions in order to
contrast differences in behaviour of the dynamic feedback. Finally nonlinear simulations
are given for a parameter set containing the superposition of two linear anti-symmetric
sloshing modes with similar frequencies. Here the nonlinearity produces a vessel motion
with an oscillation amplitude much larger than the corresponding linear result. This result
may have implications for a physical system designed to oscillate in a confined space or
on the slosh-induced-rolling of a ship.

The structure of the paper is as follows. The formulation of the governing nonlinear
equations for the coupled pendulum problem are given in §2. In §3 we derive the nonlinear
PDEs governing the evolution of the free-surface, formulate the time-dependent conformal
mapping and present the numerical scheme. The results of the nonlinear simulations are
given in §4 and conclusions and further discussions can be found in §5.

2 Formulation of governing equations

2.1 Formulation

A schematic of the physical problem addressed in this paper is given in figure 2. The two
Cartesian coordinate systems are related via

X̂ = Q̂(t)(x + d), where Q̂(t) =

(
cos θ − sin θ
sin θ cos θ

)
,

is a rotation tensor in R2 and d = (d1 d2)T = (−L/2 − l)T , is the displacement of the
axis of rotation from the origin of the body frame. We have assumed for simplicity that
the rigid pole is fixed along the centre line of the vessel (i.e. d1 = −L/2), but we leave
the quantities d1 and d2 in the analysis to simplify the algebra.

We define the velocity vector u = (u, v) to be the Eulerian velocity vector in the body
coordinate system and the Euler equations of motion in this frame are

Du

Dt
+

1

ρ

∂p

∂x
= −g sin θ + 2θ̇v + θ̈(y + d2) + θ̇2(x+ d1), (2.1)

Dv

Dt
+

1

ρ

∂p

∂y
= −g cos θ − 2θ̇u− θ̈(x+ d1) + θ̇2(y + d2), (2.2)

where g denotes the constant acceleration due to gravity, which acts in the negative Ŷ
direction and the dots denote differentiation with respect to t (Turner et al., 2015).

The fluid is incompressible, so it satisfies the continuity equation ux + vy = 0, while
the boundary conditions are the no penetration conditions on the rigid vessel walls, and
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the dynamic and kinematic conditions on the free-surface y = h(x, t) ,

v = 0 on y = 0, (2.3)

u = 0 on x = 0, L, (2.4)

p = 0 on y = h(x, t), (2.5)

ht + uhx = v on y = h(x, t). (2.6)

The fluid motion within the vessel is dynamically coupled to the motion of the vessel
via a pendulum-like equation which is derived by starting with a Lagrangian for the vessel
motion,

L =

∫ t2

t1

L dt,

where

L =

∫ L

0

∫ h

0

[
1

2
(u2 + v2)− θ̇u(y + d2) + θ̇v(x+ d1) +

1

2
θ̇2
(
(x+ d1)2 + (y + d2)2

)

−g (sin θ(x+ d1) + cos θ(y + d2))

]
ρ dydx+

1

2
mv

[
(xv + d1)2 + (yv + d2)2

]
θ̇2

−mvg ((xv + d1) sin θ + (yv + d2) cos θ) . (2.7)

(Alemi Ardakani, 2010; Turner et al., 2015). Here (xv, yv) is the position of the centre of
mass of the vessel in the body frame coordinates. The vessel differential equation is then

derived via the Euler-Lagrange equation, d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= 0, for θ

(
mv

[
(xv + d1)2 + (yv + d2)2

]
+

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx

)
θ̈

+θ̇
d

dt

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx+mvg [(xv + d1) cos θ − (yv + d2) sin θ]

+g

∫ L

0

∫ h

0

[cos θ(x+ d1)− sin θ(y + d2)] ρ dydx =
d

dt

[∫ L

0

∫ h

0

[u(y + d2)− v(x+ d1)] ρ dydx

]
.(2.8)

The fluid flow is not irrotational, due to the vessel rotation. This rotationality is in
contrast to the TLD or the Cooker bi-pendulum experiment (Cooker, 1994; Frandsen,
2005; Alemi Ardakani et al., 2012) where the base of the vessel remains horizontal during
motion. However, the rotationality can be treated by splitting the flow field into a rota-
tional part and an irrotational part and introducing a velocity potential φ(x, y, t) for the
irrotational part. Thus we set

u =
∂φ

∂x
, and v =

∂φ

∂y
− 2θ̇(x+ d1), (2.9)

(see Turner et al. (2015) for background on this particular form for the splitting). The
continuity equation then leads to Laplace’s equation for φ

φxx + φyy = 0 in 0 ≤ y ≤ h(x, t), 0 ≤ x ≤ L, (2.10)

and integrating (2.1) and (2.2) with respect to x and y respectively leads to Bernoulli’s
equation for the pressure

p

ρ
+ φt +

1

2

(
φ2
x + φ2

y

)
− 2θ̇(x+ d1)φy − θ̈(y + d2)(x+ d1)

−1

2
θ̇2
[
−3(x+ d1)2 + (y + d2)2

]
+ g (x sin θ + y cos θ) = Be(t),
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where Be(t) is the Bernoulli function which, without loss of generality, can be absorbed
into φ(x, y, t) . Therefore, the dynamic free-surface boundary condition (2.5) becomes

φt +
1

2

(
φ2
x + φ2

y

)
− 2θ̇(x+ d1)φy − θ̈(h+ d2)(x+ d1)

−1

2
θ̇2
[
−3(x+ d1)2 + (h+ d2)2

]
+ g (x sin θ + h cos θ) = 0, on y = h(x, t).(2.11)

In terms of the velocity potential φ(x, y, t) , the other boundary conditions are

∂φ

∂x
= 0, on x = 0, L, (2.12)

∂φ

∂y
= 2θ̇(x+ d1), on y = 0, (2.13)

and the kinematic free-surface boundary condition becomes

ht + φxhx = φy − 2θ̇(x+ d1) on y = h(x, t). (2.14)

Substituting the velocity potential into (2.8) gives the form of the vessel equation as

(
mv

[
(xv + d1)2 + (yv + d2)2

]
+

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx

)
θ̈

+θ̇
d

dt

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx+mvg ((xv + d1) cos θ − (yv + d2) sin θ)

+g

∫ L

0

∫ h

0

[cos θ(x+ d1)− sin θ(y + d2)] ρ dydx

=
d

dt

[∫ L

0

∫ h

0

[
φx(y + d2)−

(
φy − 2θ̇(x+ d1)

)
(x+ d1)

]
ρ dydx

]
. (2.15)

Although the equation for the vessel looks quite complicated, it is a nonlinear pendulum
equation with coefficients and forcing that depend on the fluid motion.

2.2 Linear solutions and natural frequencies

In the results section, §4, we utilize results from the linear theory as initial conditions, as
well as for determining the natural frequencies of the system. Hence we briefly summarize
the key results on the linear problem from Turner et al. (2015).

The characteristic equation for this system is found by considering linear solutions of
(2.10)-(2.15), about a state of quiescent fluid where φ = −gh0t , h = h0 , θ = 0 and h0 is
a constant, of the form

φ(x, y, t) = −gh0t−
1

2

[
iφ̂(x, y)eiωt + c.c

]
, (2.16)

h(x, t) = h0 +
1

2

[
ĥ(x)eiωt + c.c

]
, (2.17)

θ(t) =
1

2
θ̂eiωt + c.c, (2.18)

where ω = Ωr + iΩi is the complex angular frequency, i =
√
−1, c.c denotes the complex

conjugate and φ̂ and ĥ are complex functions with θ̂ real, such that |φ̂|, |ĥ|, |θ̂| � 1. The
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exact forms of φ̂ and ĥ , as well as a complete derivation of the characteristic equation,
are given in Turner et al. (2015), except here we have multiplied the linear perturbations
by −i . Also, for definiteness, we fix the position of the centre of mass of the vessel. To
simplify the algebra, we set the centre of mass of the dry vessel to be at (xv, yv) = (−d1, 0),
i.e. at the centre of the base of the vessel. Then Turner et al. (2015) show that the non-
dimensional characteristic equation takes the form

∆(s) = P (s)D(s) = D(s)
∞∏

n=1

σ̂n, (2.19)

where

D(s) =

[
G− 2δ2G2

(1 +R)2
− 2G2

3(1 +R)2
− s2

(
1 +R− 4δ2G2

3(1 +R)2
− 4δ2G

1 +R
+

16δ4G2

3(1 +R)2

)

+32

∞∑

n=0

1

γ3nσn

[
Tn

(
s4
(

4δ2G

1 +R
− 1

)2

− G2

(1 +R)2

)
− 8δs4G

γn(1 +R)

(
4δ2G

1 +R
− 1 +

8δTnG

γn(1 +R)

)

+
2s2σnG

γn(1 +R)
+

8δs2G

Cnγn(1 +R)

(
G

1 +R
(3Cn − 2) + 2s2

(
4δ2G

1 +R
− 1

))]] ∞∏

n=0

σn. (2.20)

The quantities can be expressed in terms of dimensional quantities via

R =
mv

mf

, G =
L2(mv +mf )

4h0mf l
=
L(mv +mf )

4δmf l
, δ =

h0

L
,

l

L
=

(1 +R)

4δG
, s =

ωL

2
√
gh0

,

where the n−dependent parameters are

γn = αnL = (2n+ 1)π, γ̂n = βnL = 2nπ,

σn =
L

g
(ω2 − gαnTn) = 4δs2 − γnTn, σ̂n = 4δs2 − γ̂nT̂n,

Tn = tanh(γnδ), T̂n = tanh(γ̂nδ), Cn = cosh(γnδ).

The characteristic equation is solved numerically for the complex non-dimensional fre-
quency s = Sr + iSi . Before presenting simulations of the nonlinear equations we first
formulate the time-dependent conformal mapping technique.

3 Time-dependent conformal mapping formulation

In order to use periodicity, we first extend the problem to x ∈ [0, 2L] by defining the even
extension of φ(x, y, t) as

φ(x, y, t) = φ(2L− x, y, t) for L ≤ x ≤ 2L.

This ensures that all of the modes for x ∈ [0, L] , both symmetric and anti-symmetric, are
periodic for x ∈ [0, 2L] and thus we can utilize Fourier analysis in combination with the
conformal mappings (Dyachenko et al., 1996; Bridges and Donaldson, 2011; Turner and
Bridges, 2015).

The conformal mapping takes the physical domain x ∈ [0, 2L] , y ∈ [0, h(x, t)] to the
computational domain µ ∈ [0, 2L] and ν = [−Q(t), 0] where Q(t) is the time dependent
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(a)

h

0

2L

x

y

0

h(x,t)

(b)

−Q(t)

0

2L
µ

ν

Figure 3: Schematic of (a) the physical domain which is mapped into (b) a fixed rect-
angular computational domain by the time-dependent conformal mapping. The time-
dependent aspect ratio of the rectangle, Q(t) , is known as the conformal modulus.

conformal modulus which needs to be found as part of the solution procedure. A schematic
of the physical and computational domains are shown in figure 3.

In the computational domain the physical coordinates are x = x(µ, ν, t) and y =
y(µ, ν, t) . On ν = 0 in the computational domain these coordinates define a parametric
form of the free surface

(X(µ, t), Y (µ, t)) = (x(µ, 0, t), y(µ, 0, t)) for µ = [0, 2L].

It is assumed throughout this paper that the surface is non-degenerate everywhere, that
is J = X2

µ + Y 2
µ 6= 0 for all t and 0 ≤ µ ≤ 2L .

Both the coordinates, x(µ, ν, t) + iy(µ, ν, t) , and the complex potential, φ(µ, ν, t) +
iψ(µ, ν, t) , are time-dependent holomorphic functions, satisfying the Cauchy-Riemann
equations,

xµ = yν , xν = −yµ, φµ = ψν , φν = −ψµ. (3.1)

Here ψ , the stream function, and φ , the velocity potential, satisfy Laplace’s equation
in the computational domain. It remains to transform the boundary condition from the
physical domain to the computational domain. Following the approach of Bridges and
Donaldson (2011) (cf. equations (A-7) and (3.8) in Bridges and Donaldson (2011)), with
the details confined to appendix A, the boundary conditions become

1

J
(φµxµ + ψµyµ) = 0 on µ = 0, 2L, (3.2)

xµψµ = −2θ̇J(x+ d1) on ν = −Q(t), (3.3)

XµYt − YµXt = −Ψµ − 2θ̇Xµ(X + d1) on ν = 0, (3.4)

JΦt − (YµYt +XµXt) Φµ − (YµXt −XµYt) Ψµ +
1

2

(
Φ2
µ + Ψ2

µ

)

−2θ̇(X + d1) (YµΦµ −XµΨµ)− θ̈J(Y + d2)(X + d1)

−J
2
θ̇2
[
−3 (X + d1)2 + (Y + d2)2

]
+ gJ(X sin θ + Y cos θ) = 0 on ν = 0, (3.5)

where
Φ(µ, t) + iΨ(µ, t) = φ(µ, 0, t) + iψ(µ, 0, t),

is the complex potential evaluated on the free surface. The boundary conditions (3.2)-
(3.5) are valid for µ ∈ [0, L] , with a similar set with x replaced by 2L − x valid for
x ∈ [L, 2L] , completing the boundary value problem.
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3.1 Determining the conjugate function transformations

The most general solutions for x(µ, ν, t) , y(µ, ν, t) , φ(µ, ν, t) and ψ(µ, ν, t) which satisfy
the side wall boundary conditions (3.2), give x = 0, L, 2L at µ = 0, L, 2L , and satisfy
the Cauchy-Riemann equations (3.1), are

y(µ, ν, t) = h0 +B0(t) + ν +
∞∑

n=1

(
Bn(t) cosh

nπ

L
ν +An(t) sinh

nπ

L
ν
)

cos
nπ

L
µ, (3.6)

x(µ, ν, t) = µ+
∞∑

n=1

(
An(t) cosh

nπ

L
ν +Bn(t) sinh

nπ

L
ν
)

sin
nπ

L
µ, (3.7)

φ(µ, ν, t) = C0(t) + C01(t)ν +
∞∑

n=1

(
Cn(t) cosh

nπ

L
ν +Dn(t) sinh

nπ

L
ν
)

cos
nπ

L
µ, (3.8)

ψ(µ, ν, t) = D0(t)− C01(t)µ−
∞∑

n=1

(
Dn(t) cosh

nπ

L
ν + Cn(t) sinh

nπ

L
ν
)

sin
nπ

L
µ, (3.9)

where An, Bn, Cn, Dn and C01 are functions of time to be determined. We can eliminate
some of these functions by noting that for a rectangular vessel with a horizontal base at
y = 0, then y(µ,−Q, t) = 0 leads to

h0 +B0(t)−Q(t) = 0, and Bn(t) cosh
nπ

L
Q(t)− An(t) sinh

nπ

L
Q(t) = 0, for n ≥ 1.

Thus,

y(µ, ν, t) = h0 +B0(t) + ν +
∞∑

n=1

An(t)
sinh nπ

L
(ν +Q)

cosh nπQ
L

cos
nπ

L
µ,

x(µ, ν, t) = µ+
∞∑

n=1

An(t)
cosh nπ

L
(ν +Q)

cosh nπQ
L

sin
nπ

L
µ,

and the conformal modulus is determined via Q(t) = h0 +B0(t) .
The functions Cn and Dn in (3.8) and (3.9) can be related to one another by consider-

ing the bottom boundary condition (3.3). As the vessel bottom is flat, then on ν = −Q(t)
yµ = 0, thus, as we do not want the mapping to be degenerate, i.e. J = x2

µ + y2
µ 6= 0,

xµ 6= 0 for any µ , we can write the bottom boundary condition for x ∈ [0, L] as

ψµ = −2θ̇xµ(x+ d1),

which on integrating with respect to µ becomes

ψ = −θ̇(x+ 2d1)x, on ν = −Q(t).

The time-dependent integration function can be set to zero without loss of generality
as the final analysis shows that ψ always appears differentiated with respect to µ in
the governing equations. Similarly if we consider the bottom boundary condition for
µ ∈ [L, 2L] then we can write

ψ =

{
−θ̇(x+ 2d1)x for µ ∈ [0, L]

θ̇(2L− x+ 2d1)(2L− x) for µ ∈ [L, 2L]
, on ν = −Q(t). (3.10)
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This condition ensures that ψ is an odd function of µ , and so can be expressed as a
Fourier Sine series

ψ =
∞∑

n=1

χn sin
nπ

L
µ, where χn = −2θ̇

L

∫ L

0

[x(µ,−Q, t) + 2d1]x(µ,−Q, t) sin
nπ

L
µ dµ.

(3.11)
Thus by equating this expression to (3.9) evaluated on ν = −Q(t) we find that

Dn = Cn tanh
nπQ

L
− χn

cosh nπQ
L

,

and C01 = 0. Therefore

φ(µ, ν, t) = C0(t) +
∞∑

n=1

(
Cn(t)

cosh nπ
L

(ν +Q)

cosh nπQ
L

− χn
sinh nπ

L
ν

cosh nπQ
L

)
cos

nπ

L
µ,

ψ(µ, ν, t) = D0(t) +
∞∑

n=1

(
−Cn(t)

sinh nπ
L

(ν +Q)

cosh nπQ
L

+ χn
cosh nπ

L
ν

cosh nπQ
L

)
sin

nπ

L
µ,

and on the free-surface, ν = 0, the expressions for the variables x, y, φ, ψ become

Y (µ, t) = h0 +B0(t) +
∞∑

n=1

An(t) tanh
nπQ

L
cos

nπ

L
µ, (3.12)

X(µ, t) = µ+
∞∑

n=1

An(t) sin
nπ

L
µ, (3.13)

Φ(µ, t) = C0(t) +
∞∑

n=1

Cn(t) cos
nπ

L
µ, (3.14)

Ψ(µ, t) = D0(t) +
∞∑

n=1

(
−Cn(t) tanh

nπQ

L
+

χn

cosh nπQ
L

)
sin

nπ

L
µ. (3.15)

In the nonlinear boundary conditions (3.2)-(3.5) ψ and Ψ appear only as derivatives with
respect to µ , and so without loss of generality we can set D0(t) = 0. These expressions
give the mappings required to map between the conjugate functions X and Y and Φ and
Ψ on the free-surface for a given value of t .

Using the theory and notation of §3 of Turner and Bridges (2015) these mappings can
be written in operator form (full details are given in that paper and here we just record
the relevant results). The mapping between X and Y is given by

X = µ+ T−1
q (Y ), (3.16)

where the operator T−1
q (P ) acting on P , which has Fourier series representation

P (µ) =
a0

2
+
∞∑

n=1

(
an cos

(nπ
L
µ
)

+ bn sin
(nπ
L
µ
))

,

is

T−1
q (P ) =

∞∑

n=1

coth

(
nπQ

L

)(
−bn cos

(nπ
L
µ
)

+ an sin
(nπ
L
µ
))

.
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This is equivalent to the conjugate function mapping for the free-sloshing problem con-
sidered in Turner and Bridges (2015).

The mapping between Φ and Ψ however, is different due to the added rotational
component. We represent this transformation as

Ψ = Tq(Φ) + Tχ(x) or Φ = T−1
q (Ψ−Tχ(x)), (3.17)

where

Tχ(x) =
∞∑

n=1

χn

cosh nπQ
L

sin
nπ

L
µ,

and χn is given in (3.11). Thus the operator Tχ(x) takes as an input the function
−θ̇(x+ 2d1)x with x evaluated on the bottom of the vessel.

Therefore to determine the time evolution of the free-surface we solve the two free-
surface boundary conditions (3.4) and (3.5), using (3.16) and (3.17) to remove the depen-
dence on two of the variables. This is equivalent to the method of Turner and Bridges
(2015) and in fact, (3.16) and (3.17) are equivalent to their mappings when χn ≡ 0 for
all n .

3.2 Explicit form of the governing free-surface equations

The implicit free-surface equations (3.4) and (3.5) can be expressed in explicit form by
the following construction. The free-surface (X(µ, t), Y (µ, t)) is a regular parameterized
curve in the plane for each fixed value of t . Hence any vector in R2 can be represented
uniquely as a linear combination of its normal and tangential vectors. Hence (Xt, Yt) can
be expressed as (

Xt

Yt

)
=
α(µ, t)

J

(
Xµ

Yµ

)
+
β(µ, t)

J

(
−Yµ
Xµ

)
,

where α(µ, t) and β(µ, t) are functions to be determined. Substituting this into (3.4)
gives β = −Ψµ − 2θ̇Xµ(X + d1) , but α , which represents the tangential fluid velocity at
the free-surface, is arbitrary. Hence the kinematic condition can be expressed as

Xt =
(

Ψµ
J

+ 2θ̇Xµ
J

(X + d1)
)
Yµ + α

J
Xµ,

Yt = −
(

Ψµ
J

+ 2θ̇Xµ
J

(X + d1)
)
Xµ + α

J
Yµ.

(3.18)

From these equations it is clear that α = XµXt + YµYt which can be substituted into
(3.5) giving

Φt = − 1

2J

(
Φ2
µ −Ψ2

µ

)
+ 2θ̇Yµ(X + d1)

Φµ

J
+ θ̈(Y + d2)(X + d1)

+
θ̇2

2

[
−3(X + d1)2 + (Y + d2)2

]
− g (X sin θ + Y cos θ) +

Φµ

J
α(µ, t). (3.19)

In (3.18) and (3.19) the function α(µ, t) is determined such that the mapping (3.16) holds.
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3.3 Using α to enforce analyticity

The function α can be determined explicitly in terms of free-surface variables by consid-
ering the boundary values of the analytic function z(ζ, t) where ζ = µ + iν . We denote
the boundary values of this function as Z(µ, t) = X(µ, t) + iY (µ, t) and we note that on
the boundary

Im

(
zt
zµ

)∣∣∣∣
ν=0

= − 1

J

(
Ψµ + 2θ̇Xµ(X + d1)

)
and Im

(
zt
zµ

)∣∣∣∣
ν=−Q(t)

= 0,

and hence the real part of zt/zµ is determined by the Hilbert-Garrick transform high-
lighted in Turner and Bridges (2015). In complex form we have

Zt =
1

J
(α + iβ)Zµ, where β = −

(
Ψµ + 2θ̇Xµ(X + d1)

)
,

and therefore the Hilbert-Garrick transformation gives

α

J
= α + T−1

q

(
β

J

)
= α−T−1

q

(
Ψµ

J
+

2θ̇Xµ

J
(X + d1)

)
,

where α is the mean value of α/J .
The function α is not in general arbitrary, it is related to the time-dependent mean

part of X(µ, t) . This problem has been addressed for the classic water wave problem
by Choi and Camassa (1999). The time-dependent part of X(µ, t) would consist of a
function x0(t) added to (3.7) and Choi and Camassa (1999) note that x0 and α , in our
notation, are related to one another by taking the mean of the first equation of (3.18),
and that either of these functions can be considered arbitrary, hence implying the other.
This is the strategy we use here. Taking the mean of the first equation of (3.18) leads to

ẋ0(t) = F (t)x0 + α(t) , (3.20)

for a flat bottomed vessel, where F (t) is some time dependent function, whose form is
not important to this study. See Appendix A of Turner and Bridges (2015) for how to
construct this result. Thus, as we have set x0 = 0 in (3.7) this implies α = 0. Therefore,
the forms of (3.18)-(3.19) we solve are

Xt =
Ψµ

J
Yµ −T−1

q

(
Ψµ

J
+

2θ̇Xµ

J
(X + d1)

)
Xµ , (3.21)

Yt = −Ψµ

J
Xµ −T−1

q

(
Ψµ

J
+

2θ̇Xµ

J
(X + d1)

)
Yµ , (3.22)

Φt = −g(Y − δ)− 1

2J
Φ2
µ +

1

2J
Ψ2
µ −T−1

q

(
Ψµ

J
+

2θ̇Xµ

J
(X + d1)

)
Φµ . (3.23)

3.4 Numerical scheme

The numerical scheme used to solve for the time evolution of the free surface is very similar
to the pseudo-spectral approach laid out in Turner and Bridges (2015). In this paper we
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briefly highlight the main aspects of the scheme, and the reader is directed to Turner and
Bridges (2015) for full details. The free surface equations (3.22) and (3.23) and the vessel
equation (2.15) are integrated forward in time using a fourth order Runge-Kutta scheme
with a time step ∆t and specified initial conditions

Y (µ, 0) = Y0(µ), X(µ, 0) = X0(µ), Φ(µ, 0) = Φ0(µ), Ψ(µ, 0) = Ψ0(µ), θ(0) = θ0.

Collocation is used to discretize the interval µ ∈ [0, 2L] using 2N collocation points
defined by

µk = (k − 1)
L

N
, k = 1, ..., 2N,

and derivatives are approximated using central differences. By discretising this way we
retain N terms in the summations in (3.12)-(3.15).

The initial forms of X0(µ) and Y0(µ) are found by solving the nonlinear expression

y = h(x, 0) = H(x) on ν = 0, (3.24)

where H(x) is some given initial free-surface profile, found by evaluating at µk for k =
1, ..., N + 1 and solving the resulting system of N + 1 simultaneous nonlinear equations
via Newton’s method. The form of Φ0(µ) is stipulated and Ψ0(µ) is found via (3.15).

We take advantage of the fact that X(µ, t) and Y (µ, t) are conjugate functions and
integrate only the Yt and Φt equations updating X and Ψ via (3.16) and (3.17). The
time integration of (3.22), (3.23) and (2.15) proceeds as follows. Firstly we update θ
via (2.15), then we determine α(µ, t) = −JTq(Ψµ/J + 2θ̇Xµ(x+ d1)/J) . Now (3.22) and
(3.23) are time stepped and (3.16) and (3.17) are used to determine X and Ψ respectively
at the new time step. Finally we update the conformal modulus Q(t) . This needs to be
done iteratively because the process for finding X(µ, t) and Ψ(µ, t) depend on Q(t) . The
conformal modulus is updated via

Q(n)(t) = Y
(n)

0 (t),

where Y0(t) is the non-periodic coefficient of the Fourier transform of Y (µ, t) and (n) is
the number of iterations. This process continues until the relative error in Q(n)(t) is less
than 10−10 for the results in §4.

The results in §4 are presented with a time step ∆t = 5 × 10−5 and with N = 400.
The nonlinear terms in the governing equations are de-aliased, and we apply a filter to
X, Y, Φ and Ψ after each complete time step to suppress growing higher order Fourier
modes not removed by the de-aliasing. These additional higher order modes occur due to
the highly nonlinear form of (3.22) and (3.23). The reason we are not able to fully de-alias
the nonlinear terms, is because the equations contain multiplications by the inverse of a
finite Fourier expansion, which itself has an infinite Fourier expansion, and so de-aliasing
cannot occur completely. However, testing the numerical scheme for various values of
N and different de-aliasing values we found that de-aliasing each quadratic nonlinearity
using the 2N/3 approach, and applying the additional filtering, to be sufficient to produce
converged results.

All results in §4 are found to be graphically independent of larger N and smaller ∆t .
The convergence of the simulations as N is increased can be seen in table 1 which gives
values of

I(∆t, N) =

∫ 50

0

θ dt,
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for ∆t = 5×10−4 and ∆t = 5×10−5 for various values of N for the nonlinear simulation
result given in figure 8 of §4.3. The results in table 1 show that the results converge

N ∆t = 5× 10−4 ∆t = 5× 10−5

100 9.4782× 10−3 10.4267× 10−3

200 −6.5894× 10−3 −5.1442× 10−3

300 −6.6268× 10−3 −6.6231× 10−3

400 −6.6334× 10−3 −6.6088× 10−3

500 −6.6375× 10−3 −6.6127× 10−3

Table 1: Table of values for I(∆t, N) for ∆t = 5 × 10−4 and ∆t = 5 × 10−5 for N =
100, 200, 300, 400 and 500 for the nonlinear simulation result given in figure 8 of §4.3.

quickly for each ∆t and have converged by N = 400. The small differences in the value
for I(∆t, N) for large N is due to the filtering of the results as discussed above. The forms
of θ(t) for the N = 400 and N = 500 results for each ∆t in table 1 are indistinguishable
to graphical accuracy, as are the free-surface elevation results at both walls, Y (0, t) and
Y (L, t) . Even though results with N = 400 for both the time steps given in table 1 are
equivalent to graphical accuracy, we choose to use the smaller time step as we find this
helps with the convergence of the iterative part of the numerical scheme for simulations
which contain more nonlinear free-surface profiles. Simulations at this resolution take
approximately 120 hours of wall time on a standard desktop machine to run.

4 Numerical results

In this section we present results of the nonlinear simulations, highlighting the time evo-
lution of the fluid and vessel motions, the role of initial conditions, as well as the time
evolution of the energy budget. For the initial conditions we use the linear expressions for
φ , h and θ given in (2.16), (2.17) and (2.18), with ĥ and φ̂ given in (3.12) and (3.13) of

Turner et al. (2015). Therefore, θ(0) = θ0 = θ̂ and Y0(µ) and X0(µ) are found by solving
(3.24) with

H(x) = h(x, 0) = h0 +
N∑

n=1

θ̂pn
Ωr − gαnTn

[
2Ω2

r

Cn
− Tnαn

(
g − Ω2

r(h0 + d2)
)]

cos(αnx),

where ω = Ωr + iΩi is used so we can consider both stable and unstable solutions,
αn = (2n+ 1)π/L and pn = −4/(Lα2

n) . Also using (3.14) and (3.15), we have

Φ0(µ) = −
N∑

n=1

Ωiθ̂pn
Ω2
i + gαnTn

[
g − 2g

Cn
+ Ω2

i (h0 + d2)

]
cos(αnx),

Ψ0(µ) =
N∑

n=1

[
Ωiθ̂pnTn

Ω2
i + gαnTn

[
g − 2g

Cn
+ Ω2

r(h0 + d2)

]
+

2Ωrθ̂pn
αnCn

]
sin(αnx),

and from (2.18)

θ(t) = θ̂e−iΩit cos Ωrt, (4.1)
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in the linear regime. For the majority of the results in this section we consider the
fundamental anti-symmetric sloshing mode as the initial condition to the numerical sim-
ulations, other higher frequency sloshing modes could be considered by using different
roots of (2.19). This was done in order to validate the numerical scheme but the results
are not presented here. Note that the dimensional and non-dimensional frequencies are
related via Ωr + iΩi = 2

√
gh0(Sr + iSi)/L , where s = Sr + iSi are the roots of (2.19).

4.1 Simulations close to the linear stability contour

Here we consider nonlinear simulations either side of the neutral stability contour

G0 =
3(1 +R)2

1 + 6δ2
,

which comes from the linear theory of Turner et al. (2015). Here δ = h0/L is the fluid
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Figure 4: Plot of θ(t) and Q(t)−h0 for the numerical simulations with δ = 0.2, R = 0.5
and (a,b) G = 5.25, Sr = 0.3968 (stable solution) and (c,d) G = 5.45, Si = 0.0718
(unstable solution). In panels (a) and (c) the small amplitude solution (dashed line) is
scaled to give the same θ value at t = 0 as the larger amplitude solution (solid line).

depth to width ratio and R = mv/mf is the vessel/fluid mass ratio. If G < G0 the flow
is linearly stable and ω = Ωr , while if G > G0 the flow is linearly unstable and ω = ±iΩi

with the negative solution corresponding to the unstable mode and the positive solution
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giving the stable mode. Here we consider simulations of the nonlinear system either side
of this contour to highlight the effect of nonlinearity on these results. These results are
given in figure 4. For the parameters chosen, G0 = 5.44 so we consider simulations
with G = 5.25 (panels (a) and (b)) and G = 5.45 (panels (c) and (d)). For each value

we show a small amplitude (linear) simulation with θ̂ = 10−4 (dashed lines) and a larger

amplitude (nonlinear) simulation with θ̂ = 0.1 (solid lines). The linearly stable result with
G = 5.25 in figure 4(a) displays periodic behaviour with the linear simulation agreeing
exactly with the linear theory (4.1). The nonlinear simulation is also stable and periodic
with oscillations between θ = ±0.1, but the effect of the nonlinearity acts to decrease
the frequency of the oscillations, such that by t = 50 the linear and nonlinear results are
out of phase. Figure 4(b) shows that for the nonlinear solution, Q(t) − h0 is oscillating
with a frequency which is approximately twice the vessel frequency, which agrees with
the asymptotic result from Turner and Bridges (2015) for free sloshing in a rectangular
vessel.

When G = 5.45, we move into the linearly unstable region of parameter space, and
the initial condition for the stable simulation which is θ 6= 0, h 6= h0 with Φ0 = Ψ0 = 0
changes to θ 6= 0, h 6= h0 with Φ0 6= Ψ0 6= 0 which induces a moment on the vessel.
This can be seen in figure 4(c). Here the angle of the vessel for both the linear and
nonlinear simulations keeps increasing until the angle is such that θ > tan−1(2δ) , and the
free-surface touches the bottom of the vessel. At this point the numerical scheme breaks
down as the free-surface height goes to zero, and we have not incorporated wetting and
drying of the vessel bottom into the numerical scheme for this paper.

The free-surface profiles for both the small and larger amplitude simulations of figure 4
are shown in figure 5, and close to the neutral curve in the (R,G)−plane we observe that
the profiles all have a similar appearance, with no visible higher harmonics in the larger
amplitude profiles. In fact the free-surfaces appear to be almost straight in these results.
However, away from this neutral curve the fluid motion can take on more interesting
sloshing motions and free-surface profiles. This is highlighted in §4.3.

4.2 Energy budget for simulations

For the simulations in figure 4 the total amount of energy in the system E(t) is conserved.
The sum of potential and kinetic energy is given by

E(t) =

∫ L

0

∫ h

0

[
1

2
(u2 + v2)− θ̇u(y + d2) + θ̇v(x+ d1) +

1

2
θ̇2
(
(x+ d1)2 + (y + d2)2

)

+g (sin θ(x+ d1) + cos θ(y + d2))

]
ρ dydx+

1

2
mv

[
(xv + d1)2 + (yv + d2)2

]
θ̇2

+mvg ((xv + d1) sin θ + (yv + d2) cos θ)− d2g(mv +mf ), (4.2)

and this is shown to be independent of t in Appendix B. However, it is known that the
Runge-Kutta integration scheme used in this paper is not energy conserving (Engle et al.,
2005), hence in figure 6 we plot the percentage energy error and the total vessel energy

Ev(t) =
1

2
mv

[
(xv + d1)2 + (yv + d2)2

]
θ̇2+mvg ((xv + d1) sin θ + (yv + d2) cos θ)−d2g(mv+mf ),

for the nonlinear stable result from figure 4(a) for the duration of the simulation. Here we
see that the maximum percentage error for E(t) is less than 0.3%, which is well within
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Figure 5: Plot of the free-surface Y (X, t) for the numerical simulations in figure 4. Panels
(a) and (b) give the stable solutions for the small amplitude and larger amplitude sim-
ulations respectively at t = 11, 11.25, 11.5, 11.75, 12 and 12.25 numbered 1 − 6, and
panels (c) and (d) give the small amplitude and larger amplitude simulations respectively
at t = 9, 9.25, 9.5, 9.75, 10 and 10.25, here only the first and last profiles are numbered.
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Figure 6: Plot of (a) the percentage energy error 100(E(t)−E(0))/E(0) and (b) Ev for
the nonlinear result from figure 4(a). Note that E(0) = 0.515.

acceptable computational bounds. Also, the vessel energy is periodic in time, which
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suggests that the energy partition between the vessel and fluid energy is well conserved
for these simulations. The percentage energy error is a significant quantity to monitor for
the simulations, because knowing that the percentage error is small validates the nonlinear
simulations. As stated in §3.4, the results presented in §4 are independent of smaller ∆t
and larger N , and from (4.2) as E(t) depends on these results, the value of 0.3% is also
independent of smaller ∆t and larger N .

4.3 Simulations for a variable pole length

Turner et al. (2015) highlighted for fixed values of δ , R but varying G (i.e. varying only
the pole length) that for small G (long poles) the linear theory predicts that the vessel
oscillates with a natural frequency approximately equal to that of a simple pendulum
with the fluid motion neglected. But as the pole length decreases the natural frequency
of the vessel increases until it reaches a point where the fluid motion in the vessel begins
to affect the system frequency. The system frequency then reduces towards zero as the
linear neutral stability contour is approached as G is increased further. This behaviour
is shown in figure 7 where Sr = LΩr/(2

√
gh0) is found from the characteristic equation

(2.19), and here the circles represent 4 values of G for which we consider the nonlinear
evolution for the system in figures 8 and 9.

G
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Figure 7: Plot of the 4 values of G considered in figures 8 and 9, and the corresponding
values of Sr = LΩr/(2

√
gh0) for R = 0.75 and δ = 0.1, calculated from the characteristic

equation (2.19).

The results for G = 1.5 show that for the given value of θ̂ = 0.035, the θ(t) evolution
is in excellent agreement with the linear result (4.1) (small black dots in left panels of
figure 8), and the corresponding value of Q(t)− h0 is small at O(10−8) . The reason the
result agrees so well with the linear result is clear from figure 9 where we observe that
the free-surface variation from h0 is small compared to those for larger G values. Hence
as the fluid displacement amplitude is small, the fluid motion does not affect the vessel
motion, and therefore the vessel motion is approximately linear for this value of θ̂ .
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Figure 8: Plot of θ(t) and Q(t)−h0 for the nonlinear simulations with δ = 0.1, R = 0.75

and θ̂ = 0.035. The values of G correspond to those from figure 7 with, from top to
bottom, G = 1.5, G = 4.0, G = 5.5 and G = 8.0. The solid circles in the θ(t) panels
represent the linear solution (4.1) with Ωr = 2

√
gh0Sr/L .

When G is increased to 4.0 the θ(t) motion is again essentially linear, i.e. the fre-
quency agrees with the linear natural frequency, but there is a small variation in the
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Figure 9: Plot of Y (X = 0, t)/ε and Y (X, t) for the nonlinear simulations in fig-
ure 8. In the profile panels the results numbered 1-6 correspond to the times t =
20, 20.25, 20.5, 20.75, 21 and 21.25 respectively.

amplitude of the oscillations over a long time-scale. Here the fluid free-surface profiles
deviate from h0 by a larger magnitude than they did for G = 1.5 and hence the fluid
motion affects the vessel motion more in this case. Increasing G further to 5.5 we find
that the free-surface profiles show a highly nonlinear behaviour, and this is reflected in

21



large values of Q(t) − h0 which contain multiple higher frequencies, which in turn can
be observed in θ(t) . Finally at G = 8.0 we have a similar result to that in figure 4(a)
where the amplitude of the θ(t) oscillations are the same as for the corresponding linear
result, but with a reduced frequency. Here again the magnitude of Q(t)−h0 is large, but
smaller than in the G = 5.5 case.

Thus for fixed values of R, δ and θ̂ , reducing the pole length produces results which
initially are approximately linear and independent of the fluid motion for very long poles.
Those results then pass though highly nonlinear fluid-vessel motions including higher
frequency harmonics for moderate pole lengths, and finally back to periodic nonlinear
behaviour where the frequency of the vessel is highly coupled to the fluid motion for
short poles. The results in figure 9 also show that the magnitude of Q − h0 is directly
related to the amount of nonlinearity observed in the vessel motion, which agrees with
the observation of Turner and Bridges (2015).

The simulation results in figures 8 and 9 are somewhat idealised numerical experiments
because the initial conditions are taken from the linear theory. Hence it is reasonable to ask
whether similar conclusions can be drawn for initial conditions which could be generated
in the experimental setup of figure 2. Hence we repeat the simulations of figures 8 and 9
except we consider the initial conditions

θ = θ̂, θ̇ = 0, Φ0(µ) = 0, Ψ0(µ) = 0, (4.3)

and Y0(µ) and X0(µ) are found by solving (3.24) with

H(x) = h0 − θ̂
(
x− L

2

)
. (4.4)

This initial condition corresponds to a vessel which is released from rest with an initial
angle θ̂ , and a horizontal free-surface. The resulting θ(t) and Q(t) − h0 evolutions are
presented in figure 10.

The main conclusion to draw about each of these simulations, with the exception of
the G = 5.5 case, is they are all more nonlinear than the results in figure 8, with higher
frequency harmonics appearing in both θ(t) and Q(t) . The larger amount of nonlinearity
is also reflected in the conformal modulus plots, as the variation in Q − h0 is now the
same order of magnitude for each simulation. Hence, when higher order sloshing modes
are present in the initial condition (as is the case for the initial condition (4.3)-(4.4)), the
sloshing fluid has a larger effect on the vessel motion, as can been seen for G = 1.5 and
G = 4.0. In these simulations the variation of θ(t) for the short pole results are similar
to those in figure 8, but the long pole results (G = 1.5 and G = 4.0) now experience
feedback from the fluid motion and thus both results now have a slow time modulation
of the vessel oscillation magnitude. Both of these results are significantly different from
those results in figure 8. Hence ensuring the initial conditions for the simulations are
correct, is important for accurately modelling the coupled dynamics.

4.4 Simulations containing similar frequency modes

Another interesting feature of the system highlighted in the linear study of Turner et al.
(2015) is the existence of parameter values where there exists two anti-symmetric sloshing
modes with approximately the same natural frequency. To be clear, this is not a double
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Figure 10: Plot of θ(t) and Q(t) − h0 for the nonlinear simulations from figure 8, but
with the initial condition given by (4.3) and (4.4).

root of (2.19) as one of the roots is removable as they come together. Figure 11 shows
the vessel evolution θ(t) , for two parameter sets, which contain two modes with similar
natural frequencies. Here the initial condition for the simulations is a superposition of
the two linear sloshing modes, both with the same value of θ̂ = 10−5 for the small
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Figure 11: Plot of θ(t) and the percentage energy error 100(E(t)−E(0))/E(0) for (a), (b)
(δ, R,G) = (0.2, 2, 6.8) and (c), (d) (0.1, 0.75, 4.3). In panels (a) and (c) the solid lines

give the nonlinear result with θ̂ = 0.03 for each eigenmode, while the dashed line gives
the linear result with θ̂ = 10−5 for each eigenmode scaled up. In (b) E(0) = 0.179 and
in (d) E(0) = 0.132 for the energy error evolutions for the larger amplitude simulations.

amplitude simulations and θ̂ = 0.03 for the larger amplitude simulations. The dashed
line in both panels (a) and (c) gives the small amplitude (linear) simulation (scaled up for
comparison with the larger amplitude (nonlinear) result) and these both show that the
small amplitude result exudes a wave pulse behaviour. However, in the large amplitude
simulations the region where θ decays to almost zero between the pulses is reduced, as
seen in panel (a), and in fact for some parameter sets, such as that in panel (c), the
decay turns into a feedback mechanism around t = 10 and produces oscillations which
are larger than the initial displacement of the vessel. Hence, unlike the single mode
initial condition, nonlinear results in figure 8, where the vessel oscillations are bounded
by the initial angular displacement, the two frequency simulations can produce oscillations
larger than this initial displacement. This would have implications on the physical system
if the vessel was setup to oscillate in a restricted domain with a maximum amplitude
only slightly smaller than the dimension of the domain. This would also have significant
implications on the slosh-induced-rolling of a ship, as it would mean the ship could readily
capsize. It is also worth noting that for these simulations the percentage energy error,
panels (b) and (d), is larger than for the single mode cases, but is still only around 3%
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at its largest, which is within an acceptable numerical tolerance.

5 Conclusions and Discussion

This paper presented fully nonlinear numerical results for the pendulum-slosh problem.
The numerical scheme to solve the coupled system used a time-dependent conformal
mapping to map the physical domain to a rectangle in the computational domain with
a time-dependent aspect ratio, known as the conformal modulus, Q(t) . The conformal
modulus has to be found as part of the solution procedure, making the implementation of
the numerical scheme more difficult. It was shown that the magnitude of |Q(t)−h0| , where
h0 is the equilibrium fluid height, is directly related to the magnitude of the nonlinearity
in the system. This result for the dynamic case agrees with the conclusion of Turner and
Bridges (2015) for the free-sloshing problem in a fixed rectangular tank.

The results of the nonlinear simulations in the vicinity of the linear neutral stability
contour showed that the nature of the solution (i.e. being stable or unstable) is confirmed.
Also the stable solution still exhibited a periodic behaviour, except with a reduced fre-
quency compared to the small amplitude (linear) result. Thus in this ‘short pole’ case
the effect of higher order sloshing modes appears to be small when the initial condition
is taken to be the fundamental linear sloshing mode.

For moderate length poles however, the results of this study show that nonlinear
effects are more significant, and the presence of higher frequency sloshing modes in the
fluid can be observed in the vessel motion. For an initial condition which could be easily
implemented in an experiment, of a vessel released from rest from a non-zero angle,
higher frequency sloshing modes were observed in the vessel motion for all pole lengths
considered. Thus, we conclude that the nonlinear evolution of the system is strongly
dependent on the form of the initial condition chosen. The initial conditions relevant for
a physical experiment consist of a superposition of many sloshing modes which interact
more readily with each other than in the case of the single fundamental sloshing mode
initial condition.

The nonlinear interaction of the sloshing modes was also demonstrated for system
parameter values where the characteristic equation (2.19) exhibits two anti-symmetric
sloshing modes with approximately the same natural frequency. With an initial condition
comprising of the superposition of these two modes, the nonlinear simulation showed
that for some parameter values, the vessel could exhibit oscillations which were larger
than the initial θ displacement of the vessel. This would have drastic implications if the
vessel was designed to oscillate within a fixed domain, fractionally larger than the initial
displacement of the vessel. This result would also be significant on the slosh-induced-
rolling of a ship, because the larger than expected vessel oscillations could lead the ship
to capsize.

All the large amplitude simulations presented in this paper had an energy budget
which was well conserved by the numerical scheme, to within some allowed tolerance
factor, confirming that the numerical approach used here is appropriate for performing
simulations of dynamic coupling problems.

The strength of the conformal mapping scheme considered in this paper is that addi-
tional aspects of the problem such as different vessel geometries or submerged structures
could be easily incorporated. However, due to the iterative nature of the numerical
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scheme, because the conformal modulus has to be found as part of the solution, it is
moderately numerically expensive, and hence is really only restricted to two-dimensional
problems. If the scheme could be formulated with a PDE for the evolution of Q(t) , then
iterations would no longer be required and some speed up would be possible.
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— Appendix —

A Parametric boundary conditions

Here we derive the parametric forms of the fluid boundary conditions in the computational
domain. For our mapping we can write

φx =
1

J
yνφµ −

1

J
yµφν =

1

J
xµφµ +

1

J
yµψµ, (A-1)

φy = − 1

J
xνφµ +

1

J
xµφν =

1

J
yµφµ −

1

J
xµψµ, (A-2)

using the chain rule and the Cauchy-Riemann equations. Thus φx = 0 at x = 0, L simply
reduces to (3.2) and the bottom boundary condition on y = 0 becomes

φy =
1

J
(yµφµ − xµψµ) = 2θ̇(x+ d1),

which for a flat bottomed vessel (yµ = 0) reduces to (3.3).
The kinematic free-surface condition says that

∂

∂t
(X, Y ) · n = (Φx,Φy − 2θ̇(X + d1)) · n,

where n = J−1/2(−Yµ Xµ)T is the normal to the free-surface. Expanding the dot product
then leads to

XµYt − YµXt = −YµΦx +Xµ

(
Φ̃y − 2θ̇(X + d1)

)
.

If at this stage we introduce the single valued form of the free-surface Y = h(µ, t) , X = µ ,
then this equation reduces back to the form of the kinematic free-surface equation in
(2.14). Also note that using (A-1) and (A-2) this equation reduces to (3.4).
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Finally, to transform the dynamic boundary condition into parametric form, we use
(2.3) from Bridges and Donaldson (2011) and the Cauchy-Riemann equations to write

φt(x, y, t) = φt(µ, ν, t)−
1

J
(yµyt + xµxt)φµ −

1

J
(yµxt − xµyt)ψµ.

Substituting this, and the forms of φx and φy from (A-1) and (A-2) into the dynamic
boundary condition and evaluating on the free-surface leads to (3.5).

B Proof of energy conservation for stable solutions

The simplest way to prove that the system energy (4.2) is conserved is to show that
dE
dt

= 0. Therefore by splitting the energy up into individual integrals and bringing the θ
dependence outside of each integral we can write

dE

dt
= θ̇

{(
mv

[
(xv + d1)2 + (yv + d2)2

]
+

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx

)
θ̈

+θ̇
d

dt

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx+mvg [(xv + d1) cos θ − (yv + d2) sin θ]

+g

∫ L

0

∫ h

0

[cos θ(x+ d1)− sin θ(y + d2)] ρ dydx− d

dt

[∫ L

0

∫ h

0

[u(y + d2)− v(x+ d1)] ρ dydx

]}

− θ̇
2

d

dt

∫ L

0

∫ h

0

[
(x+ d1)2 + (y + d2)2

]
ρ dydx+

1

2

d

dt

∫ L

0

∫ h

0

(
u2 + v2

)
ρ dydx

−θ̈
∫ L

0

∫ h

0

[u(y + d2)− v(x+ d1)] ρ dydx

+g

[
sin θ

d

dt

∫ L

0

∫ h

0

(x+ d1)ρ dydx+ cos θ
d

dt

∫ L

0

∫ h

0

(y + d1)ρ dydx

]
.

The quantity in the curly brackets is equal to 0 as it corresponds to the vessel equation
(2.8). The other terms are simplified by moving the time derivative inside the integrals
using Reynolds transport formula and can be combined to give

dE

dt
=

∫ L

0

∫ h

0

u

[
Du

Dt
− θ̈(y + d2) + g sin θ − (x+ d1)θ̇2

]
ρ dydx

+

∫ L

0

∫ h

0

v

[
Dv

Dt
+ θ̈(x+ d1) + g cos θ − (y + d2)θ̇2

]
ρ dydx.

Then via the Euler equations (2.1) and (2.2)

dE

dt
= −

∫ L

0

∫ h

0

(
u
∂p

∂x
+ v

∂p

∂y

)
dydx,

= −
∫ L

0

∫ h

0

u · ∇p dydx,

=

∫ L

0

∫ h

0

p∇ · u dydx+

∫

boundary

p(u · n) dS, where n is a unit normal to the fluid,

= 0,

as the flow is incompressible, and via the boundary conditions (2.3)-(2.5).
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