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This paper examines the dynamic coupling between a sloshing fluid and the motion of the vessel
containing the fluid. A mechanism is identified which leads to an energy exchange between the vessel
dynamics and fluid motion. It is based on a 1:1 resonance in the linearized equations, but nonlinearity is
essential for the energy transfer. For definiteness, the theory is developed for Cooker’s pendulous sloshing
experiment. The vessel has a rectangular cross section, is partially filled with a fluid, and is suspended
by two cables. A nonlinear normal form is derived close to an internal 1:1 resonance, with the energy
transfer manifested by a heteroclinic connection which connects the purely symmetric sloshing modes to
the purely anti-symmetric sloshing modes. Parameter values where this pure energy transfer occurs are
identified. In practice, this energy transfer can lead to sloshing-induced destabilization of fluid-carrying
vessels.

1. Introduction

A moving vessel containing liquid can give rise to a wide range of complex and beautiful fluid motions.
On the other hand, the movement of the interior fluid induces forces and moments on the vessel that
can then lead to unintended vessel motion and even a destabilization of the vessel dynamics. An every-
day example is ‘walking with coffee’ (Mayer & Krechetnikov 2012). A dramatic example with serious
consequences is the sloshing-induced destabilization of Alaskan king crab boats (cf. Caglayan & Storch
(1982); Adee & Caglayan (1982); Dillingham (1981)). They are very sensitive to the slosh-enhanced roll
motion, and capsize can occur: trapped water on deck sloshes back and forth and creates moments which
enhance roll motion (Caglayan & Storch 1982).

The problem of fluid sloshing in stationary or forced vessels is already a very difficult one to study
theoretically or experimentally as is highlighted in the works of Ibrahim (2005) and Faltinsen & Timokha
(2009). The coupled dynamics between fluid sloshing and vessel motion brings in a new dimension and
the potential for enhancing or diminishing the sloshing motion through vehicle dynamics. Understanding
dynamic coupling is of great practical interest in areas such as terrestrial fluid transportation, maritime
and space transport, storage tanks under earthquake excitation, and industrial applications.

The interest in this paper is in a more subtle impact of sloshing on vehicle dynamics: the direct
transfer of energy from fluid motion to vehicle motion through resonance and nonlinearity. The form
of the energy transfer of interest is the following. Given a dynamically-coupled system, choose initial
conditions so that fluid sloshing occurs but with the vessel stationary. This motion may be unstable and
able to transfer all its energy to a mode in which the vessel is in motion. This type of energy transfer
is essentially nonlinear, but is induced by a resonance in the linearized coupled system. In this paper a
theory and its implications are developed for this nonlinear energy transfer mechanism between sloshing
and vessel motion are developed.

General aspects of the dynamic coupling between vessel motion and interior fluid motion are discussed
in the book of Moiseyev & Rumyantsev (1968). They start with the fully coupled three-dimensional prob-
lem with six degree-of-freedom vessel motion. They also look at a simplified pendulum-based on model
(see e.g. §5.4 of Moiseyev & Rumyantsev (1968)). Their model involves a single pendulum containing
fluid. However this configuration would be difficult to construct experimentally, it is not natural for a
shallow water configuration, and its resonance structure is quite different (the natural resonance would
be a 1:2 resonance). On the other hand Cooker (1994) devised a novel coupled system which has the
essential features of dynamic coupling and a 1:1 resonance. It is relatively simple to construct an ex-
periment, and it is natural for a shallow water fluid configuration. In this paper a model for Cooker’s
experiment will be studied.
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Figure 1. A schematic illustration of Cooker’s sloshing experiment.

Cooker (1994) conducted an experiment consisting of a rectangular vessel containing fluid, suspended
from a horizontal beam by two cables (or strings). The centre of mass of the system is allowed to rotate
in a vertical plane, while the tank bed remains horizontal. A schematic diagram of the experimental
apparatus is shown in figure 1. The vessel has a rectangular cross-section and is partially filled with a
fluid of average depth h0 < d where d is the vessel height. The suspending strings make an angle θ with
the vertical. The motion of the vessel can be initiated with values of θ and/or dθ/dt specified at t = 0.
This configuration is one of the simplest experiments that demonstrates the dynamic coupling between
a sloshing fluid and the motion of vessel containing the fluid. The simplicity of the experiment makes it
akin to those of Taylor (1974) who would construct simple robust experiments to illuminate and answer
some fundamental question in fluid dynamics. A related experiment is that of Herczyński & Weidman
(2012). Using a special low-friction cart, and carefully-controlled initial conditions, they simulated the
case where the length of the suspension cables in Cooker’s experiment go to infinity. In this case the
restoring force vanishes, and so the vessel may drift in addition to exhibiting harmonic motion. They
developed a finite depth linear theory for this case and compared their results with experiments, showing
excellent agreement for various vessel geometries. However, without the spring force, a resonance between
vessel and fluid modes can not arise in this configuration.

Cooker (1994) developed a linear theory for the coupled problem using a shallow water approximation
for the fluid, and a linear harmonic equation for the vessel motion. The theoretical results agreed well
with Cooker’s experimental results which showed that the presence of a sloshing fluid changed the natural
frequency of the vessel motion. This theory was extended to include a nonlinear shallow water model by
Alemi Ardakani & Bridges (2010). In his analysis, Cooker (1994) detected a curious resonance where the
second mode of the coupled problem appeared to resonate with the natural frequency of the dry vessel.
In fact the resonance is a 1:1 internal resonance, where the natural frequency of the vessel, treated as
a rigid body, resonates with one of the fluid modes. The precise nature of this internal resonance was
identified by Alemi Ardakani et al. (2012a,b). The key observation is that the characteristic function for
the natural frequencies of the coupled problem is the product of two functions

∆(ω) = P (ω)D(ω) , (1.1)

where ω is the frequency of the motion. The precise form of these functions will be presented in §3. Natural
frequencies satisfy ∆(ω) = 0. The roots of D(ω) = 0 are the modes which couple the anti-symmetric
fluid modes to the vessel motion, while the roots of P (ω) = 0 are associated with the symmetric fluid
modes (which exert no horizontal force on the vessel). The case when P (ω) = D(ω) = 0 with both P ′(ω)
and D′(ω) non-zero, produces an internal 1:1 resonance with both types of modes coupled together. The
linear aspects of this resonance are studied in detail by Alemi Ardakani et al. (2012a,b), and it is shown
that the 1:1 resonance occurs in the coupled system for a wide range of parameter values.

In the linear problem the 1:1 resonance is benign. There is no instability and it just means that the
two modes have the same natural frequency and any linear combination can occur depending on the
initial conditions. It is only by adding nonlinearity that dynamic energy transfer can occur.
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Figure 2. A schematic illustration of a TLD following figure 1 of Frandsen (2005).

Before proceeding to discuss the nonlinear implications of the 1:1 resonance, it is worth noting that
the problem of tuned liquid dampers (TLDs) (Ikeda & Nakagawa 1997; Frandsen 2005) has a very sim-
ilar mathematical formulation. A TLD consists of a vessel partially filled with fluid, but the vessel is
constrained to move only in the horizontal direction with a restoring force given by a linear mass-spring-
damper model. A schematic illustration of this system is given in figure 2. Alemi Ardakani et al. (2012a)
showed that the linearized governing equations for the TLD and Cooker’s experiment are equivalent,
and hence the form of characteristic equation for the linear TLD system, first computed by Frandsen
(2005) using an infinite cosine expansion, is equivalent to the characteristic function for the fully-coupled
Cooker’s experiment, which was first derived by Yu (2010) using a vertical eigenfunction expansion. Al-
though Cooker’s experiment and the TLD system are equivalent in the linear framework, their nonlinear
characteristics are very different, as the vessel equation described in Alemi Ardakani et al. (2012a) for
Cooker’s experiment is fully nonlinear and contains vertical as well as horizontal motions. However, the
nonlinear analysis presented in this paper could be modified to examine the TLD problem, with the
linear spring in Frandsen (2005) replaced by a nonlinear spring, but this extension is not considered
here.

Let A(τ) and B(τ) be complex modal amplitudes for the two modes in the 1:1 resonance, where τ is
a slow time variable. The nonlinear normal form near the 1:1 resonance is given by

ia0Aτ = a1ωn,2A+ a2|A|2A+ a3|B|2A+ a4B
2A∗

ib0Bτ = b1ωn,2B + b2|B|2B + a3|A|2B + a4A
2B∗ ,

(1.2)

where a0, . . . , a4, b0, . . . , b2, ωn,2 are real-valued coefficients where ωn,2 gives the deviation of the fre-
quency from the sloshing frequency ωn found via (1.1) and the stars denote the complex conjugate. A
derivation of (1.2) is given in §5.

The nonlinear normal form (1.2) appears in other contexts. The most well-known context is sloshing
in three dimensions when the horizontal cross-section of the vessel is square or almost square. This
configuration has been studied by Feng & Sethna (1989); Faltinsen et al. (2003); Ikeda et al. (2012);
see also §9.2.3 of Faltinsen & Timokha (2009). There are two significant differences from the analysis
here. Firstly, due to the symmetry of the square, the coefficients a2 and b2 are equal. In that case both
the pure modes have the exact same stability properties. Secondly the problem of energy transfer is
not considered in the analysis in Feng & Sethna (1989), Faltinsen et al. (2003) or Ikeda et al. (2012).
The analysis of energy transfer is made apparent in the present paper by showing that the orbits of the
normal form (1.2) can be projected onto a spheroid in three dimensions.

In order to deduce the physical implications of the 1:1 resonance, it is necessary to compute the
coefficients in the normal form (1.2). We compute the coefficients in the normal form for Cooker’s
experiment as a function of the key dimensionless parameters: depth ratio, cable stiffness ratio, cable
length ratio and mass ratio. Although the linear problem has a continuum of periodic solutions (any
values of A and B) the nonlinear problem has exactly six: two pure modes (A = 0, B 6= 0 and A 6= 0,
B = 0) and four mixed modes (A 6= 0, B 6= 0, one in phase, three out of phase). Using dynamical
systems theory we are able to identify all possible connecting orbits between the periodic solutions. It is
these heteroclinic connections that are pathways to energy transfer.

The idea of a linear resonance producing energy transfer in the nonlinear problem has been known
in the mechanics literature for over half a century (and perhaps more). A simplified version of Cooker’s
experiment is to replace the fluid by an elastic beam. This configuration has been studied by Struble
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& Heinbockel (1963). They identified a 1 : 2 resonance in the linear system, performed a nonlinear
analysis and then showed numerically that energy can be exchanged between the two principal modes.
The pathway for energy transfer in this case was also a heteroclinic connection. The approach used in
this paper, of projecting onto a spheroid, is more general and captures all the potential heteroclinic
connections in a given configuration.

It should be noted that energy transfer between modes can also occur without resonance in the
nonlinear case, when forcing is included in the problem. One such situation was examined by Feng
(1998) who studied the sloshing of one symmetric and one anti-symmetric fluid mode under a time
dependent forcing. However, the analysis and the mechanism for the energy transfer were very different
to those studied in this paper for the non-forced case.

The current paper is laid out as follows. In §2 we state the governing nonlinear equations of the system
and show that they can be obtained from a Lagrangian functional. Section 3 reviews the linear solution
to the problem and highlights the internal 1:1 resonance between the coupled motion of the fluid and
the vessel. In §4 the nonlinear solution to the coupled equations are found by expanding the solution
in powers of the eigenmode amplitude and in §5 the normal form equations are derived. The general
stability properties of the normal form equations are formulated in §6 while energy transfer properties
are discussed in §7. Section 8 presents numerical results for Cooker’s experiment and our concluding
remarks are given in §9. The supplementary material which accompanies this paper presents more details
on the perturbation solution procedure and the normal form calculation, as well as a comparison of the
pure standing waves (decoupled from the vessel motion) with the classical theory for standing waves of
Tadjbakhsh & Keller (1960).

2. Governing nonlinear equations

The governing equations consist of the Euler equations for the fluid, relative to a moving frame, coupled
to the rigid-body equations for the vessel motion. The configuration is illustrated in figure 1. The tank
has length L and width W , while the fluid has constant density ρ and the suspending string length is l.
The fixed coordinate system (X,Y ) has its origin at the left most fixed point of the suspension string,
and the moving coordinates (x, y) are attached to the vessel. These coordinates are related by

X = x+ q1, Y = y + q2 − d,

where

q1 = l sin θ(t), q2 = −l cos θ(t),

which parametrise the constraint q21 + q22 = l2. Denote the velocity field relative to the moving frame by
(u(x, y, t), v(x, y, t)). With the further assumption of irrotational flow the velocity field can be represented
in terms of a potential

φx = u+ q̇1 and φy = v + q̇2 ,

where the velocity potential is relative to the absolute frame (cf. equation (2.1) in Alemi Ardakani et al.
(2012a)). The governing equations for the fluid are then (cf. Alemi Ardakani et al. 2012a,b)

φxx + φyy = 0, in 0 ≤ x ≤ L, 0 ≤ y ≤ h(x, t), (2.1)

φt +
1

2

(
φ2x + φ2y

)
− q̇1φx − q̇2φy + g(y − h0) = Be, on y = h(x, t), (2.2)

ht + (φx − q̇1)hx = φy − q̇2, on y = h(x, t), (2.3)

φy = q̇2, on y = 0, (2.4)

φx = q̇1, on x = 0, L , (2.5)

where Be is a Bernoulli constant. (Note that the Bernoulli constant could be absorbed into φ as a term
proportional to t). The vessel motion is governed by a nonlinear forced pendulum equation

mv θ̈ +
g

l
(mv +mf ) sin θ = −1

l
cos θσ̇1 −

1

l
sin θσ̇2. (2.6)

Here the subscripts x, y and t denote partial derivatives and dots denote full derivatives with respect
to t. Equations (2.2) and (2.3) are the dynamic and kinematic boundary conditions at the free surface
y = h(x, t), (2.4) and (2.5) are the no penetration boundary conditions on the bottom and side walls
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of the vessel and (2.6) is the nonlinear coupling equation linking the motion of the fluid to the vessel

motion. The quantities mv and mf = W
∫ L
0

∫ h
0
ρ dydx are the vessel and fluid masses respectively, and

σ1(t) = W

∫ L

0

∫ h

0

ρφx dydx, σ2(t) = W

∫ L

0

∫ h

0

ρφy dydx. (2.7)

The key parameters in the problem are

δ =
h0
L
, ` =

L

l
, R =

mv

mf
, G =

νL2

4gh0mf
, ν =

g

l
(mv +mf ) . (2.8)

The parameter δ is a shallowness parameter, and G is the stiffness parameter, since ν is an equivalent
spring stiffness. The parameters R and G were introduced by Cooker (1994), and the parameters are not
all independent since G has the equivalent representation

G =
(1 +R)

4

`

δ
.

The governing equations are variational, i.e. they can be determined by taking the first variation of
a Lagrangian functional. It is useful to use a Lagrangian approach for calculating the normal form.
Alemi Ardakani et al. (2012a) defined a reduced Lagrangian for this system in order to derive the
coupling equation (2.6), but did not include the constraint terms needed to correctly describe the fluid
motion. The complete Lagrangian for this system is

L =

∫ t2

t1

L dt, (2.9)

where [t1, t2] is an arbitrary time interval, and

L = ρW

∫ L

0

∫ h(x,t)

0

(
φt +

1

2

(
φ2x + φ2y

)
+ g(y − h0)−Be

)
dydx (2.10)

−1

2
mvl

2θ̇2 − (mv +mf )gl cos θ − lθ̇ρW
∫ L

0

∫ h(x,t)

0

(φx cos θ + φy sin θ) dydx ,

where h0 is the mean fluid height. The precise form of this Lagrangian is new, but the idea of using
a Lagrangian to generate the fluid equations for sloshing has a long history. See §2.5.3 of Faltinsen &
Timokha (2009) for a history of the use of the Lagrangian formalism for sloshing.

The Lagrangian functional (2.10) has three parts. The first part is Luke’s Lagrangian for the fluid
motion only (Luke 1967), the second part is the Lagrangian for the vessel and the third term is the
coupling term. By taking variations of (2.9)-(2.10) with respect to φ, h and θ the governing equations
(2.1)-(2.6) are recovered.

3. Solution of the linear coupled problem

The solution to the linear coupled fluid-vessel system has been studied in detail in both the shallow
water limit and in finite depth by Alemi Ardakani et al. (2012b). Here we will just record the details
necessary for the nonlinear analysis to follow.

The governing equations for the linear motion are found by linearizing (2.1)-(2.6) about a quiescent
fluid level h0, θ = 0 and φ = constant. The linear equations are

φxx + φyy = 0, in 0 ≤ x ≤ L, 0 ≤ y ≤ h0, (3.1)

φtt + gφy = 0 on y = h0, (3.2)

φy = 0, on y = 0, (3.3)

φx = lθ̇, on x = 0, L, (3.4)

for the fluid motion, where the second equation is obtained by combining the linear kinematic and
dynamic free surface conditions

φt + gh = 0 and ht = φy =⇒ φtt + gφy = 0 .
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The linear vessel motion is governed by

mv θ̈ +
g

l
(mv +mf )θ = −W

l

∫ L

0

∫ h0

0

ρφxt dydx . (3.5)

Time-periodic solutions of these equations can be found by expressing φ, h and θ as the harmonic
functions

φ(x, y, t) = φ̂(x, y) cosωt, h(x, t) = ĥ(x) sinωt, θ(t) = θ̂ sinωt.

The above system of equations are solved using either of the following two approaches. The first approach
is to expand φ̂ as an infinite cosine expansion (Graham & Rodriguez 1952; Frandsen 2005; Herczyński &

Weidman 2012), while the second approach is to expand φ̂ as an infinite sum of vertical eigenfunctions
(Linton & McIver 2001; Yu 2010; Alemi Ardakani et al. 2012a). Alemi Ardakani et al. (2012a,b) show
that both expansions are equivalent, so in theory either approach can be used. However, in practice the
cosine expansion is more accurate when performing the numerical calculations required in this paper.
Thus this method is used in the results reported herein, although it should be noted that the sums
converge slower than the sums in the vertical eigenfunction expansion.

The characteristic function for the linear problem is given by the product (1.1) with

P (ω) =

∞∏
n=1

(
ω2 − gβn tanh(βnh0)

)
, (3.6)

D(ω) = (mv +mf )
( g
ω
− lω

)
− 8lmfω

3

L2h0

∞∑
m=0

tanh(αmh0)

α3
m(gαm tanh(αmh0)− ω2)

, (3.7)

where

βn =
2nπ

L
, αm =

(2m+ 1)π

L
.

The solutions of P (ω) = 0 correspond to contributions from symmetric sloshing modes with an x−dependence
of the form cosβnx, while D(ω) = 0 contains contributions from the anti-symmetric sloshing modes with
an x−dependence of the form cosαmx.

In this work we are interested in the nonlinear solution for the system near the 1:1 resonance, which
occurs at a double zero of the dispersion relation (1.1). If we assume that this resonance occurs with a
general symmetric mode with wavenumber βn, then the frequency of the coupled solution is given by

ω2
n = gβn tanh(βnh0). (3.8)

The results will be presented with n an arbitrary natural number, but n = 1 is the case most likely to
be observed in experiments. As the 1:1 resonance occurs at a double zero of (1.1) this also requires that
D(ωn) = 0. This allows for the calculation of the string length l, say, needed for resonance for the given
parameters mv, mf , h0 and L. Substituting (3.8) into D(ω) = 0 gives the condition on the parameters
for 1:1 resonance

G = s2nR+ s2n +
8

δ
s4n

∞∑
m=0

tanh((2m+ 1)πδ)

(2m+ 1)3π3 σm,n
. (3.9)

where

s2n =
ω2
nL

2

4gh0
and σm,n = gαm tanh(αmh0)− ω2

n. (3.10)

For each fixed n and δ, the condition (3.9) is a line in the (R,G)−plane.

At the 1:1 resonance the solution for φ̂ is made up of two linearly independent eigenfunctions in the
form

φ̂ = ÃS0(x, y) + B̃S1(x, y) , (3.11)

(cf. §4 of Alemi Ardakani et al. 2012a) where

S0(x, y) =
cosh(βny)

cosh(βnh0)
cos(βnx),

S1(x, y) = lωn

(
x− 1

2
L− 4ω2

n

L

∞∑
m=0

1

α2
mσm,n

cosh(αmy)

cosh(αmh0)
cos(αmx)

)
,

(3.12)
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and θ̂ has now been replaced by B̃. The solution (3.11) consists of a linear combination of symmetric

sloshing modes, S0(x, y), with amplitude Ã and anti-symmetric sloshing modes, S1(x, y), with amplitude

B̃. The symmetric sloshing modes are observed when sloshing occurs in a stationary vessel, while the
anti-symmetric modes are observed when sloshing occurs with intrinsic coupling to the moving vessel.

4. Nonlinear analysis

In this section we perform a perturbation analysis of the nonlinear equations of motion (2.1)-(2.6)
close to the resonance frequency ωn. This solution will then be used in (2.9) to give the form of the
Lagrangian, from which we can generate the nonlinear normal form of the sloshing problem at an
internal 1:1 resonance.

In order to generate the nonlinear correction terms to the linear eigenfunction, we assume that the
amplitude of the linear solution is small and expand the solution in terms of this small parameter. Thus
we assume that Ã = εA and B̃ = εB where ε� 1, and we also introduce a scaled time t̃ and a slow time
scale τ defined by

t̃ = ωt and τ = ε2t . (4.1)

The solutions are sought which are 2π−periodic in t̃. Since it will be clear from the context, the ˜ is
dropped from the time and it is understood that solutions are now 2π−periodic in t. Substituting

φ = Φ0 + εφ1(x, y, t, τ) + ε2φ2(x, y, t, τ) +O(ε3),

h = h0 + εh1(x, t, τ) + ε2h2(x, t, τ) +O(ε3),

θ = εθ1(t, τ) + ε2θ2(t, τ) +O(ε3),

ω = ωn + εωn,1 + ε2ωn,2 +O(ε3),

Be = ε2Be2,

into (2.1)-(2.6), where Φ0 is a constant, leads to the linearised form of the equations (3.1)-(3.5) at O(ε)
and at O(ε2) gives the following system of equations for φ2, h2 and θ2:

φ2xx + φ2yy = 0 in 0 < y < h0, 0 < x < L, (4.2)

ωnφ2t + gh2 = Be2 − ωnh1φ1yt −
1

2
(φ21x + φ21y) + lωnθ1tφ1x −

1

2
l2ω2

nθ
2
1t − ωn,1φ1t on y = h0, (4.3)

ωnh2t = φ2y − (φ1x − lωnθ1t)h1x + h1φ1yy − lωnθ1θ1t − ωn,1h1t on y = h0, (4.4)

φ2y = lωnθ1θ1t on y = 0, (4.5)

φ2x = lωnθ2t + lωn,1θ1t on x = 0, L, (4.6)

(4.7)

for the fluid motion and

mvω
2
nθ2tt +

g

l
(mv +mf )θ2 = −2mvωnωn,1θ1tt −

ωnW

l

∫ L

0

∫ h0

0

ρφ2xt dydx−
ωnθ1W

l

∫ L

0

∫ h0

0

ρφ1yt dydx

−ωnW
l

∫ L

0

ρh1tφ1x(x, y = h0, t) dx−
ωnW

l

∫ L

0

ρh1φ1xt(x, y = h0, t) dx

−ωn,1W
l

∫ L

0

∫ h0

0

ρφ1xt dydx, (4.8)

for the vessel. The dynamic and kinematic free-surface conditions (4.3) and (4.4) can be combined
together to give the single free-surface condition

ω2
nφ2tt + gφ2y = −2ωnφ1xφ1tx + ωnφ1tφ1yy − 2ωnφ1yφ1ty + ω3

ng
−1φ1tφ1ytt + 2lω2

nθ1tφ1xt
+lω2

nθ1ttφ1x + glωnθ1θ1t − l2ω3
nθ1tθ1tt − 2ωnωn,1φ1tt .

(4.9)

By applying a solvability condition to the above system of equations we find that ωn,1 = 0 (see appendix
A of the supplementary material for detailed calculation). With ωn,1 = 0 it is clear that a solution for
φ2 and θ2 should be sought in the form

φ2(x, y, t) = φ̂2(x, y) sin(2t), θ2(t) = θ̂2 cos(2t).

The details of the solution procedure for φ̂2 and θ̂2 are given in appendix A and the final solutions take
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Parameter Value

mv 0.552 kg
W 0.13 m
L 0.525 m
ρ 1000 kgm−3 (water)

Table 1. Values of the parameters used in this paper, based on the experiments in Cooker (1994).

the form

φ̂2 = A2 (ζ0(x, y) + Z3) +ABζ1(x, y) +B2 (ζ2(x, y) + Z1y + Z2),

θ̂2 = ABΘ1,
(4.10)

where the ζi’s, Zi’s and Θ1 are given by (A 8)-(A 14). In order to find the form of h2(x, t), the complex
exponential form of the solution to (2.1) to (2.6) is used so that phase effects are included. This is
discussed in the next section, where we derive the normal form of the nonlinear perturbation about the
1:1 internal resonance. The asymptotic expansions used in the above analysis are valid, assuming that
no other resonances occur in the problem.

Although we are interested in the nonlinear result close to the internal resonance in this paper, the
solution (4.10) also gives the weakly nonlinear form of the solution away from resonance. At resonance,
the two constants A and B are independent and typically (for general initial conditions) both are nonzero,
while away from resonance only the pure modes can exist as solutions with either A = 0 or B = 0. For
the case when A = 0 with B 6= 0 the value of ω̂ is found by solving D(ω̂) = 0 from (3.7). Here we
write ω̂ rather than ωn because we are away from resonance, so the frequency of the solution is now not
determined by (3.8), but by the solution of D(ω̂) = 0. The nonlinear form of h(x, t) (from (5.2)) for the

lowest frequency sloshing mode not at resonance (Ã = εA = 0, B̃ = εB = 0.1) is shown in figure 3 and

the profile of the lowest frequency sloshing mode at resonance (Ã = 0.015 m2s−1 and B̃ = 0.01) is shown
in figure 4. Note that the numerical results presented in this paper are solved with the parameter values
given in table 1, which correspond to the series of experiments of Cooker (1994).

The effect of the nonlinear terms in figures 3 and 4 is to add higher order harmonics to the free surface
height. This can be seen in figure 3(c) around x = 0.45 m where the free surface has a region where it
decreases before rising up to the wall. The excitation of higher harmonics can be more clearly seen in
figure 4(c) at x = 0.3 m where the nonlinear free surface has two local minima compared to the dashed
line of the linear result which has a single minimum value close to this point.

The nonlinear results away from the internal 1:1 resonance presented here are new, but it is the
nonlinear results close to the 1:1 resonance which are of most interest, along with the normal form found
using this solution which is calculated in the next section. The nonlinear normal form near this resonance
will enable us to determine parameter regimes where energy transfer between the pure modes is possible.

Before deriving the normal form in the next section, we note that the solution (4.10) when restricted
to a pure fluid mode recovers the perturbation solution calculated by Tadjbakhsh & Keller (1960). They
consider the nonlinear expansion about the first symmetric sloshing mode only (B = 0 with n = 1). The
details of this comparison with classical standing waves is in appendix B of the supplementary material.

5. Normal form equations

In order to include phase effects, A and B are now taken to be complex. The strategy for computing
the coefficients of the normal form (1.2) is to substitute the expansions for φ, h and θ up to second order
in ε into the Lagrangian (2.9), and then take variations with respect to A∗ and B∗ where the ∗ here
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Figure 3. Plot of h(x, t) for the lowest frequency sloshing mode not at resonance over one period of the motion,

when h0 = 0.1 m, l = 0.2 m and ω̂ = 4.575 s−1. Here Ã = 0 and B̃ = 0.1. In each panel the solid line gives the
nonlinear result up to, and including, second order terms, the dashed line gives the linear result and the dotted
line gives the value of h0.

denotes the complex conjugate. The forms of φ, h and θ to second order are

φ(x, y, t, τ) = Φ0 +
1

2
ε
[
(AS0(x, y) +BS1(x, y))eit + (A∗S0(x, y) +B∗S1(x, y))e−it

]
−1

2
ε2i
[
(A2ζ0(x, y) +ABζ1(x, y) +B2ζ2(x, y) +B2Z1y +B2Z2 +A2Z3)e2it

−(A∗2ζ0(x, y) +A∗B∗ζ1(x, y) +B∗2ζ2(x, y) +B∗2Z1y +B∗2Z2 +A∗2Z3)e−2it
]

+O(ε3), (5.1)

h(x, t, τ) = h0 −
1

2
εi
[
(AH0(x) +BH1(x))eit − (A∗H0(x) +B∗H1(x))e−it

]
+

1

2
ε2
[
(A2λ0(x) +ABλ1(x) +B2λ2(x))e2it + (A∗2λ0(x) +A∗B∗λ1(x) +B∗2λ2(x))e−2it

+(Λ0(x)− C0)|A|2 + (Λ1(x)− C1)AB∗ + (Λ2(x)− C2)A∗B + (Λ3(x)− C3)|B|2
]

+O(ε3), (5.2)

θ(t, τ) = −1

2
εi
[
Beit −B∗e−it

]
+

1

2
ε2
[
ABΘ1e

2it +A∗B∗Θ1e
−2it

]
+O(ε3), (5.3)

Be = −1

2
ε2g
(
C0|A|2 + C1AB

∗ + C2A
∗B + C3|B|2

)
, (5.4)

where S0 and S1 are given in (3.11), the ζi’s, Zi’s and Θ1 are given in Appendix A and the constants
C0 to C3 are determined by

Ci =
1

L

∫ L

0

Λi(x) dx.
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Figure 4. Plot of h(x, t) for the lowest frequency sloshing mode at resonance over one period of the motion,

when h0 = 0.1 m, l = 1.270 m and ω1 = 9.341 s−1. Here Ã = 0.015 m2s−1 and B̃ = 0.01. In each panel the solid
line gives the nonlinear result up to, and including, second order terms, the dashed line gives the linear result
and the dotted line gives the value of h0.

The expressions H0(x), H1(x) along with the λi’s and Λi’s are to be determined. The definitions of
Ci’s constrains the mean height of the fluid to remain at y = h0. Not incorporating these constants
into the expression for φ(x, y, t, τ) would cause the mean height of the fluid to change, which in turn
would modify the value of mf . Thus for consistency these constants are moved into the expansion for
φ(x, y, t, τ).

The amplitudes Ã = εA and B̃ = εB are now functions of the slow time variable τ = ε2t. The functions
H0, H1, the λi’s and the Λi’s can be found by either substituting the above expressions into (3.2) and
(4.3) and equating the coefficients of A, B, A2, B2 and AB or by substituting directly into (2.2). Both
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approaches lead to the functions

H0(x) =
ωn
g
S0,

H1(x) =
ωn
g
S1,

λ0(x) = − 1

4g

(
S2
0x + S2

0y + 2ωnH0S0y + 8ωnζ0 + 8ωnZ3

)
,

λ1(x) = − 1

2g
(S0xS1x + S0yS1y + ωnH0S1y + ωnH1S0y − lωnS0x + 4ωnζ1) ,

λ2(x) = − 1

4g

(
S2
1x + S2

1y + 2ωnH1S1y − 2lωnS1x + 8ωnζ2 + 8ωnZ1h0 + 8ωnZ2

)
,

Λ0(x) = − 1

2g

(
S2
0x + S2

0y − 2ωnH0S0y

)
,

Λ1(x) = Λ2(x) = − 1

2g
(S0xS1x + S0yS1y − ωnH0S1y − ωnH1S0y − lωnS0x) ,

Λ3(x) = − 1

2g

(
S2
1x + S2

1y − 2ωnH1S1y − 2lωnS1x

)
,

where S0, S1, ζ0, ζ1 and ζ2 are all evaluated at y = h0. From these expressions it is immediately clear
that C1 = C2 = 0, and in fact

C0 = −β
2
n

4g
(1− T 2

n), (5.5)

C3 =
l2ω2

n

2g

(
1− 8ω4

n

L2

∞∑
m=0

1− T 2

m

α2
mσ

2
m,n

)
, (5.6)

where Tn = tanh(βnh0) and Tm = tanh(αmh0).
Substituting these expressions into (2.9), setting t1 = 0, t2 = 2π and noting that we require a further

integral in the Lagrangian as we have introduced the slow timescale τ , we find that

L = ε3
∫ τ2

τ1

(1

2
ia0 (A∗Aτ −AA∗τ ) +

1

2
ib0 (B∗Bτ −BB∗τ )− a1ωn,2|A|2 − b1ωn,2|B|2

− 1
2a2|A|

4 − 1
2b2|B|

4 − a3|A|2|B|2 − 1
2a4

(
B2A∗2 +A2B∗2

) )
dτ + o(ε3) ,

(5.7)

where the coefficients ai and bi are given in appendix B.
By taking variations of L with respect to A∗ and B∗ respectively gives the normal form equations to

leading order in (1.2). The normal form (1.2) is a Hamiltonian system,

ia0Aτ =
δH

δA∗
and ib0Bτ =

δH

δB∗
, (5.8)

where

H = ωn,2a1|A|2 + ωn,2b1|B|2 +
1

2
a2|A|4 +

1

2
b2|B|4 + a3|A|2|B|2 +

1

2
a4
(
B2A∗2 +A2B∗2

)
. (5.9)

The Hamiltonian formulation will be useful for identifying heteroclinic connections between periodic
solutions. A necessary condition for two periodic solutions to be connected by a heteroclinic orbit is that
they have the same energy value (or the same H value). Hence, the energy values for each solution will
be recorded.

6. Solutions of the normal form equations

Periodic solutions of the original problem are represented by equilibrium solutions of the normal form
(1.2). Let

A = rAeiµA and B = rBeiµB , (6.1)
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with rA > 0 and rB > 0. Then equilibrium solutions satisfy

0 =
(
a1ωn,2 + a2r

2
A + (a3 + a4 cosχ)r2B

)
rA ,

0 =
(
b1ωn,2 + b2r

2
B + (a3 + a4 cosχ)r2A

)
rB ,

(6.2)

with

sinχ = 0 where χ = 2(µB − µA) . (6.3)

For non-degenerate values of the coefficients, there are six classes of solutions of these equations.

6.1. A 6= 0, B = 0; symmetric free sloshing mode

When B = 0, A 6= 0 and a2 6= 0, the equations (6.2) reduce to

r2A = −a1
a2
ωn,2 , (6.4)

with stability exponent

λ2 =
ω2
n,2

b20a
2
2

[
a21a

2
4 − (b1a2 − a1a3)2

]
. (6.5)

The pure mode (6.4) is stable (unstable) if λ2 in (6.5) is negative (positive). A derivation of the stability
properties is given in Appendix C. The energy value for this class is

HA = −
ω2
n,2a

2
1

2a2
. (6.6)

This solution is a pure sloshing mode which is symmetric about the centerline of the vessel, and the
vessel is stationary. The eigenfunction to leading order is given by (5.1)-(5.3) with B = 0. In this case
the sloshing modes exert no resultant force on the walls of the vessel and so the vessel remains at rest.

6.2. A = 0, B 6= 0; anti-symmetric fluid mode coupled to vessel motion

When A = 0, B 6= 0 and b2 6= 0, the equations (6.2) reduce to

r2B = −b1
b2
ωn,2 , (6.7)

with stability exponent

λ2 =
ω2
n,2

a20b
2
2

[
b21a

2
4 − (a1b2 − b1a3)2

]
. (6.8)

The energy value for this class is

HB = −
ω2
n,2b

2
1

2b2
. (6.9)

This solution is a coupled mode, consisting of a fluid sloshing mode which is anti-symmetric about the
centerline of the vessel, and the vessel motion is periodic. The eigenfunction to leading order is given
by (5.1)-(5.3) with A = 0. In this case the sloshing modes exert a non-zero resultant force on the vessel
walls and so the vessel oscillates.

6.3. A 6= 0, B 6= 0; fully coupled with µB = µA or µB = µA + π

When A 6= 0 and B 6= 0 the equations (6.2) reduce to[
a2 a3 + a4

a3 + a4 b2

](
r2A
r2B

)
= −ωn,2

(
a1
b1

)
. (6.10)

This equation is uniquely solvable for r2A and r2B if

a2b2 − (a3 + a4)2 6= 0 . (6.11)

However, both r2A and r2B must be positive so the fixed point to exist. The stability exponent in this case
is

λ2 = 4a4r
2
Ar

2
B

(
a2
a20

+
b2
b20
− 2

a3 + a4
a0b0

)
, (6.12)
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and the energy value for this class is

HAB = −1

2
ω2
n,2

b2a
2
1 + a2b

2
1 − 2a1b1(a3 + a4)

a2b2 − (a3 + a4)2
. (6.13)

This solution is a fully coupled mode, consisting of both a symmetric and anti-symmetric fluid sloshing
mode and a vessel mode, with all three in phase (µB = µA) or out of phase with µB − µA = π. In this
case the vessel oscillates as B 6= 0 but the motion would also include a symmetric sloshing mode. As the
symmetric mode exerts no resultant force on the vessel, the amplitude of the oscillation would depend
solely on the value of B. An example of the free-surface elevation with µA = µB is given in figure 4.

6.4. A 6= 0, B 6= 0; fully coupled with µB = µA + 1
2π or µB = µA + 3

2π

In this case the equations (6.2) reduce to[
a2 a3 − a4

a3 − a4 b2

](
r2A
r2B

)
= −ωn,2

(
a1
b1

)
. (6.14)

This equation is uniquely solvable for r2A and r2B if

a2b2 − (a3 − a4)2 6= 0 , (6.15)

and the fixed points exist if both r2A and r2B are positive. The stability exponent in this case is

λ2 = −4a4r
2
Ar

2
B

(
a2
a20

+
b2
b20
− 2

a3 − a4
a0b0

)
, (6.16)

and the energy value for this class is

HAB = −1

2
ω2
n,2

b2a
2
1 + a2b

2
1 − 2a1b1(a3 − a4)

a2b2 − (a3 − a4)2
. (6.17)

This solution is a fully coupled mode, consisting of both a symmetric and anti-symmetric fluid sloshing
mode and a vessel mode, with the symmetric mode 1

2π or 3
2π out of phase from the vessel motion

and anti-symmetric fluid mode. This case is similar to that in §6.4, except with a different free-surface
elevation, for which an example when µA = µB + π/2 is shown in figure 5.

A sample of numerical values is given in Table 2. A range of other values of the coefficients of the
normal form for different fluid heights h0 can be found in the supplementary material.

7. Heteroclinic connections and energy transfer

It can be shown that all the orbits of the differential equations (1.2) lie on an spheroid (Cushman & Rod
1982; Cotter 1986), thus any unstable fixed point must either connect to itself (homoclinic connection)
or to another unstable fixed point (heteroclinic connection). The energy of the system is constant along
any orbit, so two distinct equilibra can have a heteroclinic connection only if they have the same energy
value.

The orbits on the spheroid can be seen explicitly via the following construction. Introduce new coor-
dinates

I1 = A∗B +AB∗,

I2 = i(A∗B −AB∗),

I3 = a0|A|2 − b0|B|2,

I4 = a0|A|2 + b0|B|2 ,

(7.1)

which satisfy

a0b0(I21 + I22 ) + I23 = I24 . (7.2)

For fixed I4 > 0 this equation describes a spheroid in (I1, I2, I3) space since a0 and b0 are both positive
(see Appendix B).
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Figure 5. Plot of h(x, t) for the conditions given in figure 4 except here B̃ = 0.01eiπ/2.

Differentiating the new coordinates with respect to τ and using (1.2) gives,

İ1 = γ1I2 +
(

a4
a0b0

+ γ2

)
I2I3,

İ2 = −γ1I1 +
(

a4
a0b0
− γ2

)
I1I3,

İ3 = −2a4I1I2,

(7.3)

where

γ1 =

(
a1
a0
− b1
b0

)
+

1

2

(
a2
a20
− b2
b20

)
I4 and γ2 =

1

2

(
a2
a20
− 2a3
a0b0

+
b2
b20

)
.

The fourth coordinate satisfies

İ4 = 0 . (7.4)

For each fixed positive value of I4, equation (7.4) combined with (7.2) assure that all trajectories of
(7.3) lie on the spheroid (7.2). The governing equations (7.3) have a close similarity to the rigid body
equations in mechanics, and are completely integrable. Indeed, expressions for the heteroclinic orbits can
be explicitly constructed. See §3, and particularly equation (3.9), in Holmes & Marsden (1983) where
explicit expressions for the heteroclinic orbits for the rigid body are written down. Analogous solutions
can be developed for (7.3). The heteroclinic orbits are solutions which tend to one pure mode as t→ −∞
and to the other pure mode as t→ +∞.

An example of the orbit structure that would exist if the pure modes (blue dots) were connected by
a heteroclinic connection is shown in Figure 6. The equilibria correspond to periodic solutions in the
physical problem, and the orbits connecting equilibria on the sphere correspond to pathways for energy
transfer in the physical problem. Consider |A|2 as a measure of the energy of anti-symmetric fluid mode
coupled to the vessel and |B|2 as a measure of the amplitude of the symmetric fluid mode. Then along
a heteroclinic connection one energy is decreasing and one increasing. This is the sense in which energy
is transferred between modes, and hence physical configurations. The position of the fixed points are
found using the information in appendix D.



Nonlinear energy transfer between fluid sloshing and vessel motion 15

��
��
��

��
��
��

��
��
��

��
��
��

I

2I

��
��
��

��
��
��

1I

3

Figure 6. (colour online) Typical pattern of solutions of the normal form equations when the two pure modes
(blue dots) are joined by a heteroclinic connection.

The analysis of the perturbed rigid body in Holmes & Marsden (1983) also gives an indication of
the implication of adding forcing to the coupled problem here near resonance. The theory in Holmes &
Marsden (1983) shows that periodic perturbation (such as periodic forcing) leads to chaotic solutions.

8. Computing parameter values for connections

Here we analyse the stability properties of the fixed points and determine parameter regimes where
two fixed points are connected to one another via a heteroclinic connection, giving a pathway for energy
transfer between the two modes.

In figure 7 we plot the quantities λ2 and H as a function of h0 for the pure and mixed sloshing modes
for n = 1. Unstable fixed points occur when the quantity λ2 > 0 and the fixed point is then a saddle
point on the spheroid. Two fixed points can only have a heteroclinic connection to one another if both
points exist, are unstable and both points have the same energy value H for a particular value of h0.
Note that in panels (c) and (d) we only plot the mixed mode stability criteria and energy function if
a solution exists. Heteroclinic orbits for mixed modes are common, because each result in figures 7(c)
and 7(d) correspond to a pair of mixed modes. Therefore, at h = 0.35m for example, there exists a
heteroclinic connection between a pair of mixed modes, one where the symmetric mode is in phase and
one where it is out of phase with the vessel motion. However, heteroclinic connections between the mixed
modes generally leads to less dramatic coupled motion than a heteroclinic connection between the two
pure modes.

There exists three values of h0 ∈ [0, 0.4] where the energy of the two pure modes are equal, but only
one such value of h0 exists where both modes are simultaneously unstable and can both exist for the
same value of ωn,2. This occurs at h0 = 0.0805 m (δ = 0.1534). In figure 7(b) the dashed line close to
this value might be mistaken for an asymptote, but when this section of the figure is blown up in figure
8(b) it is clear that this is not the case. Here we see that the energy for the two pure sloshing modes
is Ha = Hb = 0.1261ω2

1,2 kgm2s−2 at h0 = 0.0805 m. Both these points exist simultaneously if ω1,2 > 0,
which corresponds to the nonlinearity being a ‘soft-spring’ type nonlinearity. This shows that at this
value of h0 it is possible for the symmetric sloshing modes and the anti-symmetric sloshing modes (which
are linked to the motion of the vessel) to transfer energy between one another. The most extreme cases
of this energy transfer would be:

(a) A vessel moving back and forth coupled to the fluid sloshing with an anti-symmetric mode transfers
all its energy to a symmetric fluid mode and the vessel comes to rest, or

(b) A stationary vessel containing only a symmetric sloshing mode begins to swing as its energy is
transfered to the anti-symmetric modes and hence the vessel.
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Figure 7. Plot of λ2 and H as a function of h0 for n = 1. Panels (a) and (b) give the pure A modes (solid line)
and pure B modes (dashed line) while panels (c) and (d) give the mixed modes in §6.3 (solid line) and those
described in §6.4 (dashed line). Note in panels (c) and (d) that the value of λ2 and H are only plotted if both
rA and rB are real, and thus the solution exists.

If we consider a fluid height close to this heteroclinic connection (see table 2) then we observe the
energy passing back and forth between the pure modes. This is seen in figure 9. Here we have chosen
ε = 0.01 for illustration purposes with ω1,2 = 1 s−1, A = 1 kgm2s−2 and B = 10−10 initially. The
constant B has to be non-zero initially to allow the energy to pass to the anti-symmetric modes, if it is
set identically to zero then it will remain zero for all times. The normal form equations (1.2) are then
integrated to give the time variation of A and B. Figure 9(b) shows the vessel is stationary initially
and then begins to oscillate once the anti-symmetric modes have the energy of the symmetric mode
transfered to them (see panel (a)) and then the amplitude of the oscillations decrease and the vessel
comes to rest again as the energy is transfered back to the symmetric modes. The resonance for n = 1
with h0 = 0.0805 m occurs when l = 1.2077 m which is within the range accessible by experiments and
so should be observable.

The nonlinear energy transfer also occurs for higher frequency sloshing modes for a particular value
of h0. Figure 10 shows that for n = 2 a heteroclinic connection between the two pure modes exists when
h0 = 0.0402 m and HA = HB = 0.0155ω2

2,2 kgm2s−2. In this case the 1:1 resonance occurs for a string
length of l = 0.3334 m, which is again in the parameter range accessible in experiments. As for the n = 1
case, ω2,2 is again restricted to positive values. This energy transfer also occurs for n > 2, but in these
cases, parameters such as the string length and fluid height would correspond to values which would be
difficult to replicate in experiments, so they are not considered in more detail here.
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Figure 8. Blow up of figures 7 (a) and (b).

Parameter Value

h0 0.0805325
δ 0.1533952
a0 152.3300743
a1 16.2771983
a2 -1050.6922918
a3 -21675.4703815
a4 20615.1349791
b0 256.8118394
b1 27.4415756
b2 -3001.5860613

Table 2. Values of the normal form parameters close to the heteroclinic connection of the pure sloshing modes
with n = 1.

9. Conclusions

This paper determined the nonlinear solution to the coupled sloshing and vessel motion problem in a
suspended rectangular tank. A solution to the nonlinear coupled equations was found in the form of an
asymptotic expansion in increasing powers of ε� 1 which was a measure of the disturbance magnitude
from the quiescent solution. Alternatively ε can be defined using averaging. If h1 is orthogonal to all
higher hj , then

ε :=
(h− h0)h1

h21
,

where the bar denotes an average over (x, t, τ). Results for the evolution of the free-surface profile were
presented up to O(ε2) and were found to contain higher spatial harmonics in the free surface profile.

The nonlinear normal form of the solution was constructed close to the internal 1:1 resonance where
the symmetric fluid modes couple to the anti-symmetric fluid modes and the vessel motion. In this
solution it was discovered that for a single fluid depth h0 (for each symmetric mode of wavenumber n)
there exists a heteroclinic connection between the pure symmetric sloshing modes, and the pure anti-
symmetric sloshing modes. This heteroclinic connection is a pathway for energy transfer between these
pure modes. The anti-symmetric modes couple to the motion of the vessel, thus energy transfer between
these modes can lead to a dramatic vessel motion. The most extreme case is when an oscillating vessel
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Figure 9. Plot of (a) h(x, t) and (b) θ(t) for the parameter regime close to the heteroclinic connection given in
table 2 with n = 1. The time evolution of the functions A and B are found by integrating (1.2) with ε = 0.01,
ω1,2 = 1 s−1 and initial values of A = 1 m2s−1 and B = 10−10. The corresponding free-surface profiles are then

found using (5.2). Here t is the original unscaled time from (4.1) = t̃/ω. In panel (a) the free-surfaces are plotted
at t = 1069, 1282, 1496 and 1710 from top left to bottom right. The fast time oscillations are highlighted in
lower figure of panel (b).
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Figure 10. Close up of λ2 and H for the pure sloshing modes with n = 2 close to critical value of h0. The line
styles are as in figure 7.

containing only anti-symmetric modes comes to rest as the energy is transfered to the symmetric modes,
or vice versa.

While this mechanism has been demonstrated for a particular example, there are general features
that will be present in any system with vehicle motion coupled to a sloshing fluid. A key feature was a
1 : 1 resonance between a fluid mode and the vessel mode, and this resonance will be generally present
in a physical configuration. Once such a resonance is identified it would be sensible to adjust system
parameters to avoid the uncontrolled energy transfer. On the other hand, the converse situation might
be advantageous: use the resonance to extract energy from the vessel motion and bring it to rest.

Appendix A. Solution of the second order nonlinear equations

Here we determine the solution for φ̂2(x, y, τ) and θ̂2(τ) from the system of equations (4.2)-(4.8).
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Firstly, by writing

φ̂2 = φ̄2 −
1

4ω2
n

F +
1

2
lωnB

2(y − h0),

where

F =
1

4
ωnA

2β2
n(1 + 3 tanh2 βnh0) +B2l2ω5

n

∞∑
m=0

1

Lσm,n

[
8ω2

n

Lα2
mσm,n

+
12ω2

n

Lα2
mσm,n

tanh2 αmh0

+pm −
4ω2

n

Lα2
mσm,n

]
− 1

2
l2ω3

nB
2 − 8l2ω5

nB
2
∞∑
m=0

1

L2α2
mσm,n

,

is a constant, the system of equations reduce to

φ̄2xx + φ̄2yy = 0 in 0 < y < h0, 0 < x < L, (A 1)

4ω2
nφ̄2 + gφ̄2y = f(x) on y = h0, (A 2)

φ̄2y = 0 on y = 0, (A 3)

φ̄2x = −2ωnlθ̂2 on x = 0, L, (A 4)

for the fluid motion and

−4ω2
nmv θ̂2 +

g

l
(mv +mf )θ̂2 = −2ωnW

l

∫ L

0

∫ h0

0

ρφ̄2x dydx−
ω2
nW

gl

∫ L

0

ρφ̂1φ̂1x dx, (A 5)

for the vessel. Here

f(x) =
1

2
ωn

∞∑
r=1

[
3

2
A2β2
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cosαrx, (A 6)

=

∞∑
r=1

(
A2dAr +B2dBr

)
cosβrx+

∞∑
r=0

ABdABr cosαrx,

and the constants pr = −4/(α2
rL) come from expanding x− L/2 as an infinite cosine expansion

x− 1

2
L =

∞∑
r=0

pr cosαrx, (A 7)
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which is valid for x ∈ [0, L]. The constants δr,2n and δr appearing in (A 6) are defined as

δr,2n =

{
1 r = 2n
0 otherwise

, δr =

{
1 for r odd
0 otherwise

.

The system of equations (A 1) and (A 5) can now be solved by splitting φ̄2 into a part proportional to

θ̂2 and a part not proportional to θ̂2

φ̄2 = G1(x, y, τ) + θ̂2(τ)

(
−2ωnl

(
x− 1

2
L

)
+G2(x, y)

)
.

The functions G1 and G2 both satisfy

Gxx +Gyy = 0 in 0 < y < h0, 0 < x < L,

−4ω2
nG+ gGy = χi(x) on y = h0,

Gy = 0 on y = 0,

Gx = 0 on x = 0, L,

where χ1(x) = f(x) in the equation for G1(x, y, τ) and χ2(x) = −8ω3
nl(x − 1

2L) in the equation for
G2(x, y).

As χ2(x) can be solely expanded in terms of odd cosine functions (see (A 7)), the general solution to
the above system of equations satisfying all the equations except the free-surface boundary condition is

G2(x, y) =

∞∑
r=0

ar
cosh(αry)

cosh(αrh0)
cos(αrx).

When this is substituted into the free-surface condition we obtain the value of the constants as

ar =
24ω3

nl

α2
rL(gαr tanhαrh0 − 4ω2

n)
.

A similar solution exists for G1, but in this case χ1(x) contains a sum of both even and odd cosine
functions, so here the solution satisfying all the equations except the free-surface condition is

G1(x, y, τ) =

∞∑
r=1

br
cosh(βry)

cosh(βrh0)
cos(βrx) +

∞∑
r=0

cr
cosh(αry)

cosh(αrh0)
cos(αrx).

When this is substituted into the free-surface condition the constants are found to be

br =
A2dAr +B2dBr

gβr tanhβrh0 − 4ω2
n

, cr =
ABdABr

gαr tanhαrh0 − 4ω2
n

.

When these solutions are substituted back into φ̂2 and subsequently substituted into the coupling
equation (A 5), then value of θ̂2 is found to be

θ̂2 =
4ωnρW

lΛ

∞∑
r=0

cr
αr

tanhαrh0 −
2ABω3

nρW

gΛ

(
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2
L+

∞∑
r=0

4ω2
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Lα2
rσr,n

)
,

where

Λ = (mv +mf )
(
−4ω2

n +
g

l

)
− 4ωnρW

l

∞∑
r=0

ar
αr

tanhαrh0.
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Therefore the forms of the ζi’s, Zi’s and Θ1 in (4.10) are

ζ0 =
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r=1

dAr
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∞∑
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Appendix B. Coefficients of the Lagrangian

The coefficients of the Lagrangian (5.7) are given below. We note that constants which contain a single
x integral of a function of (x, y) are evaluated at y = h0. The coefficients of the linear terms are

a0 =
ω2
nρW

2g

∫ L

0

S2
0 dx =

ω2
nmf

4gh0
,

b0 =
ω2
nρW

2g

∫ L

0

S2
1 dx+

lg

2
(mv +mf ),

a1 =
ωnρW

2g
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S2
0 dx =

ωnmf

4gh0
,

b1 =
ωnρW

2g
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1 dx+

lg

2ωn
(mv +mf ) .
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The coefficients of the nonlinear terms for the pure modes are
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where Tn = tanh(βnh0) and S0(x, y) and S1(x, y) are defined in (3.12). The coefficients of the nonlinear
terms for the mixed modes are

a3 = −ρW
4

∫ L

0

∫ h0

0

(
ζ21x + ζ21y + 4lωnΘ1ζ1x

)
dydx

+
ρW

16g3

∫ L

0

( 3g2S2
1xS

2
0x − 3ω4

nS
2
0S

2
1x − 3ω4

nS
2
0xS

2
1 + 11

ω8
n

g2
S2
0S

2
1 + 4ω4

nS0S0xS1S1x

−6g2ωnlS
2
0xS1x + 4ω5

nlS
2
0S1x − 4ω5

nlS0S0xS1 + 2g2ω2
nl

2S2
0x + 24ω5

nS0S1ζ1 + 8g2ωnS0xS1xζ1

−8g2ω2
nlS0xζ1 − 4g2ωnS0xS1ζ1x − 4g2ωnS0S1xζ1x + 4g2ω2

nlS0ζ1x + 16g2ω2
nζ

2
1

−8g2ω2
nlΘ1S1S0x − 8g2ω2

nlΘ1S0S1x − 4g4C0C3 ) dx+
lΘ2

1

4

(
g(mv +mf )− 4ω2

nmvl
)
,

a4 = −ρW
2

∫ L

0

∫ h0

0

(ζ0yζ2y + ζ0xζ2x) dydx

+
ρW

32g3

∫ L

0

( 3g2S2
0xS

2
1x + 5ω4

nS
2
0S

2
1x + 5ω4

nS
2
0xS

2
1 + 11

ω8
n

g2
S2
0S

2
1 − 12ω4

nS0S0xS1S1x

+2g2ω2
nl

2S2
0x + 4gω4

nlS
2
0 − 6g2ωnlS

2
0xS1x − 8ω5

nlS
2
0S1x + 8ω5

nlS0S0xS1 + 8g2ωnS
2
1xζ0

+48ω5
nS

2
1ζ0 + 8g2ωnS

2
0xζ2 + 48ω5

nS
2
0ζ2 + 64g2ω2

nζ0ζ2 − 8g2ωnS1S1xζ0x − 8g2ωnS0S0xζ2x

+8g2ω2
nlS1ζ0x − 16g2ω2

nlS1xζ0 + 8g2ωnS
2
1xZ3 + 48ω5

nS
2
1Z3 + 64g2ω2

nZ3ζ2 + 8g2ωnZ2S
2
0x

+48ω5
nZ2S

2
0 + 64g2ω2

nZ2ζ0 + 64g2ω2
nZ1Z3h0 − 16g2ω2

nlZ3S1x + 8g2ωnZ1h0S
2
0x + 48ω5

nZ1h0S
2
0

+64g2ω2
nZ1h0ζ0 + 64g2ω2

nZ2Z3 ) dx.

Appendix C. Stability of the normal form equilibria

In order to analyse the stability of the fixed points of the normal form equations (1.2), we first need
to form four real equations for the components of the two complex unknowns A and B. This can be
achieved either by writing A and B in real and imaginary parts or by writing them in polar form. It turns
out that that the method choice depends upon whether pure sloshing modes (i.e. A 6= 0 with B = 0 or
A = 0 with B 6= 0) or mixed sloshing modes (both A and B are non-zero) are being considered.

C.1. Pure sloshing modes (A 6= 0 with B = 0 or A = 0 with B 6= 0)

For pure sloshing modes we write A and B in terms of real and imaginary parts

A = ur + iui and B = vr + ivi,
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and the four real equations for the motion are

a0u̇r = ωn,2a1ui + a2(u2r + u2i )ui + a3(v2r + v2i )ui + a4(−(v2r − v2i )ui + 2vrviur),

−a0u̇i = ωn,2a1ur + a2(u2r + u2i )ur + a3(v2r + v2i )ur + a4((v2r − v2i )ur + 2vrviui),

b0v̇r = ωn,2b1vi + b2(v2r + v2i )vi + a3(u2r + u2i )vi + a4(−(u2r − u2i )vi + 2uruivr),

−b0v̇i = ωn,2b1vr + b2(v2r + v2i )vr + a3(u2r + u2i )vr + a4((u2r − u2i )vr + 2uruivi),

where the dots denote differentiation with respect to τ . The pure mode fixed points can be found at

vr = vi = 0 and ωn,2a1 + a2(u2r + u2i ) = 0, (B = 0), (C 1)

ur = ui = 0 and ωn,2b1 + b2(v2r + v2i ) = 0. (A = 0), (C 2)

which are equivalent to (6.4) and (6.7). Note that ωn,2 can be of either sign which can affect the existence
of these fixed points as u2r + u2i and v2r + v2i are both strictly positive. Let us consider the case A 6= 0
with B = 0, with the corresponding result for A = 0 and B 6= 0 being found similarly. Linearizing about
the pure A mode point (C 1), the equations for the perturbation quantities δur, δui, δvr and δvi satisfy

˙δur =
2a2
a0

uruiδur +
2a2
a0

u2i δui,

˙δui = −2a2
a0

u2rδur −
2a2
a0

uruiδui,

δ̇vr =
2a4
b0
uruiδvr +

1

b0

[
ωn,2b1 + a3(u2r + u2i )− a4(u2r − u2i )

]
δvi,

δ̇vi = − 1

b0

[
ωn,2b1 + a3(u2r + u2i ) + a4(u2r − u2i )

]
δvr −

2a4
b0
uruiδvi.

The eigenvalues, λ, of this linear stability problem satisfy

det


2a2
a0
urui − λ 2a2

a0
u2i 0 0

− 2a2
a0
u2r − 2a2

a0
urui − λ 0 0

0 0 2a4
b0
urui − λ c−

0 0 −c+ − 2a4
b0
urui − λ

 = 0,

where

c± =
1

b0

[
ωn,2b1 + a3(u2r + u2i )± a4(u2r − u2i )

]
.

The nontrivial eigenvalues then satisfy (6.5) where (C 1) is used to eliminate the combination u2r + u2i .

Via a similar analysis, it can be shown that the nontrivial eigenvalues of the free B modes satisfy
(6.8).

C.2. Stability of mixed modes (A 6= 0 and B 6= 0)

To determine the stability at the fixed points for mixed modes, it is more convenient to write (1.2) in
polar form. Therefore, by writing

A = rAe
iµA and B = rBe

iµB ,

with rA > 0 and rB > 0, and the normal form equations (1.2) are transformed into the following four
real equations for the amplitudes and phases

a0ṙA = a4rAr
2
B sinχ, (C 3)

b0ṙB = −a4rBr2A sinχ, (C 4)

−a0rAµ̇A =
(
ωn,2a1 + a2r

2
A + a3r

2
B

)
rA + a4rAr

2
B cosχ, (C 5)

−b0rAµ̇B =
(
ωn,2b1 + b2r

2
B + a3r

2
A

)
rB + a4rBr

2
A cosχ. (C 6)

Here χ = 2(µB−µA) is the phase difference between the fixed points. In this case the fixed points satisfy

sinχ = 0 =⇒ cosχ = ±1,
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with the amplitudes satisfying the pair of algebraic equations (6.10) or (6.14). The solution for the
general case is

r2A =
ωn,2

a2b2−(a3+a4 cosχ)2

[
b2a1 − b1(a3 + a4 cosχ)

]
,

r2B =
ωn,2

a2b2−(a3+a4 cosχ)2

[
a2b1 − a1(a3 + a4 cosχ)

]
.

(C 7)

For the mixed mode fixed points to exist, then r2A and r2B both have to be positive for the given values
of ai, bi and ωn,2.

Assuming the fixed points exist, we determine their stability by linearising about these points. The
linear evolution of the amplitudes and the phase difference are given by

δ̇rA =
a4
a0
rAr

2
B cosχδχ, (C 8)

δ̇rB = −a4
b0
rBr

2
A cosχδχ, (C 9)

˙δχ = 4

(
a2
a0
− a3 + a4 cosχ

b0

)
rAδrA + 4

(
a3 + a4 cosχ

a0
− b2
b0

)
rBδrB , (C 10)

and the linear stability eigenvalues λ satisfy

det

 −λ 0 a4
a0
rAr

2
B cosχ

0 −λ −a4b0 rBr
2
A cosχ

4
(
a2
a0
− a3+a4 cosχ

b0

)
rA 4

(
a3+a4 cosχ

a0
− b2

b0

)
rB −λ

 = 0.

Therefore, the nontrivial eigenvalues satisfy (6.12) for cosχ = 1 and (6.16) for cosχ = −1.

Appendix D. Equilibria in (I1, I2, I3) coordinates

In the coordinate system on the spheroid, the pure mode with A 6= 0 and B = 0 occurs at

I1 = I2 = 0 and I3 = a0r
2
A > 0 .

The pure mode with B 6= 0 and A = 0 occurs at

I1 = I2 = 0 and I3 = −b0r2B < 0 .

For mixed modes the system can be written as

I1 = 2rArB cos(µA − µB)

I2 = 2rArB sin(µA − µB)

I3 = a0r
2
A − b0r2B .

Therefore, mixed modes with µB = µA or µB = µA + π occur at

I1 = ±2rArB , I2 = 0 , I3 = a0r
2
A − b0r2B ,

and mixed modes with µB = µA + 1
2π or µB = µA + 3

2π occur at

I1 = 0 , I2 = ±2rArB , I3 = a0r
2
A − b0r2B .
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