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Abstract

We consider the interaction of a uniformly pulsating free-stream with the leading edge

of a body, and consider its effect on transition. The free-stream is assumed to be incom-

pressible, high Reynolds number flow parallel to the chord of the body, with a small,

unsteady, perturbation of a single harmonic frequency. We present a method which cal-

culates Tollmien-Schlichting (T-S) wave amplitudes downstream of the leading edge, by

a combination of an asymptotic receptivity approach in the leading edge region and a

numerical method which marches through the Orr-Sommerfeldregion. The asymptotic

receptivity analysis produces a three deck eigenmode which, in its far downstream limit-

ing form, produces an upstream initial condition for our numerical Parabolized Stability

Equation (PSE).

Downstream T-S wave amplitudes are calculated for the flat plate, and good com-

parisons are found with the Orr-Sommerfeld asymptotics available in this region. The

importance of theO(Re−
1
2 ) term of the asymptotics is discussed, and, due to the com-

plexity in calculating this term, we show the importance of numerical methods in the

Orr-Sommerfeld region to give accurate results.

We also discuss the initial transients present for certain parameter ranges, and show

that their presence appears to be due to the existence of higher T-S modes in the initial

upstream boundary condition.

Extensions of the receptivity/PSE method to the parabola and the Rankine body are

considered, and a drop in T-S wave amplitudes at lower branchis observed for both bod-

ies, as the nose radius increases. The only exception to thistrend occurs for the Rankine

body at very large Reynolds numbers, which are not accessiblein experiments, where a

double maximum of the T-S wave amplitude at lower branch is observed.

The extension of the receptivity/PSE method to experimentally realistic bodies is also

considered, by using slender body theory to model the inviscid flow around a modified

super ellipse to compare with numerical studies.
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rows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Eigenfunction amplitudes at lower branch for the Rankinebody, for vary-

ing A with ε = 0.05. The values of the receptivity coefficient,|C1| are

taken from Nichols (2001). . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Eigenfunction amplitudes at lower branch for the Rankinebody, for vary-

ing A with ε = 0.1. The values of the receptivity coefficient,|C1| are

taken from Nichols (2001). . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.6 Eigenfunction amplitudes at lower branch for the Rankinebody, for vary-

ing A with ε = 0.2. The values of the receptivity coefficient,|C1| are

taken from Nichols (2001). . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.7 Values of the maximum value ofUf for the MSE for the caseε6 = 90 ×

10−6 and the corresponding value ofξmax. . . . . . . . . . . . . . . . . . 176

6.8 Values of the minimum values ofβ for the MSE for the caseε6 = 90 ×

10−6 and the corresponding values ofξ1 andξ2. . . . . . . . . . . . . . . 179

ix



List of Figures

1.1 An illustration of the boundary-layer structure for a general body with

dimensional nose radiusrn at zero angle of attack. The three decks in the

Orr-Sommerfeld region are 1- the viscous wall layer; 2- the main inviscid

layer; 3- the outer irrotational layer. . . . . . . . . . . . . . . . . .. . . 9

1.2 Spatial eigenvalues,α = αr + iαi, for Blasius flow, for the caseω = 0.12

andRe = 519.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 An illustration of the region structure on a body with a nose radius,rn, at

zero angle of attack to the free-stream,U∞. . . . . . . . . . . . . . . . . 27

4.1 Plot of leading edge mode shape, given by (4.32), atx̃1 = 2ε2x/U ′2
0 =

0.3, 0.5 and1.0 for (a) ε = 0.05 and (b)ε = 0.1, where the mode shapes

have been normalised so thatRe(φ0) = 1. . . . . . . . . . . . . . . . . . 73

4.2 Plot of (a) the real part, and (b) the imaginary part of thewavenumber,κ,

as a function of the scaled downstream distance variablex̃1. . . . . . . . 76

4.3 Comparison of (a) the real part, and (b) the imaginary partof the asymp-

totic and numerical value of the wavenumber,κ, for ε = 0.1. . . . . . . . 78

4.4 Plot ofd lnA/dx1 as a function of̃x1 plotted with(2τ1 + 1)/2x1, to em-

phasise the matching of these results asx̃1 −→ 0. . . . . . . . . . . . . . 87

4.5 Comparison of the real part of the initial mode shapes of the three regimes

at streamwise locations (a)x̃(0)
1 = 0.3, and (b)x̃(0)

1 = 1.0, for ε = 0.1. . . 89

4.6 Comparison of the imaginary part of the initial mode shapes of the three

regimes at streamwise locations (a)x̃(0)
1 = 0.3, and (b)x̃(0)

1 = 1.0, for

ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



4.7 Comparison of the real part of the initial mode shapes for the leading edge

receptivity, parallel Orr-Sommerfeld and local PSE analysis, where the

line styles correspond to those in figures 4.5 and 4.6. With (a) ε = 0.05

and x̃(0)
1 = 0.1, where the 3 mode shapes lie over each other, and (b)

ε = 0.05 and x̃(0)
1 = 0.2, where only the leading edge mode shape is

distinguishable from the other two. . . . . . . . . . . . . . . . . . . . .. 90

4.8 Comparison of the imaginary part of the initial mode shapes for the lead-

ing edge receptivity, parallel Orr-Sommerfeld and local PSE analysis,

where the line styles correspond to those in figures 4.5 and 4.6. With

(a) ε = 0.05 andx̃(0)
1 = 0.1, where the solutions are the same for smallη,

and (b)ε = 0.05 andx̃(0)
1 = 0.2, where the leading edge mode shape is

more distinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Plot of the mode shapes for Goldstein’s Orr-Sommerfeld solution (dashed

lines), and the leading edge solution (solid line and dottedline) for x̃1 =

(a) 0.02, (b) 0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25 and (g)0.3, with

ε = 0.1. Note that in figures (a) and (b), the 2 solutions are indistinguishable. 92

4.10 Plot of the real part of the growth rateG as a function of downstream

distance, calculated by leading edge receptivity analysis, parallel Orr-

Sommerfeld theory, local PSE theory, and asymptotic Orr-Sommerfeld

theory for the cases (a)ε = 0.05 and (b)ε = 0.1. . . . . . . . . . . . . . . 93

4.11 Plot of the real part ofG as a function of downstream distance, comparing

the asymptotic Orr-Sommerfeld results up toO(ε3 ln ε), and when the

O(ε3) term is included for (a)ε = 0.05 and (b)ε = 0.1 . . . . . . . . . . 94

4.12 Comparison of (a) the real part, and (b) the imaginary part of G as a

function of downstream distance, when theO(ε3) term is calculated with

κ of bothO(1), andO(ε3 ln ε), for ε = 0.1. . . . . . . . . . . . . . . . . . 95

xi



4.13 Plot ofRe(G) as a function of downstream distance for the Asymptotic

Orr-Sommerfeld problem, with theO(ε3) term calculated from (4.100)

(dashed line) withκ = κ0. The solid line represents the same solution,

except with theO(ε3) term calculated using (4.51), and the dotted line

represents the leading edge growth rate. . . . . . . . . . . . . . . . .. . 97

4.14 Comparison of (a) the real part, and (b) the imaginary part of G as a

function of downstream distance for the three different initial conditions

for the caseε = 0.1 and with the initial conditions given at̃x(0)
1 = 0.3. . . 98

4.15 Comparison of (a) the real part, and (b) the imaginary part ofG as a func-

tion of downstream distance for both the possible local PSE conditions,

for the caseε = 0.1 andx̃(0)
1 = 0.3. . . . . . . . . . . . . . . . . . . . . . 99

4.16 Plot of the real part of the growth rateG, given by the PSE, started at two

different positions (ringed) for (a)ε = 0.05 and (b)ε = 0.1. . . . . . . . . 100

4.17 Plot of eigensolution amplitude atx̃1 = 0.5 as a function of the starting

point x̃(0)
1 for ε = 0.05. The downstream amplitude is normalized with

respect to the value given whenx̃(0)
1 = 0.05. . . . . . . . . . . . . . . . . 102

4.18 Plot of (a) the real part and (b) the imaginary part ofG as a function of

downstream distance forε = 0.175, showing the effects of transients from

the initial conditions for the step sizes∆x̃1 = 0.15 and 0.175 . . . . . . . 103

4.19 Plot of the initial transients onRe(G) for ε = 0.15 for 4 different step

sizes,∆x̃1 = 0.05, 0.06, 0.1, 0.2, showing the occurrence of these tran-

sients as the step size reduces. . . . . . . . . . . . . . . . . . . . . . . . 104

4.20 Figure of the real part ofΨ as a function of̃x1 for (a) ε = 0.05 and

ε̂ = 1 × 10−41 and (b)ε = 0.15 andε̂ = 0.1. . . . . . . . . . . . . . . . . 106

4.21 Comparison of (a) the real parts and (b) the imaginary parts of G, cal-

culated using the asymptotics and PSE, as a function of downstream dis-

tance, forε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xii



4.22 Comparison of (a) the real parts and (b) the imaginary parts of G, cal-

culated using the asymptotics and PSE, as a function of downstream dis-

tance, forε = 0.05. For this value ofε, the two solutions are almost

indistinguishable from one another. . . . . . . . . . . . . . . . . . . .. . 108

4.23 Comparison of (a) the real parts and (b) the imaginary parts of G, cal-

culated using the asymptotics and PSE, as a function of downstream dis-

tance, forε = 0.1, including the asymptotics upO(ε3), denoted by the

dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.24 Plot of (a) the real parts and (b) the imaginary parts of the mode shape at

x̃1 = 2.0 with ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.25 Plot of (a) the real parts and (b) the imaginary parts of the mode shape at

x̃1 = 4.0 with ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.26 Plot of (a) the real parts and (b) the imaginary parts of the mode shape at

x̃1 = 6.0 with ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.27 Plot of (a) the real parts and (b) the imaginary parts of the mode shape at

x̃1 = 8.0 with ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.28 Plot of (a) the real parts and (b) the imaginary parts of the mode shape at

x̃1 = 10.0 with ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.29 An evolution plot of (a) the real parts and (b) the imaginary parts of the

mode shape at̃x1 = 2.0, 4.0, 6.0, 8.0, 10.0. . . . . . . . . . . . . . . . . . 111

4.30 Plot of the position of the neutral stability point as a function ofε com-

paring the PSE and the asymptotics. . . . . . . . . . . . . . . . . . . . . 112

4.31 Plot of the real part ofε2 ln(ψ̌) as a function ofε comparing the PSE and

the asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.32 Plot of the real part ofG as a function of̃x1 showing the local PSE patch-

ing (dotted line) over the gap between the PSE (solid line) and leading

edge solutions (dashed line) forε = 0.1. . . . . . . . . . . . . . . . . . . 116

xiii



4.33 Plot of growth rates,Re(G1) andRe(G2), for ε = 0.075 which requires

very minimal patching, andε = 0.2 which requires much more patching.

The lower of the two curves for theε = 0.2 case corresponds toRe(G1). . 119

4.34 Plot of the imaginary parts of the growth rates,Im(G1) andIm(G2), for

ε = 0.075 which requires very minimal patching, andε = 0.2 which

requires much more patching. The lower of the two curves for theε = 0.2

case corresponds toIm(G2). . . . . . . . . . . . . . . . . . . . . . . . . 120

4.35 Plot of|ψI
1| at the lower branch neutral stability point as a function ofε

for the second patching method. . . . . . . . . . . . . . . . . . . . . . . 122

4.36 Plot of the T-S wave velocity,uTS, as a function ofRx = U∞x
∗/ν at

the levelη = 0.033, for both Haddad and Corke’s method, and our PSE

method, forε = 0.248. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.37 Plot of the log of the amplitudes (
∫
Re(G)dx) of the first 5 T-S modes

(numbered) as a function ofRx, with ε = 0.194. The neutral stability

point occurs atRx ≈ 35 × 10−4. . . . . . . . . . . . . . . . . . . . . . . 126

4.38 Plot of figure 10 from Wanderley and Corke (2001) for a 20:1MSE with

the results from PSE calculations forε = 0.194. . . . . . . . . . . . . . . 127

5.1 A schematic illustration of the boundary-layer structure for a body with

a parabolic leading edge at zero angle of attack. The three decks in the

Orr-Sommerfeld region are 1- the viscous wall layer; 2- the main inviscid

layer; 3- the outer irrotational layer. Againε6 = Re−1. . . . . . . . . . . 131

5.2 Plot of (a)Uf (ξ̂) and (b)β(ξ̂) for a parabolic body. . . . . . . . . . . . . 134

5.3 Plot of the real part of the growth rateG as a function of downstream

distance, calculated by leading edge receptivity analysisand local PSE

theory, forS = 0.1 andS = 0.2 for the cases (a)ε = 0.05 and (b)

ε = 0.1. See figure 4.10 for theS = 0 case. . . . . . . . . . . . . . . . . 136

5.4 Plot of the growth rate,Re(G), for ε = 0.5 for S = 0 (solid line),0.15

(dashed line) and0.3 (dotted line), showing the downstream shift in the

curves asS increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiv



5.5 Plot of the neutral stability point on a parabola as a function ofS for both

ξ̃1 andx̃1 for (a) ε = 0.05, (b) ε = 0.1 and (c)ε = 0.2. . . . . . . . . . . . 138

5.6 Plot on a log scale for the eigensolution,|C−1
1 ψI

1|, and the T-S mode,

|ψI
1|, amplitudes on a parabola at lower branch, as a function ofS for (a)

ε = 0.05, (b) ε = 0.1 and (c)ε = 0.2. . . . . . . . . . . . . . . . . . . . . 140

5.7 Sketch of a thin symmetric airfoil of chord length2b and nose radiusrn in

a uniform stream,U∞, at zero angle of attack with a plane wave incident

at an angleθ to the downstream direction of the airfoil chord. . . . . . . . 141

5.8 Variation of|C1| with the acoustic incident angleθ, for k � 1 and with a

non-dimensional airfoil chord lengtha = 10, for S = 0 andS = 0.2. . . . 142

5.9 Variation of|C1| with the acoustic incident angleθ, for k � 1 and with a

Mach numberM∞ = 0.1, for S = 0 andS = 0.2. . . . . . . . . . . . . . 143

6.1 Plot of (a)Uf (ξ̂) and (b)β(ξ̂) for a Rankine body. . . . . . . . . . . . . . 148

6.2 Plot of the neutral stability point for the Rankine body, as a function ofA

for both ξ̃1 andx̃1 for (a) ε = 0.05, (b) ε = 0.1 and (c)ε = 0.2. . . . . . . 152

6.3 Plot on a log scale for the eigensolution,|C−1
1 ψI

1|, and the T-S mode,|ψI
1|,

amplitudes on a Rankine body at lower branch, as a function ofA for (a)

ε = 0.05, (b) ε = 0.1 and (c)ε = 0.2. . . . . . . . . . . . . . . . . . . . . 156

6.4 Sketch of MSE to show the definitions ofa andb in (6.21). . . . . . . . . 157

6.5 The shapes near the nose of the parabola, the Rankine body and the Mod-

ified Super Ellipse for the caseA = 0.1. . . . . . . . . . . . . . . . . . . 159

6.6 Plot of the curvature of the parabola, Rankine body and theMSE, for the

caseA = 0.1, as a function ofxc. . . . . . . . . . . . . . . . . . . . . . . 160

6.7 Plot of (a)Uf (x) and (b)β(x) for a Rankine body and a parabola for

A = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.8 Plot of the streamlines for the complex potential (6.30)for the caseK = 1. 163

6.9 Plot of the matching between the leading edge parabolic solution (dotted

line) and the slender body solution (solid line) for a20 : 1 MSE. Figure

(b) shows a more detailed plot of figure (a). . . . . . . . . . . . . . . .. 169

xv



6.10 Plot of the matching between the leading edge parabolicsolution (dotted

line) and the slender body solution (solid line) for a100 : 1 MSE. Figure

(b) shows a more detailed plot of figure (a). . . . . . . . . . . . . . . .. 169

6.11 Plot of the approximations to the MSE for the three different aspect ratios,

20 : 1, 40 : 1 and100 : 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.12 Plot of a comparison of the upper body surface for the MSEand the slen-

der body approximation to the MSE for the aspect ratios (a)20 : 1 and (b)

100 : 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.13 Plot of a the curvature comparing the slender body theory (solid line) with

the MSE (dotted line) for the aspect ratios (a)20 : 1 and (b)100 : 1. . . . 171

6.14 Plot of the slip velocity on (a) a20 : 1 MSE and (b) a100 : 1 MSE as

a function ofxc, showing the matching region between the leading edge

region (solid line) and the slender body theory (dotted line). . . . . . . . . 173

6.15 Plot of the slip velocity from the slender body theory approximation to

the MSE as a function ofξ, for the aspect ratios20 : 1, 40 : 1 and100 : 1,

and withε6 = 90 × 10−6. Figure (b) is a more detailed plot of figure (a). . 175

6.16 Figure showing the surface pressure distribution,Cp on a MSE as a func-

tion of xw, which is the streamwise variable of Wanderley and Corke

(2001) defined in§4.6.3. (a) is figure 4 taken from Wanderley and Corke,

and (b) is the same plot produced with our slender body theory. The

‘present study’ shown in figure (a) refer to the numerical solutions of

Wanderley and Corke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.17 Plot of the pressure gradient,β, for the slender body theory approximation

to the MSE as a function ofξ, for the aspect ratios20 : 1, 40 : 1 and

100 : 1. Figure (b) is a more detailed plot of figure (a). Figure (c) shows

a close up of figure (b) to make the first minimum inβ clearer. . . . . . . 178

6.18 Plot of the the pressure gradient,β and the curvatureκ for a 20 : 1 MSE

generated using slender body theory. . . . . . . . . . . . . . . . . . . .. 180

B.1 Ai(x), Ai′(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xvi



B.2 Bi(x),Bi′(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.1 Plot of the Chebyshev polynomials,Tn(x), for n = 1, 2, 3, 4, 5. . . . . . . 195

E.1 Figure showing the symmetric flow around a parabolic body(a) in the

z−plane, and (b) in theZ−plane. . . . . . . . . . . . . . . . . . . . . . 201

E.2 Figure showing the anti-symmetric flow around a parabolic body (a) in

thez−plane, and (b) in theZ−plane. . . . . . . . . . . . . . . . . . . . 201

F.1 Figure showing the streamlines around a Rankine body in the (x̂c, ŷc)
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Chapter 1

Introduction

The solutions to the Navier-Stokes equations, are in general smooth or laminar, up to some

critical value of the Reynolds number,Rec, above which the flow becomes unstable, and

the flow is then irregular or turbulent after this value. The instability occurs in the fluid due

to the growth of initially small perturbations of the mean flow and the resulting turbulent

flow leads to strong mixing of the fluid. Solutions to problemssuch as shear layers and

boundary-layers generally satisfy the above rule, howeverthe stability criterion of these

flows also depends upon other features of the flow such as the frequency or wavenumber of

the perturbation. The change from laminar flow to turbulent flow is know as ‘transition’,

and is of great importance in the subject of fluid dynamics.

The process of transition was first noted by Reynolds (1883), who conducted experi-

ments on liquid flow down a glass pipe. Reynolds set up the experiments so that water was

drawn through the tube out of a large glass tank, in which the tube was immersed, and it

was conducted so that a streak or streaks of coloured water entered the tube with the clear

water. He also fitted a funnel at the entrance to the pipe so that the water entered with the

smallest possible disturbance. Reynolds noted three main results from his experiments:

(i) When the fluid velocity was sufficiently small, the streak of coloured fluid extended

right the way along the pipe.

(ii) If the water in the tank had not quite come to rest, then for low velocities, the

coloured streak would move about in the tube, but would do so without any regularity.
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(iii) As the velocity of the fluid down the tube was increased in small increments,

at some point far down the tube, the coloured streak would suddenly mix up with the

surrounding water, and fill the whole pipe downstream of thispoint with coloured dye.

Once this had occurred, if the velocity of the fluid was increased further, then the point at

which the mixing occurred would move towards the inlet pointof the pipe, however the

mixing point never reached the inlet for any velocities tried. When the tube was lit with

an electric spark, the region of mixed water was seen to contain vortices and eddies.

Reynolds went on to show experimentally that the pipe flow breaks down beyond a

critical value of the dimensionless number, defined by

Re =
Ud

ν
,

whereU is the velocity down the pipe,d is the diameter of the pipe, andν is the kinematic

viscosity of water. This dimensionless number is the ‘Reynolds number’, as mentioned

earlier.

One area of fluid dynamics where the understanding of transition is very important

is boundary-layer theory. For example a boundary-layer is formed next to a rigid imper-

meable boundary when a large Reynolds number flow acts parallel to the boundary. The

boundary-layer is defined by where, the velocity of the fluid is reduced from the tangen-

tial slip velocity of the inviscid free-stream, to zero at the boundary. The flow within

the boundary-layer can also undergo transition. There are two forms of boundary-layer

transition, the first is when the mean flow contains small unsteady disturbances which

grow within the boundary-layer, until transition occurs. The second is when the distur-

bances are so large, that nonlinear interactions become important, and the flow breaks

down faster. This is known as bypass. The transition point ina boundary-layer can be

detected by a sudden growth in the boundary-layer, and this point is strongly dependent

on the unsteady nature of the free-stream disturbances. Other factors which affect the

position of transition include the addition of an external pressure gradient, the surface of

the body, i.e. surface roughness and curvature, and the angle of attack of the body to the

free-stream (Reshotko, 1976). The importance of the transition point usually depends on



1.1 Receptivity theory 3

the type of problem being solved. For example, sometimes early transition is required, as

this delays boundary-layer separation, and reduces the drag on a body, such as a golf ball.

Other times it is desirable to delay transition, so that laminar flow occurs along the whole

length of the body, as is desirable for an airfoil.

For the first kind of boundary-layer transition, where the disturbance in the free-stream

is small, the process of transition can be split into three stages of theory. The first stage is

the development of instability waves by a transfer of energyfrom the external disturbance,

known asreceptivity (Morkovin, 1969). The second stage is related to the slow linear

growth of the instability wave, known asstability theory . Mathematically this stage is an

eigenvalue problem, and the solution to this problem are know as Tollmien-Schlichting

waves (T-S waves). Only one of these waves grows as we move downstream, the rest

decay, and it is the one growing wave which is important in boundary-layer transition,

because it is this wave which eventually leads to turbulence. The third and final stage is

the nonlinear breakdown of these instability waves. The second and third stages will be

discussed in more detail later, but for now we concentrate our attention on the first stage,

receptivity.

1.1 Receptivity theory

Here we consider only receptivity of the first kind, where theexternal free-stream distur-

bance is assumed to be small. In this region of the flow, the mathematical problem is an

initial value problem (IVP), and hence any numerical solution requires an initial condition

to march though this region. There are two types of receptivity:

(i) Forced receptivity - is when the disturbance is introduced locally into the boundary-

layer, by means of a vibrating ribbon, wall suction/blowingor by heating the boundary.

(ii) Natural receptivity - is when the disturbance source islocated far from the boundary-

layer, such as acoustic waves within the free-stream.

For the case of forced receptivity, the wavelength of the induced disturbance is matched
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to that of the T-S wave, so that the T-S wave can be excited immediately, and then the prob-

lem can be considered as a stability problem. In the natural receptivity problem however,

the external disturbance usually has a much longer wavelength than the T-S wave, hence a

wavelength shortening mechanism is required so that the external disturbance can transfer

energy and excite the shorter wavelength T-S wave.

The wavelength shortening process of natural receptivity is often associated with ar-

eas where the non-parallel effects of the mean base flow are important. These exist where

there are rapid changes in the streamwise variation of the boundary-layer, or where there

are rapid changes in the surface boundary conditions, whichproduce diffracted distur-

bances. Rapid variations in the mean flow occur at a leading edge, where the boundary-

layer is thin and grows rapidly (Goldstein, 1983 and Hammerton and Kerschen, 1996),

or at a point further downstream, where the boundary-layer is forced to make a sudden

adjustment due to the presence of a surface roughness element (Goldstein and Hultgren,

1989). Other mechanisms which can produce rapid streamwisechanges to the boundary-

layer needed for wavelength conversion are, any discontinuities in surface curvature and

the angle the body makes to the mean flow, which produces an area of low wall shear,

where the boundary-layer is close to separation. All of the above mechanisms invali-

date the assumption that the boundary-layer is parallel to the surface of the body, and

hence the equation governing stability calculations becomes invalid. In places where the

boundary-layer is thin and rapidly growing, the unsteady boundary-layer equation be-

comes the correct approximation to the Navier-Stokes equations over the whole region.

In areas of sudden changes to the boundary’s surface or boundary conditions, the flow

is governed by a triple-deck solution, where, in a small region centered on the variation,

the unsteady boundary-layer equation is the correct approximation to the Navier-Stokes

equations in the lower deck.

Overall reviews of the receptivity topic have been providedby Reshotko (1976), Gold-

stein and Hultgren (1989) and Saricet al. (2002). Nishioka and Morkovin (1986) re-

viewed the process of boundary-layer receptivity to unsteady pressure gradients includ-

ing Soviet experiments and views on receptivity. Kachanov (1994) reviewed the physical
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mechanisms of laminar boundary-layer transition.

The main receptivity mechanism of interest to us in this workis that of leading edge

receptivity. However, a brief overview of two of the other mechanisms are given before

we concentrate on leading edge receptivity.

1.1.1 Streamwise variations in surface geometry

Goldstein (1985), Goldstein and Hultgren (1987) and Bodonyiet al. (1989) showed that

small streamwise variations in the surface geometry far downstream of the leading edge

are mechanisms for receptivity. Goldstein (1985) considered changes in the surface slope,

and introduced a turning angle ofO(Re−
1
4 ), which is the downward angle the surface

makes with the horizontal part of the surface, at the point atwhich the curvature changes.

Goldstein and Hultgren (1987) considered a discontinuity in curvature of the surface,

over a vertical height ofO(Re−
5
8 l), where the Reynolds number, which is assumed to be

large, is defined in terms ofl, which is the distance between the leading edge and the

discontinuity. Both these methods were assumed to act over a streamwise length scale of

O(Re−
3
8 l), which is of the same order of magnitude as the T-S wave’s wavelength. The

disturbance wave was taken to be an acoustic wave with frequency ofO(Re
1
4U/l), which

corresponds to the T-S wave frequency at the lower branch neutral stability point (the point

at which the T-S wave starts to grow). The flow in the vicinity of the surface variations

has a triple-deck structure, as in Smith (1979), where the bottom deck is governed by

the unsteady boundary-layer equation. The influence of the variation in surface geometry

acts so as to ‘scatter’ the long wavelength acoustic waves into the shorter wavelength T-S

waves which are of similar magnitude to the initial acousticwave. The fact that these

T-S waves occur closer to the neutral stability point means that they have less time to

decay (than T-S waves generated at the leading edge) before they start to grow. Hence

they are important to the overall receptivity problem when combined with the leading

edge problem. Goldstein and Hultgren (1987) define the coupling effect as a measure of

the size of the resulting T-S wave. For a6 : 1 aspect ratio ellipse (ratio of the major to

the minor axis) stuck onto a flat plate, considered in the experiments of Shapiro (1977)
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and Leehey and Shapiro (1980), Goldstein and Hultgren foundthat this coupling effect

due to the discontinuity in curvature is ofO(Re−
1
8σ) whereσ is the thickness ratio of

the ellipse (σ = 1
6

for the Shapiro body). In comparison to this, the coupling coefficient

due to the leading edge receptivity is ofO(Re
τ
4 ), whereτ = −0.6921. Hence the weak

static pressure gradients set up by the small streamwise fluctuations in surface geometry,

produce a large coupling effect at lower branch, and this is in fact larger than the effect due

to the leading edge, when the respective damping factors arealso taken into consideration.

The asymptotic analysis of this localized receptivity region is also supplemented by a

numerical ‘finite-Reynolds-number-approach’ (Choudhari and Streett, 1992 and Crouch,

1992).

1.1.2 Regions of marginal separation

Goldsteinet al. (1992) considered a relatively thin two-dimensional body at an angle of

attack to the free-stream. The angle of attack was assumed tobe close to the critical

angle where boundary-layer separation occurs along the upper surface of the body, so

that the minimum of the non-dimensional wall shear is ofO(Re−
1
5 ), where the Reynolds

number is based on the distance,l, from the leading edge to the point of minimum wall

shear. The flow has a triple-deck structure on a length scale of O(Re−
1
5 l), centered on

the minimum wall shear, but the individual layer thicknesses are different from traditional

triple-deck theory. Stewartsonet al.(1982) named the flow on this length scale, ‘marginal

separation’, where the wall shear is almost zero but immediately recovers to anO(1)

value downstream. Fully unsteady, triple-deck, interaction occurs when the frequency

of the disturbance is ofO(Re
1
7U/l). Initially the disturbance amplitude is exponentially

small compared with the free-stream amplitude, but it rapidly grows in the triple-deck

region. However, the solution in the triple-deck region does not match directly onto the

T-S wave, and there is a region ofO(Re−
1
14 l), where the disturbance’s wavelength grows

with x, wherex is the coordinate measured along the body from the leading edge. Finally,

there is a streamwise outer region ofO(l), where the disturbance evolves into eigenmodes

similar to the Lam-Rott eigenmodes, which will be discussed in more detail in§1.1.3.
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These eigenmodes have a wavelength which decays likex−
1
2 , which is the required decay

rate to match onto the T-S waves in the stability region.

Experiments have shown that the transition Reynolds number is strongly dependent

on the angle of attack of the body. The angle of attack has little effect on the pressure

gradients at the lower branch point, however it makes steep pressure gradients at the

leading edge (Polykov, 1973a, Polykov, 1973b and Vorob’Yevet al., 1976). Goldstein

et al. (1992) suggest that this is because marginal separation hasoccurred.

1.1.3 Leading-edge receptivity

As was mentioned earlier, we primarily concentrate on the receptivity occurring at the

leading-edge for this work, where the rapidly growing boundary-layer produces the rele-

vant change in energy from the unsteady free-stream to the short wavelength T-S waves.

It was the pioneering theoretical work of Goldstein (1983) which first discovered the

physical mechanism behind the wavelength shortening procedure which leads to recep-

tivity at the leading edge. Goldstein considered the interaction of small disturbances in

the free-stream acting on the boundary-layer on an infinitely thin, semi-infinite flat plate.

The mean flow was considered to be two-dimensional, incompressible, and with a large

Reynolds number,Re = U2
∞/νω, whereU∞ is the free-stream velocity, andω is the

frequency of the free-stream. The free-stream disturbanceis assumed to be small com-

pared to the free-stream, and to have frequencyω. This means that the unsteady flow

can be considered as a linear perturbation of the free-stream, with the a single harmonic

frequency.

Close to the nose of the plate, the unsteady boundary-layer flow is governed by the

linearized unsteady boundary-layer equation (LUBLE). Thisproblem was first studied by

Lighthill (1954), who derived solutions to the LUBLE both close to, and far from the

leading-edge. He then went on to connect these two solutionsby means of a Ḱarmán-

Pohlhausen method. Lam and Rott (1960) and Ackerberg and Phillips (1972) re-derived

Lighthill’s results, and demonstrated that the far downstream form of the solution devel-

ops a two layer structure, where the inner wall layer is a Stokes shear-wave type of flow,
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to lowest order, and the upper layer is a modified Blasius solution. Lam and Rott (1960)

point out from their analytical work that the Stokes-type solution is not complete, as it is

uniquely determined independently of the upstream condition, which is imposed for the

solution of a parabolic partial differential equation. This lead Lam and Rott to conclude

that the far downstream form of the LUBLE must consist of a Stokes-type solution, and an

infinite sum of asymptotic eigenmodes. Lam and Rott (1960) went on to construct such a

family of eigenmodes, which decay exponentially fast as we move down the plate. Acker-

berg and Phillips (1972) obtained equivalent expressions for these eigenmodes by the use

of separation of variables and matched asymptotic expansions. These Lam-Rott eigen-

modes are inversely ordered, with the first eigenmode havingthe greatest amplitude, and

the slowest decay rate. Goldstein (1983) found that these Lam-Rott eigenmodes have a

wavelength proportional tox−
1
2 , wherex = ωx∗/U∞ is the dimensionless streamwise dis-

tance from the leading-edge non-dimensionalised with respect to the aerodynamic length

scaleU∞/ω. This wavelength has the correct shortening mechanism required for them to

generate the short wavelength T-S waves. Goldstein, however, showed that the Lam-Rott

eigenmodes still satisfy the LUBLE when multiplied byxτ , whereτ is a constant, which

is determined by a solvability condition at the next order ofthe asymptotics.

Further downstream, the LUBLE becomes an invalid approximation to the Navier-

Stokes equations, because the boundary-layer, which growslike x
1
2 , allows the eigen-

modes to keep oscillating more and more rapidly, until the neglected streamwise vari-

ations become important, and the LUBLE solution breaks down.The appropriate ap-

proximation to the Navier-Stokes equations in this region is the Orr-Sommerfeld equa-

tion, and Goldstein (1983) showed that there exists a matching region between the two

regimes, where the Lam-Rott eigenmodes match, in the matchedasymptotic expansion

sense (Van Dyke, 1964b), to the T-S waves of the Orr-Sommerfeld equation. Each Lam-

Rott eigenmode matches precisely to one T-S wave, with the lowest order Lam-Rott eigen-

mode matching to the T-S wave which exhibits spatial growth downstream of the lower

branch neutral stability point. All the other T-S waves exhibit exponential decay all the

way along the plate.
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Figure 1.1: An illustration of the boundary-layer structure for a general body with di-
mensional nose radiusrn at zero angle of attack. The three decks in the Orr-Sommerfeld
region are 1- the viscous wall layer; 2- the main inviscid layer; 3- the outer irrotational
layer.

These results are also valid for finite thickness bodies, where the nose radius of cur-

vature is ofO(U∞/ω) or smaller, as shown in figure 1.1. Nose radii larger than this

invalidate the small curvature condition stipulated in chapter 2. In a region of length

O(Re−
1
6 ) near the stagnation point at the nose of the body, the fluid motion is governed

by the full Navier-Stokes equations. Further downstream, on anO(1) length scale, the

motion is governed by the LUBLE, and the solution exhibits a two deck structure. Fur-

ther downstream still, on a length scale ofO(Re
1
3 ), the LUBLE solution brakes down,

and the governing equation is then the Orr-Sommerfeld equation. The solution to the Orr-

Sommerfeld equation has a triple-deck structure, which is also the correct behaviour for
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the solution at the lower branch point. The triple-deck structure consists of a viscous wall

layer, a main inviscid layer, and a irrotational outer layer.

Lam and Rott (1993) re-derived their asymptotic eigenmodes to the LUBLE, with the

missingxτ term included, found by Goldstein (1983). Lam and Rott found that with

the inclusion of this extra multiplication factor, their ‘outer’ eigensolution was now valid

for arbitrary pressure gradients, and their ‘inner’ eigensolution was also valid without

requiring that the pressure gradient of the basic steady flowbe zero. Brown and Stew-

artson (1973) showed that the Lam and Rott (1960) eigenmodes are not the only as-

ymptotic eigenmodes which satisfy the LUBLE. The Brown-Stewartson eigenmodes in

contrast to the Lam-Rott modes are correctly ordered, in thatthe amplitude of the fist

eigenmode is the smallest, and it decays the slowest. Both sets of eigenmodes are valid

solutions to the LUBLE, and both sets are visible in the numerical solution to the LUBLE

(Hammerton, 1999), however they have different properties. The real part of the mode

shape of the Lam-Rott eigenmodes have their maxima close the wall, whereas the Brown-

Stewartson eigenmodes have their maxima close to the outer edge of the boundary-layer.

It was also pointed out by Goldstein (1983), that the Brown-Stewartson eigenmodes have

a much stricter criterion for their validation, and in fact are only valid for
√

ln(x/3) � 1.

The Lam-Rott eigenmodes on the other hand have a much weaker validation criterion of

x � 1. Although we acknowledge the existence of the Brown-Stewartson eigenmodes,

we concentrate our attention on the Lam-Rott modes because they have the required expo-

nential decay, and wavelength shortening to transfer energy to the T-S waves. It has been

speculated that the Brown-Stewartson eigenmodes may be obtainable by re-expanding,

for largex, an appropriate sum of the Lam-Rott eigenmodes (Goldsteinet al., 1983),

however this idea has not yet been validated.

By showing that the Lam-Rott eigenmodes match to the T-S waves,Goldstein (1983)

proved that the information from the leading edge is only transmitted downstream by the

unique constants multiplying each eigenmode. Moreover, asit is thefirst of these eigen-

modes which matches to the spatially growing T-S wave, we aremost interested in this

coefficient. We call this coefficient,C1, the ‘receptivity coefficient’, and it is uniquely
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determined by the form of the free-stream. For the semi-infinite flat plate, Goldsteinet al.

(1983) found the receptivity coefficient to beC1 = −0.45 + 0.855i for acoustic distur-

bances, in two ways. Firstly a curve-fitting technique was used identical to the method of

Ackerberg and Phillips (1972), where the numerical and asymptotic solutions for the dis-

placement thickness were assumed to agree at certain pre-selected points. Secondly it was

determined by assuming that the solution to the unsteady boundary-layer equation is an

analytic function ofx, when extended into the complex plane (Lam and Rott, 1960). Thus

the numerical solution to the unsteady boundary-layer equation can be extended into a re-

gion where the lowest order eigenmode is dominant, and then the receptivity coefficient

can be easily determined by comparison with the asymptotic form of the eigenmode.

In general, airfoils used for subsonic flow have finite thickness, and so cannot be

modeled as a semi-infinite flat plate. Hammerton and Kerschen(1996) were first to treat

analytically the receptivity on a more general body. They considered a parabola at zero

angle of attack to the free-stream, with an acoustic disturbance incident at an angleθ

to the chord of the airfoil. The leading edge curvature of thebody enters the problem

through the Strouhal number,S = ωrn/U∞, where the dimensional nose radius is,rn,

non-dimensionalised with respect to the aerodynamic length scaleU∞/ω. Hammerton

and Kerschen consider the caseS = O(1), andξ � O(Re
1
3 ), whereξ is the coordinate

along the body. These limits were such that the flow is governed by the LUBLE, hence

the flow in the vicinity of the leading edge could be treated. The parabolic nose produces

everywhere a favourable pressure gradient, which decreases monotonically from its max-

imum value at the stagnation point, and approaches zero far downstream. The resulting

eigenmodes of the LUBLE, in their far downstream form, are thesame as the Lam-Rott

eigenmodes, but they are modified to include the effect of themean pressure gradient. As

the nose radius increases, the strong favourable pressure gradient near the nose, extends

over a larger number of disturbance wavelengths and acts as astabilizing influence on the

solution. Thus this produces a rapid decrease in the value ofthe modulus of the receptiv-

ity coefficient,C1, asS increases, and in fact the modulus of the receptivity coefficient

is approximately12% of the flat plate value whenS = 0.3. Hammerton and Kerschen
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(1996) go on to suggest that this rapid decrease in the modulus of the receptivity coef-

ficient should be valid for other streamlined bodies. For theparabola, Hammerton and

Kerschen also observed a small rise in the receptivity coefficient for smallS, before the

monatonic decrease asS increases. When the angle of incidence of the acoustic wave

is considered, the receptivity coefficient can be written inthe form of a symmetric com-

ponent and an antisymmetric component, both of which are determined separately. Two

cases for the incident angle were studied: one where the acoustic wavelength is long

compared with both the hydrodynamical wavelength,U∞/ω, and the airfoil chord, and

the second where the acoustic wavelength is long compared tothe hydrodynamic wave-

length, but short compared to the length of the chord. For thefirst case, the absolute value

of the symmetric receptivity coefficient,Cs, as a function ofθ, increases to a value of18

for S = 0 and3 for S = 0.2, both of which occur atθ ≈ ±π/2, before decreasing again to

approximately theθ = 0 values atθ = π. For the second case however, the absolute value

of the symmetric receptivity coefficient increases to20 for S = 0 and to4 for S = 0.2,

which occur at approximatelyθ = ±π.

The curious behaviour of the receptivity coefficient increasing slightly before decreas-

ing was further studied by Hammerton and Kerschen (1997), where they analysed the

limit S −→ 0 for the parabola considered above. It was shown that the symmetric part

of the receptivity coefficient,Cs, grows likeS, hence proving the increase in receptivity

coefficient from the flat plate value, and the antisymmetric component,Ca, decreases like

S
1
2 , hence giving a very rapid decrease in value compared to the flat plate value. Also

asS −→ 0, it was noted that the antisymmetric receptivity coefficient is approximately

five time the value of the symmetric receptivity coefficient,and hence the antisymmetric

component proves much more important in evaluating the receptivity coefficient than the

symmetric component.

Hammerton and Kerschen (2005) extended their previous workto consider a cam-

bered parabolic airfoil at a non-zero angle of attack to the free-stream. In this case there

is a favourable pressure gradient at the stagnation point, followed by an even stronger

favourable pressure gradient as the flow travels around the leading edge. The pressure
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gradient on the upper surface then becomes adverse and the boundary-layer either sepa-

rates, or reaches a point of minimum wall shear followed by a relatively slow recovery

downstream. The boundary-layer is assumed to be attached, so the wall stress is every-

where positive and finite, and the airfoil is assumed not to benear the critical angle of

attack where marginal separation occurs. Modest amounts ofaerodynamic loading in the

leading edge region causes a decrease in the receptivity coefficient for the flow over the

upper surface of the airfoil and an increase for the flow underthe lower surface. In fact,

on the upper surface, the absolute value of the symmetric receptivity coefficient decreases

from its value when the aerodynamic loading parameter,µ, equals zero until approxi-

matelyµ ≈ 0.7 where it increases again, and the absolute value of the antisymmetric co-

efficient decays toµ ≈ 0.4 before increasing again. Conversely, on the lower surface, the

symmetric and antisymmetric receptivity coefficients increase to a maximum atµ ≈ 0.4

before decaying again. The lower surface receptivity is of less interest however, because

the pressure gradient is typically favourable and the instability waves have smaller growth

rates. The effect of the aerodynamic loading is more pronounced for higher Strouhal num-

bers where the region of receptivity is concentrated closerto the stagnation point. Also

the introduction of the aerodynamic loading moves the stagnation point towards the lower

surface, which increases the favourable pressure gradientbetween the stagnation point

and the leading edge.

The finite thickness airfoil theory was extended further by Nichols (2001), she ex-

tended the theory to general bodies for which the inviscid slip velocity tends to a constant

far downstream, and the curvature is assumed to be small. Thebody is at a zero angle

of attack, and the disturbance is considered to act parallelto the body. The unsteady

flow, on a length scale along the body of,ξ = O(1), is again governed by the LUBLE,

and asξ −→ ∞ it has a Stokes-like solution which is determined locally (i.e. it is in-

dependent of the upstream disturbance), and a sum of eigenmodes, which are modified

versions of the Lam-Rott eigenmodes, to take into account themean pressure gradient.

The propagation of information from the leading edge occursonly through the coeffi-

cient multiplying the lowest order eigenmode, and Nichols (2001) calculated this value
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for different geometries. Only acoustic waves flowing parallel to the free-stream were

considered, however this work is valid for other free-stream disturbances, such as con-

vected gusts (Buckingham, 2004), as the resulting difference only occurs in the value of

the receptivity coefficient. Solutions are also valid as long as the minimum wall shear is

greater thanO(Re−
1
5 ), so marginal separation doesn’t occur, and as long as any surface

variation acts with a streamwise length of variation greater thanO(Re−
3
8 l), wherel is the

distance from the leading edge to the centre of the variation. Nichols (2001) considered

a Rankine body whose nose radius of curvature is proportionalto A. She found that the

receptivity coefficient decreases rapidly from the flat plate value asA increases, then ex-

hibits a local rise centered onA = 0.035, followed by a further gradual decline. This was

then extended to consider bodies which are equivalent to a flow formed by a source and

a sink in a uniform flow, which are parameterized by two parameters. Nichols showed

that two bodies which have the same thickness but subtly different body shapes, can have

pressure gradients which are very similar close to the nose and downstream, but very dif-

ferent in the region of the minimum pressure gradient. The source/sink formulation leads

to two different types of bodies. For monotonically increasing bodies, there was a fall

in the receptivity coefficient with increasing thickness/nose radius. Hence the receptivity

depends not only on the minimum of the pressure gradient, butalso on its location and the

variation of the pressure gradient in the region of the minimum. However, bulbous bod-

ies, without boundary-layer separation, observed a rapid fall in the receptivity coefficient,

followed by a rapid increase. Hence when a change of wall slope occurs in the leading

edge region, it acts as another source of receptivity, and sohas to be treated as such.

The analytic receptivity analysis on its own is very difficult to compare with exper-

imental analysis, as the experiments generally calculate receptivity by calculating the

magnitude of the growing T-S wave at some point downstream ofthe leading edge. Math-

ematically, this region is on a length scale ofO(Re
1
3 ), and so the LUBLE is no longer

the governing equation, and the correct approximation to the Navier-Stokes equations is

now the Orr-Sommerfeld equation. Goldstein (1983) derivedthe asymptotic solution in

this Orr-Sommerfeld region for the case of a semi-infinite flat plate, hence T-S wave am-
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plitudes downstream are available. However a semi-infiniteflat plate is not a physically

reasonable body to preform experiments on, and extending Goldstein’s asymptotics to

general finite thickness bodies is not simple. Hence the receptivity analysis has to be

used in conjunction with stability analysis to produce results which are comparable with

experiments and full Navier-Stokes numerical schemes.

1.2 Stability theory

Stability theory accounts for the linear growth of the T-S wave, after it has been excited

in the receptivity region. For the case of the airfoil problems we have considered so far,

this occurs on a streamwise length scale ofO(Re
1
3 ). The correct approximation to the

Navier-Stokes equations in this region is the Orr-Sommerfeld equation. This equation

was first derived when considering the flow between two solid walls, and the derivation

of the Orr-Sommerfeld equation can be found in Appendix A. The Orr-Sommerfeld equa-

tion is solved as an eigenvalue problem, with the first accurate solution for Poiseuille flow

offered by Orszag (1971). Chebyshev polynomials (Appendix C)were used to approxi-

mate the mode shape across the fluid domain, and an eigenvaluealgorithm was used to

find the linear temporal eigenvalues. The more complex problem of solving for the non-

linear spatial eigenvalues was addressed by Bridges and Vaserstein (1986) and Bridges

and Morris (1984) who extended the Chebyshev polynomial technique to simplify the

non-linear eigenvalue problem to a linear one, and proved that the results were consistent

with those of Orszag (1971).

If it is assumed that the boundary-layer is parallel to the surface of the body, then

the Orr-Sommerfeld equation, derived in Appendix A, is the correct approximation to

the Navier-Stokes equations. An example of the spatial eigenvalues,α = αr + iαi, for

parallel Blasius flow can be seen in figure 1.2. The eigenvalue close to the pointαr = 0.3

is the most unstable eigenvalue, and it corresponds to the T-S wave which eventually

grows downstream. For small Reynolds numbers, this eigenvalue lies very close to the

continuous spectrum of eigenvalues atαr = 0.12, but as the Reynolds number increases,

this eigenvalue moves away from the continuous spectrum, and closer to the lineαi = 0.
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Whenαi > 0 the corresponding T-S wave is decaying, and whenαi < 0 it is growing, and

at the point whenαi = 0, the T-S wave neither grows or decays, it is said to be neutrally

stable, and the corresponding value of the Reynolds number atthis point is known as

the critical Reynolds number. The main drawback to the parallel flow theory is that the

boundary-layer over an airfoil’s surface is not strictly parallel, and so extra terms are

needed to give more accurate comparisons with experimentaland full numerical results.
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Figure 1.2: Spatial eigenvalues,α = αr + iαi, for Blasius flow, for the caseω = 0.12 and
Re = 519.4

Gaster (1974) attempted to resolve this problem by leaving astreamwise dependent

function, rather than a constant, multiplying the normal mode solution, and forming a

solution in powers ofRe−
1
2 . The resulting equations were solved with an iterative scheme,

and showed that this method was valid in the large Reynolds number limit.

Itoh (1974a) developed a different numerical method for solving the parallel Orr-

Sommerfeld equation, based on power series, and this methodprovided good agreement
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for the critical Reynolds numbers for both Poiseuille and Blasius flow. Itoh then extended

this method to take into account the thickening of the boundary-layer downstream, and the

normal component of velocity that this produces (Itoh, 1974b). The solution was sought

by expanding the stream function as a Fourier series with theomission of components

higher than the3rd order. Itoh (1974b) found fairly good agreement with the results of

Klebanoffet al. (1962) when the initial amplitude of the disturbance is relatively small.

However for large initial amplitudes this is not the case, and the difference is attributed to

the fact that the experimental disturbance is three-dimensional, whereas the disturbance

is assumed to be two-dimensional.

Saric and Nayfeh (1975) devised another method of formulating the non-parallel

boundary-layer flow, which accounts for the non-parallel behaviour in a different manner

to Itoh (1974b). The method is a multiple scales method, based on the work of Nayfeh

(1973), where the flow is split into a base flow, and a small perturbation, of frequencyω.

The base flow is assumed to be a slowly varying function of the streamwise variablex,

hencex1 = εx is introduced as a slow streamwise variable, whereε � 1. The resulting

analysis produces two equations, one atO(1) and the other atO(ε), both of which are

solved iteratively, and the results provide a neutral curvewhich is in good agreement with

the experiments of Schubauer and Skramstad (1947) and Rosset al. (1970). This method

is very similar to that of Bridges and Morris (1984), who use a numerical method similar

to their nonlinear spatial eigenvalue solver and they also obtain results in good agreement

with the experiments. Saric and Nayfeh (1977) later extended this method to incorporate

boundary-layer flows with pressure gradients and surface suction.

The triple-deck structure of the Orr-Sommerfeld solution at the lower branch neutral

stability point, on a flat plate was analytically derived by Smith (1979), and Goldstein

(1983) showed that the solution in the Orr-Sommerfeld region has the triple-deck structure

throughout the entire region. Goldstein derived the asymptotic form of the wavenumber

and mode shape in this region, which proved that the calculation of T-S wave amplitudes at

lower branch is possible. Up to now, all the eigenvalue methods for numerically solving

the Orr-Sommerfeld equation, have been correct only up to anarbitrary multiplicative
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constant, and in fact contain no information from the leading edge. Goldstein showed

that the asymptotic T-S wave solutions matched, in the matched asymptotic sense, to

the large downstream form of the Lam-Rott eigenmodes of the LUBLE. This suggests

that information from the leading edge can be passed downstream to the T-S waves via

these asymptotics. However, it is not yet apparent if the asymptotic solution in the Orr-

Sommerfeld region is actually correct to orderRe−
1
2 , and hence the accuracy of these

asymptotics is not fully known. Also any attempt to extend the analysis to bodies such as

the parabola have been difficult due to the fact that the asymptotics toO(Re−
1
2 ) on a flat

plate are complex enough, without the introduction of a non-zero pressure gradient.

Itoh (1986) extends Goldstein’s theory in the Orr-Sommerfeld region to numerical

evaluations of the eigenmodes for a wider range of Reynolds numbers. Itoh derives a

parabolic partial differential equation governing small disturbances with fixed frequency

from an expansion procedure essentially similar to the boundary-layer approximation.

The PDE was shown to be valid for both the upstream region where the unsteady boundary-

layer equation is approximately applicable, to the far downstream region, where the Orr-

Sommerfeld equation based on the parallel flow approximation is applicable. If the value

of the Reynolds number and the frequency of the disturbance are above a certain value,

then the PDE is decomposed into a set of ordinary differential equations.

The method behind the derivation of the parabolic PDE of Itoh(1986) was extended

by Bertolottiet al.(1992) who used the assumptions that the mean flow is governedby the

boundary-layer approximation, and moreover, the second derivatives of the disturbance

wavenumber and mode shape with respect to the streamwise direction are sufficiently

small, and thus can be neglected. The resulting ParabolizedStability Equation (PSE) de-

scribes the evolution of linear or non-linear, two- or three-dimensional disturbances in

flows with slowly changing streamwise properties such as non-parallelism. The PSE is

solved with an upstream boundary condition, usually given by local theory. The solution

is then found by marching downstream, along with the fixing ofa normalization condi-

tion, solving for the disturbance wavenumber and mode shape, in a similar fashion to the

multiple scales method. The linear form of the PSE is identical to the partial differen-
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tial equation derived by Itoh (1986), however the advantageof the PSE over the other

multiple scales methods is, that it is relatively easy to include weakly non-linear effects,

which prove to be important when the disturbances approach upper branch. The PSE can

reproduce the results of Saric and Nayfeh (1977), but the analysis shows that their defin-

itions of growth rates are not based on relevant physical quantities, hence should not be

compared with the existing experimental measurements.

Bertolottiet al. (1992) derive their PSE equation in terms of a stream function, which

gives rise to some numerical stability problems, but not as many as the primitive variables

approach adopted by Herbert (1993) (Anderssonet al., 1998). Herbert (1993) derives a

three-dimensional version of the PSE in terms of the primitive variables(u, v, w, p), where

u, v andw are the velocity components in thex, y andz directions, respectively, andp

is the pressure. When marching downstream with a streamwise step size less then some

given amount, this form of the PSE experiences numerical instabilities which increase

until numerical divergence occurs. Herbert (1993) discusses uses for the PSE other than

non-parallel boundary-layer calculations. The incompressible version can model vortices

in Blasius flow, receptivity to Hiemenz flow, and nonlinear vortices whereas the compress-

ible version of the PSE can model high Mach number flows. The numerical instability for

the primitive variable form of the PSE is due to the equationsbeing ill-posed, due to the

pressure gradient term. Li and Malik (1994) and Li and Malik (1996) offer a solution to

this problem, by giving the minimum streamwise step size forwhich the PSE is ill-posed.

They suggest either marching with a step size bigger than this minimum, or equivalently

set the pressure gradient to zero, which removes some of the ellipticity from the PSE,

hence makes the minimum step size smaller. However this doesnot remove all of the el-

lipticity, and hence the PSE is still ill-posed. The mathematical nature of the branch cuts

and eigenvalues of the PSE in the complex plane are discussedby Li and Malik (1997).

A stabilization procedure for the primitive variable form of the PSE is offered by

Anderssonet al. (1998). They suggest the addition of a term of the same magnitude

as the neglected truncation error to the first order backwardEuler scheme. With this

added term, multiplied by an arbitrary real numbers, the PSE step size restriction can
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be changed by a suitable value fors. Anderssonet al. (1998) comment that the stream

function formulation of the PSE has a less severe step size restriction. This was first

noted by Li and Malik (1996), who suggests that this step sizerestriction can be relaxed

if the streamwise derivative of the wavenumber is set to zero. This doesn’t affect the

overall wavenumber result, as long as we are not near a regionwhere the wavenumber is

changing reasonable quickly, for example close to the leading edge. Herbert (1997) offers

an extensive review of the PSE and its applications.

An alternative approach to solving the stability problem was considered by Hill (1995),

who used adjoint methods to solve the Orr-Sommerfeld problem. Salwen and Grosch

(1981) developed a theory of temporal and spatial eigenfunction expansions for the so-

lution of the Orr-Sommerfeld equation. The linear Navier-Stokes equations are not self-

adjoint, hence a bi-orthogonal eigenfunction set is required (Schensted, 1960). For every

eigensolution to the Orr-Sommerfeld equation, there exists an adjoint which has equal

and opposite frequency and wavenumber, and also the adjointeigensolution can be used

to filter a general disturbance field to identify the amplitude of the corresponding eigen-

solution. The adjoint solution defines the sensitivity of a chosen disturbance to the modi-

fication of the base flow or boundary conditions, and Hill (1995) found that the unsteady

forcing in the vicinity of the critical layer will induce thelargest response of the T-S wave.

Other parallel work on the adjoint methods has been studied by Zhigulev and Fedorov

(1987) and Nayfeh and Ashour (1994).

Herbert (1997) first proposed the use of the Adjoint Parabolized Stability Equation

(APSE), and it was first formulated by Collis and Dobrinsky (1999). The adjoint methods

show that for 2-D disturbances in 2-D boundary-layers, the non-parallel effects are almost

negligible over a wide range of frequencies, while adverse pressure gradients increase

receptivity and favourable pressure gradients reduce receptivity. Adjoint methods also

show that 3-D oblique modes have greater receptivity than 2-D waves, which are both

in contrast to well known effects of pressure gradients on T-S instability growth rates

(Dobrinsky and Collis, 2000). All the work on adjoint methods, except for Luchini and

Bottaro (1998) and Hill (1997), rely on the expansion of the homogeneous solution to
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the locally parallel flow into a bi-orthogonal set of eigenfunctions. Luchini and Bottaro

(1998) solved the receptivity problem of Görtler vortices using the adjoint of the linearized

boundary-layer equations. The advantage of this method is that it naturally includes the

non-parallel effects within the receptivity predictions which are important for streamwise

orientated disturbances. Hill (1997) extends the adjoint parallel theory approach to utilize

the PSE and presents results based on the APSE along with comparisons for forced PSE

and direct numerical solutions (DNS) results of Crouch (1995). The numerical solution

to the APSE is solved by marching upstream, and used to provide a direct measure of the

receptivity (e.g. to a suction strip at a certain location).

The method of adjoint solutions was extended by Giannetti (2002), who marches re-

ceptivity results given by the numerical solution to the LUBLE, downstream via an adjoint

multiple scales approach. This approach is similar to the approach taken in this thesis, ex-

cept we use the asymptotic form of the result in the leading edge region, and we use the

PSE to march the solution through the Orr-Sommerfeld region(Turner and Hammerton,

2006). The bi-orthogonality properties on the adjoint operators are used to extract the

receptivity coefficient, before the Orr-Sommerfeld modes are marched downstream. This

method is used for an acoustic wave impinging on an incompressible flat plate boundary-

layer. For moderate values of the non-dimensional frequency F = ων/U2
∞, no matching

region between the leading edge region and the Orr-Sommerfeld region exists, however

for low frequencies there is a well defined matching region.

Although receptivity and stability problems are in generalsolved separately, they have

been solved simultaneously in direct numerical schemes andcompared with experiments.

Haddad and Corke (1998) compute full numerical solutions to the flow over a parabolic

body, where the mean flow is perturbed by a small acoustic disturbance. The flow around

the parabolic edge is linearised with respect to the small acoustic perturbation, and then

the base flow and the perturbation flow are solved separately.To separate out the T-S

wave behaviour from the perturbation flow, the unsteady Stokes flow is solved sepa-

rately, subtracted from the total perturbation flow, and theremaining disturbance is as-

sumed to be the T-S wave. The T-S wave amplitude is extracted back to the leading
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edge, where Haddad and Corke (1998) define the leading edge receptivity coefficient as

KLE = |(u′TS)LE|/|u′∞|, which is the ratio of the maximum T-S amplitude at the leading

edge to the amplitude of the free-stream disturbance. Note this is a different definition

to the receptivity coefficient,C1, defined earlier as the coefficient of the lowest order

Lam-Rott eigenmode.

In the limiting case of the semi-infinite flat plate, Haddad and Corke found good

agreement between their results and those of Murdock (1980), who numerically mod-

eled the flow using a parabolized form of the unsteady Navier-Stokes equations. They

found agreement with the streamwise wavelengths of the T-S waves and the locations of

the lower and upper branch neutral stability points of the neutral stability curve. Other

results show an increase in leading-edge receptivity with decreasing nose radius, with the

maximum occurring for the infinitely thin flat plate, and an increase in receptivity with an

increase in the angle of attack. This work was extended by Erturk and Corke (2001) who

considered more frequencies than Haddad and Corke, and a non-zero disturbance inci-

dent angle. They found results which agree qualitatively with Hammerton and Kerschen

(1996), including the occurrence of maximum receptivity atan incident angle of90o to

the horizontal, and an asymmetrical variation in receptivity.

Erturk et al. (2004) and Haddadet al. (2005) went on to consider parabolic bodies

at an angle of attack, where the aerodynamic loading was increased until separation oc-

curred, followed downstream by reattachment. The separation point was shown to move

downstream with increasing angle of attack, and the separation zone increased in size as

the nose radius increased. This demonstrates the importance of aerodynamic loading and

flow separation on acoustic receptivity.

Finite thickness bodies have also been considered, where the leading edge is elliptic

in shape. These bodies have a pressure gradient on their upper surface which starts off

favourable, but quickly becomes adverse, before decaying to zero far downstream. Nu-

merical studies of these bodies have been conducted by Reedet al. (1990), Lin et al.

(1992), Fuciarelliet al. (1998), Wanderley and Corke (2001) and a summary of the early

numerical work can be found in Reed (1994). The experiments onthese bodies have been
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carried out by Saric and Rasmussen (1992), Saricet al. (1994), Saricet al. (1995) and

Saric and White (1998). Reedet al. (1990) computed full solutions of the Navier-Stokes

equations for a finite thickness flat plate with half an ellipse joined onto the front. Two

different aspect ratios (ratio of major to minor axis) of 3 and 9 were studied at two differ-

ent frequencies, and the measure of receptivity was chosen to be the maximum of the ratio

of the T-S wave amplitude with the amplitude of the free-stream. The smaller aspect ratio

produced the highest receptivity, which occurred between the junction of the ellipse and

the flat plate and the neutral stability point. The body with aspect ratio of 3, had a sharp

minimum in pressure gradient with a fast recovery, whereas the body with aspect ratio 9

had a smaller minimum and slower recovery. Linet al. (1992) considered full numerical

solutions to the Navier-Stokes equations in the same way, except they used a finite thick-

ness flat plate with an elliptical edge where the discontinuity in curvature at the join has

been mathematically removed. This body is known as a ModifiedSuper Ellipse (MSE).

Similarly to Reedet al. (1990), the smaller aspect ratio produced the larger receptivity,

where the receptivity is the same ratio used by Reedet al. Lin et al. (1992) compared

the body with a discontinuity in curvature in Reedet al. with the MSE and found that

the MSE gave lower receptivity at the junction. Hence a discontinuity in curvature en-

hances the receptivity. However the MSE was found to be as receptive downstream of the

junction, and this was attributed to the steeper adverse pressure gradient at the junction.

Hence rapid changes in adverse pressure gradients are as important as discontinuities in

curvature to the receptivity of bodies.

Fuciarelli et al. (1998) extended the DNS work by Linet al. (1992), and calculated

T-S wave amplitudes at the lower branch neutral stability point to compare with the ex-

periments of Saricet al. (1995). In the experiments of Saricet al. (1995) and Saric and

White (1998), T-S wave amplitudes at lower branch were calculated by first finding their

amplitude at upper branch, and then extracting back this information using linear stability

theory. Wanderley and Corke (2001) use the same method as Haddad and Corke (1998),

where the flow is linearised and then the base and perturbation flows are solved sepa-

rately, to model flow over a MSE. Again the largest aspect ratio MSE of40 : 1 produced
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the largest amount of receptivity at branch I when compared to a20 : 1 MSE. Wander-

ley and Corke also found good agreement with the experiments of Saricet al. (1995) for

the surface pressure coefficient, wall normal eigenfunction of the streamwise perturba-

tion velocity, and the locations of the upper branch neutralstability point, as well as the

receptivity value at lower branch given by Saric and White (1998) and Fuciarelliet al.

(1998).

The aim of this thesis is to use the existing asymptotic theory from the leading edge

region (Goldstein, 1983, Hammerton and Kerschen, 1996, Nichols, 2001), for acoustic

waves, and extend it downstream through the Orr-Sommerfeldregion to the lower branch

neutral stability point, we will then be able to compare amplitudes with existing studies,

both numerical (Haddad and Corke, 1998, Wanderley and Corke, 2001) and experimental

(Saric and White, 1998). To do this, we hope to incorporate theuse of the PSE, and

extend the derivation of this equation to include body geometry, as Nichols (2001) did

for the leading edge problem. The primary reason for wantingto compare with these

experiments is to try and help with the understanding behindT-S wave propagation, and

the mechanisms behind transition. The main topics in this work are outlined in the next

section.

1.3 Outline for thesis

In chapter 2, we derive the LUBLE in the leading edge region, and produce the large

downstream asymptotic form of the Lam-Rott eigenmodes for the case of a body with a

rounded leading edge where the inviscid slip velocity tendsto a constant far downstream.

This asymptotic form can then be used as an initial upstream boundary condition, for

the numerical solution to the PSE (Bertolottiet al., 1992), which we extend to bodies,

as discussed above. We compare the different variables usedin both the leading edge

region and the Orr-Sommerfeld region, and derive a relationbetween the two. In chapter

3 we give the numerical algorithms for solving the Orr-Sommerfeld equation for both the

temporal and spatial eigenvalues. The algorithm is also given for the numerical solution

of the PSE.
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Chapter 4 deals with the special case of an infinitely thin, semi-infinite flat plate,

for which Goldstein (1983) has derived asymptotic solutions for both the wavenumber

and mode shape in the Orr-Sommerfeld region. We look extensively at the derivation of

these asymptotic expansions, including the very complicatedO(Re−
1
2 ) term, which, be-

cause of its complexity, makes it very difficult to extend theasymptotic analysis to more

general bodies with non-zero nose radii. Using the existingasymptotics, we demon-

strate the existence of an overlap region between the leading edge region and the Orr-

Sommerfeld region, where both sets of equations are valid. We compare the results in the

Orr-Sommerfeld region for the PSE, with Goldstein’s asymptotics, and show that these

are consistent in the large Reynolds number limit. We discussthe limitations of the PSE,

and suggest an appropriate means to overcome amplitude calculations for slightly smaller

values of the Reynolds number, where the PSE cannot be initiated right back in the match-

ing region. We discuss the problem of initial transients appearing in the PSE calculations

from the initial condition, and suggest a mechanism behind their appearance. We com-

pare our PSE results with those of Haddad and Corke (1998) in the limit as the parabola’s

nose radius goes to zero, in an attempt to relate the different numerical schemes.

In chapters 5 and 6 we extend our PSE calculations to finite thickness bodies with

non-zero nose radii. Chapter 5 deals with the parabola, wherewe calculate T-S wave

amplitudes at lower branch for a range of values of Reynolds number, and Strouhal num-

ber. Chapter 6 compares similar calculations for the Rankine body, which can be defined

in terms of one dimensionless parameter, related to the noseradius. We finish off by

extending our analysis to the Modified Super Ellipse (MSE), and use slender body the-

ory to model the influence of the geometry of this body, as a prerequisite to using the

receptivity/PSE method.
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Chapter 2

Formulation

In this chapter, we consider the two-dimensional flow over a body with nose radiusrn as

shown in figure 2.1. The free-stream velocity is assumed to have magnitude,U∞, and act

parallel to the horizontalx∗−axis. It is also assumed to have a high Reynolds number, and

a small perturbation of a single frequency acting parallel to the free-stream. Figure 2.1

shows the structure of the two regions discussed in chapter 1, with some overlap region

occurring where the equations in both the leading edge and Orr-Sommerfeld region are

valid. We shall use the existence of this overlap region to march the solutions from the

leading edge region, downstream via the Parabolized Stability Equation (PSE).

To be able to use the PSE as a way of determining the downstreampropagation infor-

mation, we must first derive the asymptotic form of the disturbance in the leading edge

receptivity region to use as our upstream boundary condition for the PSE. We derive the

governing equation in this region, which is known as the linearised unsteady boundary-

layer equation (LUBLE), and seek largeξ asymptotic solutions of this equation, whereξ

is the coordinate in the streamwise direction along the body. It was first pointed out by

Lam and Rott (1960) that the solutions to this equation consists of a Stokes flow part, and

a linear combination of unsteady eigenmodes. It was shown (Goldstein, 1983) that it’s the

first of these eigenmodes which matches onto the Tollmien-Schlichting (T-S) wave in the

Orr-Sommerfeld region, which eventually grows downstreamof the lower branch neutral

stability point, and hence is of interest to us.

This method was first conducted on a semi-infinite flat plate, but was later extended
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Figure 2.1: An illustration of the region structure on a bodywith a nose radius,rn, at zero
angle of attack to the free-stream,U∞.

by Hammerton and Kerschen (1996) and Nichols (2001) to a moregeneral family of

eigenmodes, which are valid on bodies which have curved leading edges.

We shall extend the PSE derived by Bertolottiet al. (1992) to incorporate bodies

with curvature, and hence, as in the LUBLE region, we shall derive the PSE from the

Navier-Stokes equations using the coordinates(ξ,N), whereξ is a coordinate along the

body, andN is a coordinate normal to the surface of the body, to be definedlater. In

later chapters, we shall use the PSE to march the asymptotic form of the leading edge

eigenmodes downstream from the leading edge.
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2.1 Leading edge region

2.1.1 Derivation of the steady and unsteady flow equations

The two dimensional Navier-Stokes equations modeling incompressible flow beside a

plane wall aty∗ = 0, in dimensional form, are given by

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
, (2.1)

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −1

ρ

∂p∗

∂y∗
+ ν

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
, (2.2)

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (2.3)

wherex∗ is measured along the wall, andy∗ is measured normal to the wall. The com-

ponents of velocity(u∗, v∗) are in the directions of(x∗, y∗) respectively. The pressure is

denoted byp∗, density byρ and the kinematic viscosity byν. The boundary conditions

for this flow are

u∗ = v∗ = 0 on y∗ = 0, (2.4)

u∗ −→ U∞ as y∗ −→ ∞, (2.5)

whereU∞ is the velocity of the undisturbed free-stream.

We consider the problem for which the free-streamU∞ is not completely undisturbed,

but has a small free-stream forcing component of frequencyω. Hence we introduce non-

dimensional variables based on the velocity scale,U∞, length scale,U∞/ω, and time

scale,ω−1, into (2.1) to (2.3), which leads to

∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+

1

Re

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
, (2.6)

∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
+

1

Re

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
, (2.7)

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.8)

where the bar denotes a dimensionless quantity, andRe is the Reynolds number defined
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as

Re =
U2
∞
ων

. (2.9)

The non-dimensional boundary conditions for this problem are ū = v̄ = 0 on ȳ = 0, and

ū −→ 1 asȳ −→ ∞.

In this work we are only interested in large Reynolds number flows. In this case a

boundary-layer is formed adjacent to the wall, of thicknessδ = O(Re−
1
2 ) (Acheson,

1990, p268). Hence we introduce boundary-layer variables scaled on this thickness as

x = x̄, y = Re
1
2 ȳ, u = ū, v = Re

1
2 v̄, t = t̄, p = p̄. (2.10)

Substituting these into the non-dimensional Navier-Stokes equations gives the following

boundary-layer equations at leading order

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
, (2.11)

0 = −∂p
∂y
, (2.12)

∂u

∂x
+
∂v

∂y
= 0. (2.13)

Outside the boundary-layer, viscous effects are negligible, and hence the flow is gov-

erned by inviscid theory. The inviscid solution cannot satisfy the no-slip condition at the

boundary, hence we obtain a tangential slip velocity,Us(x, t), even though the normal

component of velocity at the boundary is zero. Matching the boundary-layer flow to the

inviscid flow gives the outer boundary condition as

u −→ Us(x, t), v −→ 0 as y −→ ∞. (2.14)

From (2.12), we note that,p = p(x, t), hence the pressure is constant throughout the

boundary-layer. Therefore applying (2.11) at the edge of the boundary-layer gives

∂p

∂x
= −

(
∂Us

∂t
+ Us

∂Us

∂x

)
, (2.15)

and the non-dimensional boundary-layer equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

∂Us

∂t
+ Us

∂Us

∂x
+
∂2u

∂y2
, (2.16)

∂u

∂x
+
∂v

∂y
= 0, (2.17)
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with the boundary conditions for a rigid and impermeable plate aty = 0, u = v = 0, and

u −→ Us(x, t) asy −→ ∞.

The equations above have been derived in the case of a flat plate, however these same

equations hold, to leading order, for flows past curved boundaries, as long as the curvature

of the boundary,κ, is such thatκU∞δ/ω and(U2
∞δ/ω

2)(∂κ/∂x∗) are small (Rosenhead,

1963). The coordinatesx andy are now defined as being along the boundary and normal

to the boundary, respectively. For the curved boundary,∂p∗/∂y∗ is no longer zero, but

equalsκρu∗2, to balance the centrifugal force. However (2.15) still holds, as the total

change in pressure across the boundary-layer,∆p∗ = O(κρU2
∞δ), is still negligible when

κδ is small.

With our new definition of(x, y), we solve (2.16) by noting that from (2.17) there

exists a stream function,ψ = Re
1
2ωψ∗/U2

∞, with the properties

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (2.18)

Thus (2.16) becomes

∂2ψ

∂y∂t
+
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
=
∂Us

∂t
+ Us

∂Us

∂x
+
∂3ψ

∂y3
, (2.19)

with the boundary conditions

ψ =
∂ψ

∂x
=

∂ψ

∂y
= 0 on y = 0, (2.20)

∂ψ

∂y
−→ Us(x, t) as y −→ ∞. (2.21)

For this work it is assumed that the external disturbance is small compared to the free-

stream, and is of a single dimensional frequency,ω. Therefore we assume that the slip

velocity can be written as a steady base part and a linear perturbation due to the external

disturbance,

Us(x, t) = Uf (x) + εUd(x)e
−it, (2.22)

whereε� 1 is a small constant, andUf (x) andUd(x) areO(1). Here the functionUf (x)

is the slip velocity due to the undisturbed free-stream, andcan be calculated by inviscid

theory.
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To simplify (2.19), it is assumed that the stream function takes the following form

ψ = h(x)φ(x,N, t) where N = g(x)y, (2.23)

whereg(x), h(x) andφ(x,N, t) will be determined below.

On substituting this into (2.19), we get

∂2φ

∂N∂t
+

d(gh)

dx

(
∂φ

∂N

)2

+ gh

(
∂φ

∂N

∂2φ

∂N∂x
− ∂2φ

∂N2

∂φ

∂x

)

=
1

gh

(
∂Us

∂t
+ Us

∂Us

∂x

)
+ g2 ∂

3φ

∂N3
+ g

dh

dx
φ
∂2φ

∂N2
, (2.24)

with the boundary conditions

φ =
∂φ

∂N
= 0 on N = 0, (2.25)

∂φ

∂N
−→ Us(x, t)

g(x)h(x)
as N −→ ∞. (2.26)

The functionsh(x) and g(x) are chosen in such a way as to satisfy the boundary

condition at the edge of the boundary-layer, and to simplify(2.24). Thus because of the

form of (2.22), we choose

g(x)h(x) = Uf (x), (2.27)

to simplify the boundary condition (2.26) to

∂φ

∂N
−→ 1 + ε

Ud(x)

Uf (x)
e−it as N −→ ∞.

We also choose

g(x) =
dh

dx
, (2.28)

so that the last two terms in (2.24) both have the same coefficient. This gives the equation a

form similar to that of the standard equation for steady boundary-layer evolution. Solving

(2.27) and (2.28) leads to the arbitrary functions having the form

g(x) = Uf (x)

(
2

∫ x

0

Uf (x
′)dx′

)− 1
2

, (2.29)

h(x) =

(
2

∫ x

0

Uf (x
′)dx′

) 1
2

. (2.30)

We assume thatφ(x,N, t) takes the same linear form as the slip velocity, hence

φ(x,N, t) = φ1(x,N) + εφ2(x,N)e−it, (2.31)
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where we shall labelφ1(x,N) as the steady solution, andφ2(x,N) as the unsteady so-

lution. Substituting this into (2.24), along with the definitions for g(x) andh(x), and

equating powers ofε, we find the steady evolution equation is

φ1NNN + φ1φ1NN = f1(x)
(
φ2

1N − 1
)

+ f2(x) (φ1Nφ1Nx − φ1NNφ1x) , (2.32)

where the subscriptsx andN represent differentiation with respect to the appropriate

variable. The functionsf1(x) andf2(x) are functions of the slip velocity, and are given

by

f1(x) =
2
∫ x

0
Ufdx

′

U2
f

dUf

dx
, f2(x) =

2
∫ x

0
Ufdx

′

Uf

.

For (2.32) to be of the same form as the standard equation for the evolution of a steady

boundary-layer,

φNNN + φφNN = β(ξ)
(
φ2

N − 1
)

+ 2ξ (φNφNξ − φNNφξ) ,

we introduce the further change of variables,

ξ =

∫ x

0

Uf (x
′)dx′, (2.33)

which on substitution into (2.29) and (2.30) leads tog(ξ) = Uf (ξ)(2ξ)
− 1

2 andh(ξ) =

(2ξ)
1
2 .

Now with the new variables(ξ,N), we gain two equations for the evolution of a

boundary-layer: one for the steady partφ1 and a second for the coefficientφ2 of the

time-dependent part. The steady flow equation is

φ1NNN + φ1φ1NN = β(ξ)
(
φ2

1N − 1
)

+ 2ξ (φ1Nφ1Nξ − φ1NNφ1ξ) , (2.34)

with the boundary conditions

φ1 = φ1N = 0 on N = 0,

φ1N −→ 1 as N −→ ∞.
(2.35)

The functionβ(ξ) is the mean pressure gradient, and is given by

β(ξ) =
2ξ

Uf

dUf

dξ
. (2.36)
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The equation for the unsteady flow componentφ2 of φ in (2.31) is

φ2NNN + φ2NN (φ1 + 2ξφ1ξ) + φ2N (iΩ(ξ) − 2β(ξ)φ1N − 2ξφ1Nξ) + φ2φ1NN

+2ξ (φ1NNφ2ξ − φ1Nφ2Nξ) =
Ud

Uf

(iΩ(ξ) − β(ξ)) − 2ξ

Uf

dUd

dξ
, (2.37)

where the functionΩ(ξ) is known, and is given by

Ω(ξ) =
2ξ

U2
f

, (2.38)

and the corresponding boundary conditions are

φ2 = φ2N = 0 on N = 0, (2.39)

φ2N −→ Ud(x)

Uf (x)
as N −→ ∞. (2.40)

Equation (2.37), is known as the linearised unsteady boundary-layer equation (LU-

BLE), due toφ2(ξ,N) being the linear correction term toφ1(ξ,N).

In deriving the equations for boundary-layer flow, the only assumption we have made

is that the inviscid slip velocity,Us(x), and the boundary-layer flow excited by the free-

stream forcing can be written as a linear perturbation on thesteady problem. Therefore

(2.34) and (2.37) hold for more general two-dimensional bodies as long as these assump-

tions still hold.

2.1.2 Asymptotic solutions asξ −→ ∞

In later chapters, we hope to utilise the solution to the LUBLE, and use it as an initial

upstream boundary condition to our PSE solver, which is valid far downstream of the

leading edge. Thus, we require the far downstream form of theLUBLE solutions, so in

this section, we derive the largeξ asymptotic form of these solutions. The steady prob-

lem is completely determined through the mean pressure gradientβ(ξ), and the unsteady

problem is determined byβ(ξ), the steady solution, and the functionΩ(ξ), all of which

are functions of the inviscid slip velocityUf (x). Hence to form the asymptotic solutions

for these equations, we need only the asymptotic form ofUf in the largeξ limit.

We shall consider bodies for which it can be assumed that the slip velocity, Uf , acts

parallel and symmetric to the body, and hence takes the following form in the largex
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limit,

Uf (x) = 1 +
α

x
+

γ

x2
+O(x−3). (2.41)

This form ofUf holds true for the bodies we discuss in later chapters. This gives from

(2.33)

ξ = x+ α ln(x) − γ

x
+O(x−2). (2.42)

However, we requireUf (ξ), and hence we needx(ξ). If we take the approximation that

ξ = x + α ln(x), and write thatx = ξ + ξ̃, whereξ̃ � ξ, then in the limitξ −→ ∞ we

find ξ̃ ∼ −α ln(ξ). From this we can write the asymptotic relationshipx(ξ) as

x = ξ − α ln(ξ) +O(ξ−1). (2.43)

Using this relation in the asymptotic form ofUf (x) and expanding for largeξ, we find

Uf (ξ) = 1 +
α

ξ
+
α2 ln(ξ)

ξ2
+
γ

ξ2
+O(ξ−3 ln2(ξ)). (2.44)

From this we can now find the asymptotic forms ofβ(ξ) andΩ(ξ) as ξ −→ ∞ from

(2.36) and (2.38),

β(ξ) ∼ a1

ξ
+ a2

ln(ξ)

ξ2
+
a3

ξ2
+O(ξ−3 ln2(ξ)), (2.45)

Ω(ξ) ∼ b1ξ + b2 + b3
ln(ξ)

ξ
+
b4
ξ

+O(ξ−2 ln2(ξ)), (2.46)

where the coefficientsai andbi are given by

a1 = −2α, a2 = −4α2, a3 = 4(α2 − γ), (2.47)

b1 = 2, b2 = −4α, b3 = −4α2, b4 = 6α2 − 4γ. (2.48)

To expandβ(ξ) andΩ(ξ) to higher powers ofξ−1, we would need more terms in

the expansion ofUf (ξ). However, Nichols (2001) shows that the asymptotic form for

the steady componentφ1(ξ,N) up toO(ξ−1), only depends upona1, and the unsteady

solution only depends upona1, b1 andb2. Thus to this required order, the expansions of

β(ξ) andΩ(ξ) are sufficient.
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Asymptotic steady solution

From the analysis of Van Dyke (1964a) and Hammerton and Kerschen (1996) on a parabola,

the steady solutionφ1(ξ,N) is assumed to have the following form asξ −→ ∞,

φ1(ξ,N) ∼ φa(N) + φb(N)
ln(ξ)

ξ
+
φc(N)

ξ
+O

(
ξ−1.887

)
(2.49)

The logarithmic term is essential, as it ensures exponential decay of the vorticity through

the boundary-layer (Stewartson, 1957). The correction term with fractional power−1.887

arises as the next eigenmode of an infinite sequence discussed later (Libby and Fox, 1963).

The boundary conditions onφ1 translate to

φa = φb = φc = φaN = φbN = φcN = 0 on N = 0,

φaN −→ 1, and φbN , φcN −→ 0 as N −→ ∞.
(2.50)

Substituting (2.49) and (2.45) into the steady equation (2.34), and equating powers ofξ,

gives us three differential equations for the three unknownfunctionsφa(N), φb(N) and

φc(N). The order one term leads to

φ′′′
a + φaφ

′′
a = 0, (2.51)

where the prime denotes differentiation with respect toN . With the boundary conditions

(2.50), the solution to (2.51) isφa(N) = f(N) wheref(N) denotes the Blasius solution

for flow past a flat plate, with zero pressure gradient (β(ξ) = 0). At order ln(ξ)/ξ, the

equation forφb(N) is

φ′′′
b + fφ′′

b + 2f ′φ′
b − f ′′φb = 0, (2.52)

which has the solutionφb(N) = C(Nf ′ − f) (Lighthill, 1954), whereC is an arbitrary

constant. This constant will be determined later by a solvability condition. At order1/ξ,

the equation forφc(N) is given by

φ′′′
c + fφ′′

c + 2f ′φ′
c − f ′′φc = a1(f

′2 − 1) + 2Cff ′′, (2.53)

wherea1 is the leading coefficient from the asymptotic form of the pressure gradient given

in (2.45). The solution of (2.53) can be written asφc(N) = D(Nf ′ − f) +E(N), where

D is a constant, andE(N) is a particular solution of (2.53). We assume without loss of
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generality thatE ′′(0) = 0, and hence the constantD is unique. Asφa(N) = f(N), then

the asymptotic form of the steady solution, (2.49), can be considered as a perturbation

about the Blasius solution. Libby and Fox (1963) considered such flows, and sought a

solution of the form

φ1(ξ,N) ∼ f(N) +
∞∑

k=1

φ1,k(ξ,N),

whereφ1,k+1 � φ1,k for ξ � 1. Libby and Fox found that the functionsφ1,k, through

linearisation and separation of variables, are of the formφ1,k = Sk(ξ)Tk(N), where

Sk(ξ) ∼ ξ−
λk
2 andTk(N) satisfies the eigenvalue problem

T ′′′
k + fT ′′

k + λkf
′T ′

k + (1 − λk)f
′′Tk = 0,

with boundary conditionsTk(0) = 0 andT ′
k(∞) = 0. They list the first ten eigenvalues

of this equation, the first of which isλ1 = 2 which is the only integer value among

the eigenvalues. From comparison with (2.53), we see that the homogeneous form of

this equation corresponds to the above equation withλk = 2. Therefore as the first

eigensolution isD(Nf ′ − f)/ξ, we note that the constantD cannot be found using the

asymptotic analysis, and hence it has to be found numerically. The next two eigenvalues

areλ2 = 3.774 andλ3 = 5.635, whose corresponding eigensolutions areO (ξ−1.887) and

O (ξ−2.818) respectively, correspond to higher order correction termsin φ1(ξ,N).

The particular solutionE(N) cannot be found analytically, hence it is found by nu-

merically solving

L1(E) = a1(f
′ − 1) + 2Cff ′′, (2.54)

with the boundary conditions

E = E ′ = E ′′ = 0 on N = 0,

where the linear operatorL1 is given by

L1(E) = E ′′′ + fE ′′ + 2f ′E ′ − f ′′E. (2.55)

The solvability condition forC is found by applying adjoint linear operator theory at

the1/ξ order. For third-order linear operators,

vL(u) − uL̂(v) =
dP (u, v)

dN
,
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whereL̂(v) represents the homogeneous adjoint operator toL(u). The general operators,

L, L̂ and the functionP (u, v) are given by

L(u) = u′′′ + pu′′ + qu′ + su,

L̂(v) = −v′′′ + (pv)′′ − (qv)′ + sv,

P (u, v) = vu′′ + uv′′ − v′u′ + pvu′ − (pv)′u+ qvu.

For the linear operatorL1(E), the solution to the corresponding adjoint operator problem

L̂1(v) = 0, is v = f , hence

f
(
a1(f

′2 − 1) + 2Cff ′′) =
d

dN

(
fE ′′ + Ef ′′ − f ′E ′ + f 2E ′) . (2.56)

Integrating this equation with respect toN between zero and infinity and using the bound-

ary conditions onf(N) andE(N), gives the solvability condition that
∫ ∞

0

f
(
a1(f

′2 − 1) + 2Cf ′′f
)
dN = 0. (2.57)

Therefore rearranging this we find

C

a1

=

∫∞
0
f(f ′2 − 1)dN

2
∫∞

0
f 2f ′′dN

≈ 0.60115, (2.58)

and hence the general asymptotic form of the steady solutionfor generalβ(ξ) is

φ1(ξ,N) ∼ f+0.60115a1(Nf
′−f)

ln(ξ)

ξ
+
D(Nf ′ − f) + E(N)

ξ
+O

(
ξ−1.887

)
. (2.59)

The undetermined constantD is obtained numerically (Hammerton and Kerschen,

1996) by noting that we can rearrange (2.59) to give

q(ξ) =
ξ(φ1NN(ξ, 0) − f ′′(0))

f ′′(0) ln(ξ)
∼ 0.60115a1 +

D

ln(ξ)
. (2.60)

Hence by plottingq(ξ) against1/ ln(ξ), the constantD can be evaluated as the gradient

of the tangent toq(ξ), in the limit 1/ ln(ξ) −→ 0, whose intercept is0.60115a1. However

in the limit as1/ ln(ξ) −→ 0, the value ofφ1NN(ξ, 0) approaches that off ′′(0), and

hence to avoid numerical error in this calculation, it’s more convenient to usêφ(ξ,N) =

φ1(ξ,N) − f(N). Substitutingφ1(ξ,N) = f(N) + φ̂(ξ,N) into (2.34) gives

φ̂NNN + φ̂φ̂NN = β(ξ)
(
φ̂2

N − 1
)

+ 2ξ
(
φ̂N φ̂Nξ − φ̂NN φ̂ξ

)
− f ′′φ̂− fφ̂NN

+ β(ξ)
(
f ′2 + 2φ̂f ′

)
+ 2ξ

(
f ′φ̂Nξ − f ′′φ̂ξ

)
, (2.61)
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as the governing equation for̂φ(ξ,N). The unknown constantD can now be determined

from the plot ofq̂(ξ) against1/ ln(ξ), whereq̂(ξ) is given by

q̂(ξ) =
ξφ̂NN(ξ, 0)

f ′′(0) ln(ξ)
∼ 0.60115a1 +

D

ln(ξ)
. (2.62)

Asymptotic unsteady eigenmode

Ackerberg and Phillips (1972) conducted work on flow past a flat plate, and they showed

that a two-layer structure exists in the boundary-layer farfrom the leading edge. This

two-layer structure consists of a main layer of widthN = O(1), and an inner layer of

width N = O(ξ−
1
2 ). Within the boundary-layer, the unsteady solution is a combination

of a Stokes-layer solution, that is fully determined, and a sum of eigenmodes, which take

into account the initial conditions. These eigenmodes werefirst found by Lam and Rott

(1960) for flow past a flat plate, and these authors later showed that these eigenmodes are

also valid for arbitrary pressure gradients (Lam and Rott, 1993). Goldstein (1983) showed

that it’s these eigenmodes which provide the wavelength shortening process required for

the external disturbance to excite T-S waves. This was demonstrated by showing that

the unstable eigenmode from Orr-Sommerfeld theory matches, in the matched asymp-

totic sense, to the the first Lam-Rott eigenmode in a matching region which occurs on a

streamwise length scale of the orderRe
1
3 . These eigenmodes were generalised by Ham-

merton and Kerschen (1996), for the case of a parabola, and further by Nichols (2001)

who derived them for a general body for which the inviscid slip velocity tends to a con-

stant far downstream.

There is another orthogonal set of eigenmodes, which are solutions to the LUBLE,

found by Brown and Stewartson (1973), these modes decay more slowly than Lam-Rott

modes, and have been less widely studied. We shall just consider the Lam-Rott modes

in the present work, as they have been shown to match onto the unstable mode of the

Orr-Sommerfeld equation. It has, however, been conjectured that the Brown-Stewartson

modes are the Lam-Rott modes in the limit asξ −→ ∞ (Goldsteinet al., 1983), although

this will not be considered here.



2.1 Leading edge region 39

The unsteady solutionφ2(ξ,N) is considered to have the form

φ2(ξ,N) ∼ φST (ξ,N) +
∞∑

i=1

Ciφ2,i(ξ,N), (2.63)

whereφST (ξ,N) denotes the Stokes-layer solution to the LUBLE, andφ2,i(ξ,N) are the

eigenmodes. The Stokes solution,φST (ξ,N), is found by solving the LUBLE using the

boundary conditions (2.40). However the eigenmodes are found by solving the LUBLE

(2.37) with the forcing terms on the right hand side set equalto zero, and with homo-

geneous boundary conditions. Goldstein (1983) showed thatit’s the lowest order eigen-

mode,φ2,1, which matches, in the matched asymptotic expansion sense,onto the growing

T-S wave, and this will be important when applying our initial conditions to the PSE. This

fact is important because we are interested in calculating the amplitude of the T-S mode

which grows downstream of the neutral stability point, as itis assumed that this mode

eventually leads to turbulence in the boundary-layer and consequently boundary-layer

separation (Saricet al., 2002).

To simplify the algebra, and to be consistent with work done by Ackerberg and Phillips

(1972) and Hammerton and Kerschen (1996), we introduce a newvariableG(ξ,N) to

replaceφ2(ξ,N) in the LUBLE. We define this variable as

G(ξ,N) = (2ξ)
1
2φ2(ξ,N), (2.64)

which on introduction to the LUBLE with the forcing terms set equal to zero gives

GNNN + (φ1 + 2ξφ1ξ)GNN + (iΩ(ξ) + (1 − 2β(ξ))φ1N − 2ξφ1Nξ)GN

+2ξ (φ1NNGξ − φ1NGNξ) = 0. (2.65)

As mentioned earlier, the Stokes solution,φST , can be found by numerically solv-

ing (2.65) with homogeneous boundary conditions at the wall, but with the condition

∂φST/∂N −→ (2ξ)−
1
2 , for fixed ξ, asN −→ ∞. However we can also form the largeξ

asymptotic form ofφST , which when evaluated at the outer edge of the boundary-layer is

given by

φST (ξ,N) = N − 1 + i

2

1

ξ
1

2

+
iβ

2

1

ξ
+

13U ′

0

32

1

ξ2
− 39iU ′

0

64

1

ξ3
− 4051(1 − i)U ′2

0

2048

1

ξ
7

2

+O(Re−1), (2.66)

whereU ′
0 = f ′′(0) = 0.4696.... andβ = limN−→∞(Nf ′ − f) ≈ 1.217. This result

provides a good check for the full numerical solution ofφST .
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Solution in the inner and main layer

Close to the wall in the inner layer, a change of variable is required, and Nichols (2001)

solved (2.65) in this layer, by changing to the inner variable

M = (2ξ)
1
2

((
b1
2

) 1
2

+

(
1

2b1

) 1
2 b2

2ξ

)
N, (2.67)

and by looking for a solution in the form

G(ξ,M) = eT (ξ)f(ξ,M), (2.68)

wheref(ξ,M) andT (ξ) are expanded in powers of2ξ. The main deck solution needed

no variable change, but again the solution was written in theform

G(ξ,N) = eT (ξ)g(ξ,N), (2.69)

whereg(ξ,N) is again expanded in powers of2ξ. The solution in these two decks can be

written, after matching, as

ψ =





ξτjeT (ξ)
(
U ′

0

� M

0 (M−�M)Ai(z̃)d�M
�
∞

0 Ai(z̃)d�M
+O(ξ−

3
2 )
)

N = O(ξ−
1
2 ),

ξτjeT (ξ)
(
(2ξ)

1
2f ′(N) +

U ′

0i

λj
+O(ξ−

1
2 )
)

N = O(1),
(2.70)

where

U ′

0 = f ′′(0) = 0.4696....., (2.71)

z̃ = −ρj + ρ
−

1

2

j e
iπ

4 M̃, (2.72)

λj = ρ
−

3

2

j e−
iπ

4 , (2.73)

τj = −
889 − 16ρ3

j

1260
+ a1

(
2

b1

) 1

2 8ρ3
j − 27

20U ′2
0 ρ

3
j

i, (2.74)

Tj(ξ) = −λj(2ξ)
3

2

U ′

0

(
b1
2

) 3

2

(
1

3
− 0.60115a1

ln(ξ)

ξ
+

(
1.2023a1 −D +

3b2
2b1

)
1

ξ

)

+O(ξ−0.387). (2.75)

Hereρj are the solutions of the equation

Ai′(−ρj) = 0,
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whereAi′ is the derivative of the Airy function (Appendix B). The first 5solutions forρj

are

ρ1 = 1.01879,

ρ2 = 3.24820,

ρ3 = 4.82010,

ρ4 = 6.16331,

ρ5 = 7.37281,

and it’s the first of these solutions which matches onto the growing T-S mode in the Orr-

Sommerfeld region, so will provide most interest to us in this work (Abramowitz, 1964).

The solution (2.70) is valid within the boundary-layer, butdoes not take into account

the slow decay of the eigenmode asN −→ ∞, however, we will see in the next section

that the PSE equation is valid forN ∈ [0,∞). Thus to be able to use (2.70) as an upstream

boundary condition, we need to find the outer solution to the leading edge problem, in the

outer inviscid region. This solution has not been calculated before in previous work.

Solution in the outer inviscid layer

To find the solution in the outer inviscid region, we first go back to the non-dimensional

form of the Navier-Stokes equations (2.6) and (2.7). Instead of introducing the boundary-

layer variables and only taking the leading order terms, we instead consider all the terms.

We then introduce a stream function (2.18) as before, to givethe equations

∂2ψ

∂y∂t
+
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= −∂p

∂x
+
∂3ψ

∂y3
+

1

Re

∂3ψ

∂x2∂y
, (2.76)

1

Re

(
− ∂2ψ

∂x∂t
− ∂ψ

∂y

∂2ψ

∂x2
+
∂ψ

∂x

∂2ψ

∂x∂y

)
= −∂p

∂y
− 1

Re

∂3ψ

∂x∂y2
− 1

Re2
∂3ψ

∂x3
.(2.77)

We can then eliminate the pressure by taking∂/∂y (2.76)−∂/∂x (2.77), to give

∂3ψ

∂y2∂t
+

∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3
− ∂4ψ

∂y4

=
1

Re

(
∂ψ

∂x

∂3ψ

∂x2∂y
− ∂3ψ

∂x2∂t
− ∂ψ

∂y

∂3ψ

∂x3
+ 2

∂4ψ

∂x2∂y2

)
+

1

Re2
∂4ψ

∂x4
.(2.78)
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As before, we split the stream function,ψ, into a steady base flow part, and an un-

steady perturbation part. Hence we write

ψ(x, y, t) = ψ1(x, y) + δψ2(x, y)e
−it,

whereδ � 1, andψ1(x, y) andψ2(x, y) areO(1). The leading order equation forψ1,

after integration with respect toy, is given by equation (2.19), after changing variables

from (x, y) to (ξ,N), with added correction terms ofO(Re−1).

TheO(δ) equation is

−i∂
2ψ2

∂y2
+
∂ψ1

∂y

∂3ψ2

∂x∂y2
+

∂3ψ1

∂x2∂y

∂ψ2

∂y
− ∂ψ1

∂x

∂3ψ2

∂y3
− ∂ψ2

∂x

∂3ψ1

∂y3
− ∂4ψ2

∂y4
=

ε6
(

2
∂4ψ2

∂x2∂y2
+ i

∂2ψ2

∂x2
− ∂ψ1

∂y

∂3ψ2

∂x3
− ∂ψ2

∂y

∂3ψ1

∂x3
+
∂ψ1

∂x

∂3ψ2

∂x2∂y
+
∂ψ2

∂x

∂3ψ1

∂x2∂y

)

+ε12
∂4ψ2

∂x4
, (2.79)

which is they derivative of (2.37) after the appropriate change of variables, and with

added terms due to viscosity, andε6 = Re−1, which is different to the value ofε intro-

duced earlier.

We now change to the(ξ,N) variables defined in (2.33) and (2.23). To seek a solution

in the outer inviscid region, we introduce the scaled variables

X = εsξ, M = εtN, (2.80)

into (2.79), wheres andt are positive real numbers. We note that as we are outside the

boundary-layer,N −→ ∞, thereforeψ1 ∼ (2ξ)
1
2N and we seek a solution forψ2 in the

form

ψ2 = (2ξ)
1
2G(ξ,N) exp

(
2(2ξ)

3
2µ(ξ)

3

)
where µ(ξ) = −λj/(U

′
0γ̂(ξ)),

and

γ̂ =

(
1 + 0.60115a1

ln(ξ)

ξ
+
D

ξ
− 3b2

2b1ξ

)(
2

b1

) 3
2

+O(ξ−1.887), (2.81)

which was motivated by the solution in the two lower decks (2.70).

We find the only appropriate choice for the balancing of termswhich givess andt

both positive, and gives a non-trivial balance at leading order, is fors+ t = 3. Goldstein
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(1983) discusses that the matching region between the leading edge region, and the Orr-

Sommerfeld region occurs whenξ = O(ε−2), hence we sets = 2 andt = 1. This then

gives the leading order equation forG(X,M) as

U2
f

(
U2

fµ− εi(2X)−
1
2

) (
GMM + (2X)2µ2G

)
= O(ε2). (2.82)

We seek an asymptotic form ofG(X,M) = G0(X,M) + εG1(X,M). Hence at leading

order

G0MM + (2X)2µ2G0 = 0, (2.83)

to which the bounded solution asM −→ ∞ is

G0(X,M) = A0 exp


−

√
2(1 + i)XM

U ′
0γ̂ρ

3
2
j


 , (2.84)

as,

µ(X) =
−λj

U ′
0γ̂(X)

=
(1 − i)

√
2U ′

0γ̂(X)ρ
3
2
j

.

At O(ε) we have from (2.82)

U4
fµ(G1MM + (2X)2µ2G1) = iU2

f (2X)−
1
2 (G0MM + µ2(2X)2G0),

= 0 (2.85)

by using the solution forG0. This gives us the bounded solution

G1 = A1 exp


−

√
2(1 + i)XM

U ′
0γ̂ρ

3
2
j


 . (2.86)

The functions of X,A0 andA1, are found by matching with the main deck given in

(2.70). The outer inviscid solution asM −→ 0 is given from (2.84) and (2.86) as

ψouter ∼
(2X)

1
2

ε
(A0 + εA1)e

Tj(ξ),

where

Tj(ξ) = −λj(2ξ)
3
2

3U ′
0γ̂

,

which in the largeξ limit is given by (2.75). The main deck solution asN −→ ∞, given

by (2.70) is

ψmain ∼ (ε−2X)τjeTj(ξ)

(
(2X)

1
2

ε
+
U ′

0i

λj

)
,
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therefore

A0 = (ε−2X)τj , A1 =
(ε−2X)τj

(2X)
1
2

(
U ′

0i

λj

)
,

and hence the solution forψ in the outer inviscid region is

ψ = ξτjeTj(ξ)

(
(2ξ)

1
2 +

U ′
0i

λj

)
exp


−ε3√2(1 + i)ξN

U ′
0γ̂(ξ)ρ

3
2
j


 . (2.87)

Now we have the complete form for the shape of the eigenmode over the fullN domain,

hence we can now use this as our initial condition to the PSE, which is derived in the next

section.

2.2 Orr-Sommerfeld region

As we move downstream from the leading edge, the rapid boundary-layer growth close to

the leading edge has diminished, and the boundary-layer hasbecome almost parallel to the

surface of the body. Goldstein (1983) showed that this region occurs whenξ = O(ε−2),

whereε = Re−
1
6 = (νω/U2

∞)−
1
6 . At leading order, this region is governed by the Orr-

Sommerfeld equation. However, the Orr-Sommerfeld equation is only strictly valid for

parallel flows, and although this is a good first approximation, in general this equation

leads to unsatisfactory results when dealing with boundary-layers. It is also possible to use

a non-parallel formulation of the Orr-Sommerfeld equation(Saric and Nayfeh, 1975), but

this method has its limitations, as we shall discuss later. Instead, to incorporate the now

slow growth in the boundary-layer, we model the flow in this region numerically, using

the Parabolized Stability Equation, first introduced by Bertolotti et al. (1992). Goldstein

(1983) solved the equations in this region asymptotically,and we shall use this result to

compare with our numerics. We shall also discuss later the difficulty with extending the

asymptotic method to bodies with curvature.

2.2.1 Parabolized Stability Equation

We consider a body in a uniform stream,U∞, which has a small free-stream disturbance,

of frequency,ω∗
P . The coordinatesx∗P , andy∗P represent dimensional coordinates along
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the body, and normal to the body respectively, where the subscript P denotes that we are

in the PSE region.

We introduce non-dimensional quantities, based on the velocity scaleU∞ and boundary-

layer thickness length scaleδ0 = δ(x0) = (νx∗0/U∞)
1
2 , wherex∗0 is a dimensional distance

from the leading edge, which we take to be the starting point of our analysis, andν is the

kinematic viscosity. Based on these two quantities, we defineour time scale asδ0/U∞.

The non-dimensional Navier-Stokes equations based on these non-dimensional quan-

tities are

∂uP

∂tP
+ uP

∂uP

∂xP

+ vP
∂uP

∂yP

= −∂pP

∂xP

+
1

R0

(
∂2uP

∂x2
P

+
∂2uP

∂y2
P

)
, (2.88)

∂vP

∂tP
+ uP

∂vP

∂xP

+ vP
∂vP

∂yP

= −∂pP

∂yP

+
1

R0

(
∂2vP

∂x2
P

+
∂2vP

∂y2
P

)
, (2.89)

∂uP

∂xP

+
∂vP

∂yP

= 0, (2.90)

whereR0 is the Reynolds number based on the length scaleδ0, and is defined to be

R0 =
U∞δ0
ν

=
x∗0
δ0

= x0, (2.91)

x0 is the dimensionless distance from the leading edge,pP is the pressure, and(uP , vP )

is the velocity in the(xP , yP ) direction. The subscriptP on the variables, denote that we

are in the PSE regime. As in the leading edge region, the Reynolds number is assumed to

be large.

Eliminating the pressure by doing∂/∂yP (2.88)−∂/∂xP (2.89), and introducing a

stream functionΨP , such that

∂ΨP

∂yP

= uP
∂ΨP

∂xP

= −vP ,

we find that the vorticity equation for the stream function is
(

∂

∂tP
− 1

R0

∇2 +
∂ΨP

∂yP

∂

∂xP

− ∂ΨP

∂xP

∂

∂yP

)
∇2ΨP = 0. (2.92)

We also introduce the definition of the Reynolds number based on the length scale

δ(xP ) to beR = (xPR0)
1
2 = (U∞x

∗
P/ν)

1
2 = (xP/x0)

1
2R0.

We split the stream functionΨP (xP , yP , tP ) into a time dependent disturbance part,

ψP (xP , yP , tP ), and the mean steady base flow,ΨB(xP , yP ), under the assumption that
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ψP � ΨB. InsertingΨP = ΨB +ψP into (2.92), leads to the following equations forΨB

andψP , (
∂ΨB

∂yP

∂

∂xP

− ∂ΨB

∂xP

∂

∂yP

)
∇2ΨB =

1

R0

∇4ΨB, (2.93)

(
∂

∂tP
− 1

R0

∇2 +
∂ΨB

∂yP

∂

∂xP

− ∂ΨB

∂xP

∂

∂yP

)
∇2ψP +

∂3ΨB

∂x3
P

∂ψP

∂yP

+
∂3ΨB

∂xP∂y2
P

∂ψP

∂yP

− ∂3ΨB

∂x2
P∂yP

∂ψP

∂xP

− ∂3ΨB

∂y3

∂ψP

∂xP

=

(
∂ψP

∂xP

∂

∂yP

− ∂ψP

∂xP

∂

∂yP

)
∇2ψP +O(R−2

0 ).(2.94)

As for the leading edge region in§2.1, these equations still hold at leading order, if the

curvature of the body is small.

Motivated by our work in§2.1, we introduce the following change of variables

ξP =

∫ xP

0

Uf (x
′)dx′, (2.95)

NP = R
1
2
0 g(ξP )yP , (2.96)

whereg(ξP ) = Uf (ξP )(2ξP )−
1
2 . Under this change of variables, it’s easy to show that

the function for the base flowφB = (2ξP )−
1
2 ΨB in fact satisfies (2.34), and hence we can

write down its largeξP asymptotic form as

ΨB = R
− 1

2
0 (2ξP )

1
2

(
φα(NP ) + φβ(NP )

ln(ξP )

ξP
+ φγ(NP )

1

ξP

)
. (2.97)

Note thatφα, φβ, andφγ are different fromφa, φb andφc asξ 6= ξP , but we shall write

down their full forms later.

We seek a solution to (2.94) in the form of traveling waves. A spatially evolving wave

of constant angular frequencyωP , is described by specifying the streamwise wavenumber

α(ξP ) and the velocity profiles as derivatives of the complex mode shapeφ(ξP , NP ).

These components combine to give the disturbance stream function in the form,

ψP (ξP , NP , tP ) = φ(ξP , NP )χ(ξP , tP ) + complex conjugate, (2.98)

where

χ(ξP , tP ) = exp (i(θ(ξP ) − ωP tP )) ,

and
dθ

dξP
= α(ξP ).
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In the parallel flow case, we assume that the mode shapeφ is independent ofξP ,

and we derive the Orr-Sommerfeld equation. In the non-parallel case, our best chance to

simplify the problem is to haveφ andα as slowly varying functions ofξP . This cannot

be assumed straight away, because both oscillations and growth, in ξP , can be absorbed

into φ, as well as the phase functionθ. We can remove this ambiguity by considering the

variation ofφ with ξP . Unlike the parallel case, we can’t findφ independent ofξP , except

in some average sense across the whole flow domain inNP . In the simple 2D case, we

could apply a simple norm such as,|uP (Nmax
P )| = constant, at some suitable distance

Nmax
P from the boundary, but we prefer norms which are physically and mathematically

meaningful. To that extent, we note that, from (2.98)

(ln(ψP ))ξP
=
φξP

φ
+ iα,

which when multiplied by|φ|2 and integrated fromNP = 0 to ∞ gives,

−i
∫∞

0
(ln(ψP ))ξP

|φ|2dNP∫∞
0

|φ|2dNP

= α− i

∫∞
0
φξP

φ†dNP∫∞
0

|φ|2dNP

, (2.99)

where† denotes the complex conjugate. From (2.99) it seems reasonable to choose as our

norm, ∫ ∞

0

φξP
φ†dNP = 0, (2.100)

which minimizes the streamwise variation ofφ, weighted by its complex conjugate, when

averaged betweenN = 0 and∞. This normalization condition places most of the stream-

wise variation of the solution into the exponential term in (2.98). Thus from (2.99) we

take as our definition forα

α = −i
∫∞
0

(ln(ψP ))ξP
|φ|2dNP∫∞

0
|φ|2dNP

.

From (2.97) and (2.91) we can see thatΨB(ξP , NP ) varies on a short length scale

of O(R−1
0 ), i.e. ∂ΨB/∂ξP = O(R−1

0 ). Therefore in the derivation of the Parabolized

Stability Equation, we assume that the disturbanceψP varies on a short length scale too,

which is at most as large as the base flow’s length scale. By thiswe mean that∂φ/∂ξp and

dα/dξP are at mostO(R−1
0 ). This assumption has also been seen to hold for T-S waves in

experiments and numerical computations (Morkovin, 1985).Thus we assume that second
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derivatives ofφ andα with respect toξP and the product of their first derivatives are of

O(R−2
0 ), and hence negligibly small. Also in the derivation of the PSE, we assume that

the disturbances in the boundary-layer grow and decay as convected instabilities. That is

that the mean base flow acts merely as an amplifier of the initial disturbances, and in the

absence of these disturbances, the flow would return to its original state.

Neglecting the second and higher derivatives ofα andφ with respect toξP , attempts

to change the character of the PDE (2.94) from elliptic to parabolic, and this is only

permitted if the stability problem is governed by downstream propagating information,

while the upstream propagation can be neglected. The formulation does this, by changing

the eigenvalue of the problem to one which has no upstream propagating information

(Anderssonet al., 1998). Attempting to parabolize the PDE (2.94) gives the resulting

equation the name Parabolized Stability Equation, however, it is not fully parabolic, and

still contains a small amount of ellipticity, and it is this ellipticity which gives rise to

numerical problems which we discuss in chapter 4.

Using the assumptions, we can simplify derivatives ofψP with respect toξP into the

following form,

∂mψP

∂ξm
P

=

(
(iα)mφ+m(iα)m−1 ∂φ

∂ξP
+ im(m− 1)(iα)m−2 dα

dξP
φ

)
exp (i(θ − ωP t)) .

(2.101)

For the purposes of this work, we shall only be considering the linear form of (2.94),

which we can do if the disturbances to the base flow are suitably small,ψP � 1. Al-

though we are not considering the non-linear case here, thiswork can easily be extended

to incorporate weakly non-linear effects, which would become important if this work was

extended to look at the amplitudes of disturbances at the upper branch neutral stability

point. The non-linear PSE have been formulated by Bertolottiet al. (1992), and have

been shown to yield good agreement with full numerical simulations in problems where

weakly non-linear effects are important. However in only marching up to the lower branch

neutral stability point, the non-linear effects are negligible, and hence the linear equation

will be sufficient.

Introducing (2.95), (2.96), (2.98) and (2.101) into (2.94), and neglecting any terms of
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O(R−2
0 ), leads to the linear form of the PSE,

(L0 + L1 + L2)φ+M
∂φ

∂ξP
+

dα

dξP
Nφ = 0, (2.102)

where

L0 = − 1

R0

(
R0D

2

2ξP
− α2

)2

+
(
iαΨB1 − iωPU

−2
f

)(R0D
2

2ξP
− α2

)

− iαΨB2, (2.103)

L1 =
R

1
2
0

(2ξP )
1
2

ΨB3D − R
1
2
0

(2ξP )
1
2

ΨB4

(
R0D

3

2ξP
− α2D

)
, (2.104)

L2 =

(
U ′

f

Uf

− 1

2ξP

)
NP

(
ΨB1

(
R0D

3

2ξP
− 3α2D

)
+ 2ωPαU

−2
f D − ΨB2D

)

+ 2R0ΨB1

(
U ′

f

2ξPUf

− 1

4ξ2
P

)
D2 + ωPαU

′
fU

−3
f − 3ΨB1U

′
fU

−1
f α2, (2.105)

M = ΨB1

(
R0D

2

2ξP
− 3α2

)
+ 2ωPαU

−2
f − ΨB2, (2.106)

N = ωPU
−2
f − 3αΨB1, (2.107)

andD ≡ d/dNP , and the dashes on theUf terms denote derivatives with respect toξP .

The functionsΨBn(xP , yP ) are defined as

ΨB1 =
1

Uf

∂ΨB

∂yP

,

ΨB2 =
1

U3
f

∂3ΨB

∂y3
P

,

ΨB3 =
1

U3
f

∂3ΨB

∂xP∂y2
P

,

ΨB4 =
1

Uf

∂ΨB

∂xP

,

which we shall write out using (2.97) later.

For the purposes of this work, we are only interested in the propagation of the eigen-

modes of the LUBLE, which have homogeneous boundary conditions. Hence we solve
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(2.102) subject to

vP = 0 on NP = 0 =⇒ φ(xP , 0) = 0, (2.108)

uP = 0 on NP = 0 =⇒ ∂φ

∂NP

(xP , 0) = 0, (2.109)

vP = 0 as NP −→ ∞ =⇒ φ(xP , NP ) −→ 0 as NP −→ ∞, (2.110)

uP = 0 as NP −→ ∞ =⇒ ∂φ

∂NP

(xP , NP ) −→ 0 as NP −→ ∞. (2.111)

We also need to stipulate an upstream boundary (initial) condition for the PSE, so we set

φ(ξ0, NP ) = F (NP ) α(ξ0) = α0, (2.112)

whereξ0 is the dimensionless starting position on the body. There are various forms of

upstream boundary conditions applicable to the PSE, the onewe shall consider most of

all is the leading edge asymptotic form, although we could use a parallel boundary-layer

assumption at the initial point, or a locally non-parallel boundary-layer assumption at the

initial point, both of which will be discussed in more depth in §4 when we consider a flat

plate.

The structure of the eigenvalues in the Orr-Sommerfeld region is the same as shown in

figure 1.2 of chapter 1. We have a continuous spectrum, and themost unstable eigenvalue

moves from this continuous spectrum towards the lineIm(α) = 0. The fact that the most

unstable eigenvalue approaches the continuous spectrum aswe approach the leading edge,

leads to numerical difficulties when solving the Orr-Sommerfeld equation and the local

PSE equation described in the next section. The numerical problem occurs because we

cannot distinguish between the unstable eigenvalue and thecontinuous spectrum as the

leading edge is approached. Thus we are unable to solve theseproblems right back to the

leading edge. This numerical problem is discussed more in chapter 4.

2.2.2 Local solution to the PSE

We can solve the PSE locally about some upstream positionξP = ξ0, by writing the

solution as a Taylor series expansion in powers ofξ̂ = ξP − ξ0. We note that the higher

derivatives can all be neglected because of the assumptionswe made on the PSE that
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φξP ξP
, αξP ξP

and the product of first derivatives areO(R−2
0 ). Expandingφ(ξP , NP ) and

α(ξP ) aboutξ0, we obtain

φ(ξP , NP ) = φ(ξ0, NP ) + ξ̂
∂φ(ξP , NP )

∂ξP

∣∣∣∣
ξP =ξ0

+O(ξ̂2) = φ0 + ξ̂φ1, (2.113)

α(ξP ) = α(ξ0) + ξ̂
dα(ξP )

dξP

∣∣∣∣
ξP =ξ0

+O(ξ̂2) = α0 + ξ̂α1, (2.114)

where theO(ξ̂2) terms are zero due to the PSE assumption onφ andα.

Substituting these into (2.102) and requiring that the equation be valid for varyingξ̂

produces two equations

(L0 + L1 + L2 + α1N)φ0 +Mφ1 = 0, (2.115)

(L4 + iα1M)φ0 + L0φ1 = 0, (2.116)

where

L4 = −R0

2ξ2
0

(
iα0ΨB1 − iωU−2

f

)
D2 +

(
iα0ΨB1ξP

+
2iωU ′

f

U3
f

)(
R0D

2

2ξ0
− α2

0

)

− iα0ΨB2ξP
+
R0D

4

2ξ3
0

, (2.117)

and in the operators,L0, L1, L2,M andN , α is replaced byα0. The local form of the

PSE is commonly used as the initial condition to the PSE, to take into account some of

the non-parallel effects (Bertolottiet al., 1992, Herbert, 1993).

2.3 Comparison of leading edge and PSE variables

The leading edge receptivity results, and the Parabolized Stability Equation derived in

sections§2.1 and§2.2, were derived using different non-dimensional variables, via a dif-

ferent length scale. This was done to keep the general derivations simple, and to keep them

in accord with the form in which they were originally derivedin their original contexts.

This means it’s difficult to change the leading edge solutioninto the PSE variables to act

as the initial condition to the PSE. Thus in this section we link the two sets of variables

in both regions, so that we can change the leading edge solution into the PSE variables,
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Quantity PSE leading edge
Length scale δ0 U∞/ω
Velocity scale U∞ U∞

Time scale δ0/U∞ ω−1

Reynolds number R0 = U∞δ0/ν Re = ε−6 = U2
∞/ων

Table 2.1: Table comparing dimensional quantities for the leading edge and PSE schemes.

and after the PSE calculation, change back to the leading edge variables to compare with

other results such as those of Goldstein (1983).

Table 2.1 gives a comparison of the major scalings for the twoschemes used. If we

compare the two streamwise,x, coordinates, we find

x∗ = δ0xP ,

x∗ =
U∞

ω
x,

where∗ again signifies a dimensional quantity. Now, as both these dimensional quantities

are the same, we can equate them to give

x

xP

=
δ0ω

U∞
=
R0

Re
. (2.118)

To compare the streamwise variablesξ andξP , we note from (2.33) and (2.95) that

dξ

dx
= Uf (x) =

dξP
dxP

,

therefore using (2.118) we find
dξ

dx
=
R0

Re

dξP
dx

.

Integrating, and setting the arbitrary constant to 0 without loss or generality, we find

ξ

ξP
=
R0

Re
, (2.119)

which is of the same form as (2.118).

Equating the dimensionaly∗ coordinates, we find

δ0(2ξP )
1
2NP

UfR
1
2
0

=
U∞(2ξ)

1
2N

ωRe
1
2

,

R0

Re

(2ξP )
1
2NP

R
1
2
0

=
R

1
2
0

Re
1
2

(2ξP )
1
2N

Re
1
2

,

NP = N.
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Hence from now on we will refer only toN as the normal coordinate, as this is the same

for both schemes.

Comparing the dimensional frequencies in a similar fashion leads to the relation

ωP =
Re

R0

. (2.120)

A stream functionΨ has dimensions of a length× a velocity, hence it’s easy to show

that any stream function,ΨP in the PSE scheme satisfies

ΨP =
Re

1
2

R0

Ψ. (2.121)

We can now use this information to writeΨB in terms of the leading edge base flow

functionsφa, φb andφc. Thus using (2.121) and (2.119), we find

ΨB = R
− 1

2
0 (2ξP )

1
2

(
φa(N) +

Re

R0

φb(N) ln(R0ξP

Re
)

ξP
+
Re

R0

φc(N)

ξP

)
+O(ξ−1.887

P ). (2.122)

Using this new form ofΨB, we can writeΨBn, for n = 1, 2, 3, 4, as

ΨB1 = φaN +
Re

R0

φbN ln(R0ξP /Re)

ξP
+
Re

R0

φcN

ξP
, (2.123)

ΨB2 =
R0

2ξP

(
φaNNN +

Re

R0

φbNNN ln(R0ξP /Re)

ξP
+
Re

R0

φcNNN

ξP

)
, (2.124)

ΨB3 =
R

1

2

0

2ξP

(
φaNN

(2ξP )
1

2

− 2Re

R0

φbNN ln(R0ξP /Re)

(2ξP )
3

2

+
2Re

R0

(2φbNN − φcNN ))

(2ξP )
3

2

)

+
R

1

2

0 N

(2ξP )
1

2

(
U ′

f

Uf

− 1

2ξP

)(
φaNNN +

Re

R0

φbNNN ln(R0ξP /Re)

ξP
+
Re

R0

φcNNN

ξP

)

+
2R

1

2

0

(2ξP )
1

2

(
U ′

f

Uf

− 1

2ξP

)(
φaNN +

Re

R0

φbNN ln(R0ξP /Re)

ξP
+
Re

R0

φcNN

ξP

)
, (2.125)

ΨB4 =
1

R
1

2

0

(
φa

(2ξP )
1

2

− 2Re

R0

φb ln(R0ξP /Re)

(2ξP )
3

2

+
2Re

R0

(2φb − φc))

(2ξP )
3

2

)

+
(2ξP )

1

2N

R
1

2

0

(
U ′

f

Uf

− 1

2ξP

)(
φaN +

Re

R0

φbN ln(R0ξP /Re)

ξP
+
Re

R0

φcN

ξP

)
. (2.126)

If we compare the forms of the disturbance stream function, and use (2.121), we find

that

φ(ξP , N) exp(i(θ(ξP ) − ωP tp)) =
Re

1
2

R0

f(ξ,N) exp(Tj(ξ) − it), (2.127)

wheref(ξ,N) has a three layer structure. Hence we note that

α(ξP ) = −iR0

Re

dTj

dξ
, (2.128)
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and therefore our upstream boundary condition forα takes the form

α0 =
R0

Re

iλj(2ξ)
1
2

U ′
0

(
b1
2

) 3
2

(
1 − 0.60115a1

ln(ξ)

ξ
+

(3b2
2b1

−D)

ξ

)
. (2.129)

We also note from (2.127) that

φ(ξP , N) =
Re

1
2

R0

f(ξ,N),

which we shall use in our numerical calculations.

2.4 Summary

In this chapter, we have considered a two-dimensional, incompressible flow over an air-

foil with a high Reynolds number, which has a small harmonic perturbation of frequency

ω. We have shown that the flow in the leading edge region can be split into a base flow

and a linear perturbation flow. The base flow,φ1(ξ,N), is fully determined by the form

of the inviscid slip velocity at the edge of the boundary layer, Uf . The perturbation flow

φ2(ξ,N), up to the receptivity coefficient, is also fully determinedbyUf , throughξ, β(ξ),

Ω(ξ) and the steady solutionφ1(ξ,N). The particular form of the disturbance,Ud, enters

the problem through the receptivity coefficient,C1, which for our work is an acoustic

wave. Hence the results in the leading edge region are valid for all geometries where the

inviscid slip velocity tends to a constant far downstream, as long as the curvature,κ, satis-

fies the properties that bothκU∞δ/ω and(U2
∞δ/ω

2)(∂κ/∂x∗) remain small. The form of

the solution in this leading edge region, in the limit as the streamwise variableξ −→ ∞, is

a Stokes layer solution, dependent on the form ofUd, and an infinite sum of homogeneous

eigenmodes. The eigenmodes are a generalization of the Lam-Rott eigenmodes (Lam and

Rott, 1960), where a non-zero pressure gradient along the body has been incorporated,

which is generated by a non-zero nose radius.

In this chapter, we also derived the PSE, which is valid in theOrr-Sommerfeld region,

and is solved numerically to produce an infinite set of eigenmodes, one of which displays

the required streamwise growth in amplitude, characteristic of the T-S wave. We general-

ized the flat plate form of the PSE to include surface curvature, and it is valid as long as
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the curvature,κ, satisfies the same conditions as for the leading edge problem. These con-

ditions guarantee that the boundary-layer equations are the correct approximation to the

Navier-Stokes equations at leading order. As in the leadingedge region, the PSE is fully

determined by the form of the inviscid slip velocity in this region and the exact form of the

free-stream disturbance is not required. Unlike Bertolottiet al. (1992) we formulate the

PSE in terms ofξ andN instead ofx andy, so that the slow growth in the boundary-layer

thickness is taken into account by the numerical mesh.

The PSE is solved numerically by means of a streamwise marching procedure, from a

stipulated initial condition. The local PSE is valid in a region about someξ0, and provides

an initial condition to the PSE, however, the local PSE contains no information of the

initial magnitude of the T-S wave. Therefore to transfer information about the T-S wave’s

amplitude downstream, we use the leading edge asymptotics as the initial condition to the

PSE.

It’s the lowest order Lam-Rott eigenmode which is of most interest to us, because it

is this mode which experiences spatial growth in the Orr-Sommerfeld region, and could

eventually lead to transition. Hence we examine the propagation of this mode using the

PSE. Because the exact form of the free-stream disturbance only enters through the re-

ceptivity coefficient,C1, the equations in both regions are valid for general disturbances,

and not just for the acoustic ones examined here. The numerical algorithms for solving

the PSE and parallel stability problems are discussed in thenext chapter.
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Chapter 3

Numerical scheme

The numerical schemes used for stability type calculationsin boundary-layer problems

are based on eigenvalue solvers, as these problems are eigenvalue problems. The meth-

ods we consider for parallel boundary-layer problems are eigenvalue solvers, based on

collocation methods. Iterative methods can be used for parallel problems (Cebeci and

Cousteix, 2005), however as their results are identical to the collocation methods, they

are not considered here.

3.1 Parallel stability problems

The numerical schemes behind the parallel flow problems, arein general very simple.

Spectral collocation is used, with Chebyshev polynomials, and the number of polyno-

mials used determines the accuracy of the results. Before we consider solving the Orr-

Sommerfeld equation, let us first consider a simple example to examine how the spectral

collocation method works for solving differential equations.

3.1.1 Spectral collocation method

Consider the Poisson problem foru = u(x) in one dimension,

d2u

dx2
= f(x), (3.1)
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wheref(x) is a given function, and with boundary conditions

u(−1) = u(1) = 0. (3.2)

In a finite difference approach, we look to find the values ofu at a discrete set of points

xm, say,

xm = −1 +
2m

M
,

for m = 0, 1, ...,M , whereM determines the spread of the set of points. Algebraic

equations are found by approximating the differential operator, d2u/dx2, in (3.1) with

terms like,
d2u

dx2
(xm) ≈ um+1 − 2um + um−1

(∆x)2
,

for m = 1, 2, ...,M − 1, where

um = u(xm),

∆x =
2

M
.

This form of (3.1) yieldsM−1 equations for theM+1 unknownsum. The two boundary

conditions, (3.2), give two more equations which complete the problem.

The spectral collocation approach approximates the solution at all points, by a sum

over a finite set of orthogonal basis functions. Here, we consider a Chebyshev basis,

hence we write

u(x) =
M∑

i=0

aiTi(x), (3.3)

whereTi(x) is theith Chebyshev polynomial of the first kind, defined by equation (C.2).

Now we insist thatu satisfies the differential equation and boundary conditions exactly

at the collocation points

xm = cos
(mπ
M

)
,

for m = 0, 1, ...,M . Hence we require the solution to satisfy

u(x0) = 0, (3.4)

u(xM) = 0, (3.5)

d2u

dx2
(xm) = f(xm), (3.6)
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for m = 1, ...,M − 1.

To solve (3.6), we first note that

d2u

dx2
=

M∑

i=0

aiT
′′
i (x).

The second derivatives of the Chebyshev polynomials can thenbe found by using the

recurrence relations

T
(k)
0 (xm) = 0,

T
(k)
1 (xm) = T

(k−1)
0 (xm),

T
(k)
2 (xm) = 4T

(k−1)
1 (xm),

T (k)
s (xm) = 2sT

(k−1)
s−1 (xm) +

s

s− 2
T

(k)
s−2(xm) s = 3, 4, ....,

whereT (k)
s is thekth derivative of thesth Chebyshev polynomial. These relations can be

easily derived from (C.5). Satisfying (3.6) at the collocation points, along with (3.4) and

(3.5), gives a system ofM + 1 equations for theM + 1 unknowns, which can be solved

by a linear system solver, such as the following.

TheM + 1 equations can be written in the following form

Ba = c,

where the(M + 1)× (M + 1) matrix,B, is the coefficients of the LHS of (3.4), (3.5) and

(3.6),a is the vector of the constantsai, and the vectorc, is the coefficients of the RHS of

(3.4), (3.5) and (3.6). We wish to find

a = B−1c,

but the calculation of an inverse matrix is hard to compute for large systems. The numer-

ical solution toa can be calculated in many ways, the following method is knownas LU

factorisation.

First of all,B is transformed, using partial pivoting with row interchanges, into

B = PLU,
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whereP is a permutation matrix,L is a lower triangular matrix with unit diagonal ele-

ments, andU is an upper triangular matrix. Once in this form

PLUa = c,

PLd = c is solved ford, and thenUa = d is solved fora. Both these systems are easy

to solve because the matrices are upper or lower diagonal (Anton, 1994).

3.1.2 Orr-Sommerfeld equation

The equation we have to solve for parallel flow problems is theOrr-Sommerfeld equation,

which is derived in Appendix A. The Orr-Sommerfeld equationcan be written as

(D4 − 2α2D2 + α4)v = iαRe
(
(U − c)(D2 − α2) − U ′′) v, (3.7)

whereD ≡ d/dy. We can consider solutions to this equation in two ways. Firstly, we

could input a real wavenumberα, and solve for the complex eigenvaluescr + ici, in which

case we end up with the solution forv from (A.10) with l = 0, as

v = v(y)eiαxe−iα(cr+ici)t. (3.8)

Alternatively, we could introduce a real frequencyω = αc, and solve for the complex

wavenumberα = αr + iαi, leading to solution

v = v(y)e−iωtei(αr+iαi)x. (3.9)

Solution (3.8) is unstable whenci > 0, this is known astemporal instability , as the

solution grows with increasing time.

Solution (3.9) is unstable whenαi < 0, this is known asspatial instability , as the

solution grows in space.

Temporal eigenvalue problem

Finding the temporal eigenvalues is a straightforward problem, as the eigenvalue appears

linearly in the problem. We write the Orr-Sommerfeld equation as

d4v

dy4
−2α2d

2v

dy2
+α4v− iαRe

(
U

(
d2v

dy2
− α2v

)
− U ′′v

)
= c

(
−iαRe

(
d2v

dy2
− α2v

))
,

(3.10)
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and looking for a solution of the form

v =
M−1∑

i=0

aiTi(y),

it reduces to

Aa = cBa, (3.11)

wherea is a vector of the constantsai. By evaluating the left and right hand sides at the

collocation points

yi = cos

(
iπ

(M − 1)

)
,

for i = 2, ....,M − 3, we can then use an eigenvalue solver to solve forc. The derivatives

of v are again found using the recurrence relations

T
(k)
0 (yi) = 0,

T
(k)
1 (yi) = T

(k−1)
0 (yi),

T
(k)
2 (yi) = 4T

(k−1)
1 (yi),

T (k)
m (yi) = 2mT

(k−1)
m−1 (yi) +

m

m− 2
T

(k)
m−2(yi) m = 3, 4, ....,

where againT (k)
m is thekth derivative of themth Chebyshev polynomial. This givesM−4

equations for theM unknownsai, which along with the 4 boundary conditions, and noting

that

Tm(±1) = (±1)m T ′
m(±1) = (±1)m−1m2,

gives the required information to put into the matrix eigenvalue solver.

Spatial eigenvalue problem

The spatial eigenvalue problem is not as simple as the temporal one in the previous sec-

tion, because in this case we stipulate an initial real frequencyω = cα, and solve for the

complex eigenvalueα, which occurs nonlinearly, thus the problem can not be written in

the matrix form (3.11). Thus we have to solve the eigenvalue problem of the form

(
C4α

4 + C3α
3 + C2α

2 + C1α+ C0

)
v = 0.
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To solve this problem we use a method developed by Bridges and Vaserstein (1986)

and Bridges and Morris (1984), who introduce the quantities

Γ1 = αv,

Γ2 = α2v,

Γ3 = α3v,

into (3.7), which leads to the following system of equationsin matrix form



ρ11 ρ22 ρ33 ρ44

I 0 0 0

0 0 I 0

0 0 0 I







v

Γ1

Γ2

Γ3




= α




0 0 0 ρ55

I 0 0 0

0 I 0 0

0 0 I 0







v

Γ1

Γ2

Γ3




, (3.12)

where

ρ11 = − 1

Re
D4 − iωD2, (3.13)

ρ22 = iUD2 − iU ′′, (3.14)

ρ33 = iω +
2

Re
D2, (3.15)

ρ44 = −iU, (3.16)

ρ55 =
1

Re
. (3.17)

This system can again be solved using spectral collocation methods described in the pre-

vious section. The functionsv, Γ1, Γ2 andΓ3 are all expanded in terms ofM Chebyshev

polynomials, which are substituted into (3.12) to give a4M × 4M matrix system to solve

using a linear system solver.

Finite and infinite domains

The temporal and spatial eigenvalue solvers using Chebyshevpolynomials are fine as long

as they are for functions defined in the domainy ∈ [−1, 1], but the Blasius boundary-layer

is defined forη ∈ [0,∞), after the change of variableη = Re
1
2y/(2x)

1
2 , which is the

change of variable for a flat plate,Uf = 1 in (2.23). To utilise Chebyshev polynomials,
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we first map the semi-infinite domainη ∈ [0,∞) to the bounded domain̄η ∈ [−1, 1],

using the mapping

η̄ =
η − L

η + L
, (3.18)

whereL denotes a constant map parameter, chosen to map the majorityof the function

being expanded to the region[−1, 0]. For our boundary-layer problem, we choose the

map parameter, so that we get a concentration of points closeto the boundary atη = 0, to

resolve the rapid change of the mode shape in this region. We found a value ofL in the

region of30 to 45 gave good results for the eigenvalues for Blasius boundary-layer flow,

when compared with the work of Schmid and Henningson (2001).Now we can use the

same methods as before, but we must note that the derivativeschange to

∂

∂η
=

(1 − η̄)2

2L

∂

∂η̄
, (3.19)

∂2

∂η2
=

(1 − η̄)4

4L2

∂2

∂η̄2
− (1 − η̄)3

2L2

∂

∂η̄
, (3.20)

∂3

∂η3
=

(1 − η̄)6

8L3

∂3

∂η̄3
− 3(1 − η̄)5

4L3

∂2

∂η̄2
+

3(1 − η̄)4

4L3

∂

∂η̄
, (3.21)

∂4

∂η4
=

(1 − η̄)8

16L4

∂4

∂η̄4
− 3(1 − η̄)7

4L4

∂3

∂η̄3
+

9(1 − η̄)6

4L4

∂2

∂η̄2
− 3(1 − η̄)5

2L4

∂

∂η̄
. (3.22)

3.2 Parabolized Stability Equation

The Parabolized Stability equation (2.102) is a fourth-order quasi-parabolic differential

equation, for which a marching procedure is used to march thesolution downstream from

the upstream boundary conditions defined by (2.112). The procedure is iterative, and

works by fixing the value of the wavenumber and the mode shape,so that it satisfies both

the PSE and the normalization condition.

The governing equation (2.102), along with its boundary conditions (2.108) to (2.111)

and upstream boundary condition (2.112) are solved using a spectral collocation technique

with Chebyshev polynomials.

We use a similar mapping as defined in the previous section to map the semi-infinite

domainN ∈ [0,∞) to the bounded domain̄N ∈ [−1, 1],

N̄ =
N − L

N + L
. (3.23)
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In this problem, we found that we required a value ofL in the region of20 to 45 to give

results which agree with those of Bertolottiet al. (1992), mainly because we are now not

using an eigenvalue solver, but merely a linear system solver. We can then use spectral

collocation to solve forφ(ξP , N) in terms ofM + 1 Chebyshev polynomials. We solve

(2.102) for a vectorφ of φ evaluated at theM + 1 collocation points

Nm = cos
(mπ
M

)
for m = 0, 1, ...,M. (3.24)

The operators in (2.102) containα, hence we have a coupled set of equations. To solve

them using a marching method inξP , we use an iterative scheme at each valueξP = ξj, to

solve forφ(ξj, N) = φj(N) andα(xj) = αj. At eachξj, we solve (2.102) with an initial

guess forαj for φj and use the normalization condition (2.100) to update our guess forαj.

We also note at this point, that the mapping (3.23) changes the normalisation condition to

∫ 1

−1

φξP
φ† 1

(1 − N̄)2
dN̄ = 0.

Herbert (1993) found that the simplest, but effective way toevaluate the derivatives

dα/dξP and∂φ/∂ξP in (2.102) is to use a two-point backward-difference method,

(
∂φ

∂ξP

)

j+1

=
φj+1 − φj

∆ξj
,

(
dα

dξP

)

j+1

=
αj+1 − αj

∆ξj
,

where∆ξj = ξj+1 − ξj. Using these, the PSE equation becomes

{[(L0)j+1 + (L1)j+1 + (L2)j+1] ∆ξj +Mj+1 +Nj+1 [αj+1 − αj]}φj+1 = Mj+1φj.

(3.25)

The scheme works by taking the initial data (2.112), and letting our initial guess for

αj+1, i.eα at the next spatial step, beα(1)
j+1 = αj, where the superscript(1) signifies the

first iteration. These values go into (3.25) and evaluate it at each of theM +1 collocation

points, (3.24), to findφ(1)
j+1 at theM + 1 collocation points. Then using the normalization

condition (2.100), we arrive at a better estimate forαj+1, which we labelα(2)
j+1. We then

resolve (3.25) for a better approximation forφj+1, which we labelφ(2)
j+1. We then repeat

these steps, until we have converged onto a solution. We say that we have converged onto

a solution whenα(n+1)
j+1 − α

(n)
j+1 < 10−6.
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Hence our numerical scheme comes down to solving,

{[
(L0)

(n)
j+1 + (L1)

(n)
j+1 + (L2)

(n)
j+1

]
∆ξj +M

(n)
j+1 +N

(n)
j+1

[
α

(n)
j+1 − αj

]}
φ

(n)
j+1 = M

(n)
j+1φj,

(3.26)

where to updateα, we utilise (2.99), and write

α
(n+1)
j+1 = α

(n)
j+1 −

i

∆ξj

∫∞
o

(
φ

(n)
j+1 − φj

)(
φ

(n)
j+1

)†
dN

∫∞
0

|φ(n)
j+1|2dN

, (3.27)

where(n) is the number of iterations.

3.3 Summary

The numerical scheme for solving the PSE is outlined in this chapter. The scheme is very

similar to the one given by Bertolottiet al. (1992), however we haveN as our normal

variable rather thany, which means that the slow growth of the boundary-layer is included

in the formulation of the numerical mesh. This approach has not been used before, and

the results it gives are identical to the ones given wheny is chosen as the normal variable.

The parallel Orr-Sommerfeld schemes are of the same format as the local PSE, which is

solved as an eigenvalue problem.

These numerical schemes are now applied to bodies with different leading edge geome-

tries, and the next chapter concentrates on the semi-infinite flat plate case.
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Chapter 4

The semi-infinite flat plate

Before applying our PSE method to perturbed flow around general curved bodies, we first

apply it to the semi-infinite flat plate, and compare our results with those of Goldstein

(1983), who extended the leading edge asymptotics idea to derive the asymptotic form

of the wavenumber and amplitude function in the Orr-Sommerfeld region. We shall dis-

cuss the accuracy of our results compared with Goldstein’s up to and includingO(ε3 ln ε)

terms, whereε = Re−
1
6 , and then include theO(ε3) term (Goldstein, 1982), and discuss

the difficulties in using the asymptotics, and extending this idea to more general bod-

ies. We illustrate the key points for the derivation of Goldstein’s asymptotics, but look

more closely at theO(ε3) correction term, where we have calculated the values of some

undetermined constants to be able to calculate fully theO(ε3) term.

As well as comparing the PSE results with Goldstein’s asymptotics, we also illustrate

the consistency of the PSE, by demonstrating that the PSE solution is independent of the

choice of upstream boundary condition used, where the boundary condition comes from

Orr-Sommerfeld theory, the local PSE and the leading edge asymptotics. Also we discuss

the need to patch growth rate curves for moderately largeε, and show how this is possible,

as well as demonstrating the step size independence of the PSE solution for smallε.

We shall also compare our results to the numerical studies ofHaddad and Corke

(1998) and Wanderley and Corke (2001), who consider flows overa parabola and a Mod-

ified Super Ellipse (MSE) respectively. We compare our results with Haddad and Corke

in the limit as the parabola’s nose radius goes to zero. We examine the work of Wan-
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derley and Corke, who attempt to approximate the boundary-layer equations by the Orr-

Sommerfeld equation close to the leading edge. However thisapproximation does not

take into account the growth in the boundary-layer at this point, hence we use the PSE

method to check the validity of this Orr-Sommerfeld approximation.

Further to this work, we also discuss the numerical problemswhich arise when solving

the PSE. In particular we consider the occurrence of initialtransients from the initial

conditions, and hope to show that these arise as a consequence of higher eigenmodes

being present in the composite form of the initial upstream boundary condition.

4.1 Equations on a flat plate

4.1.1 Leading edge region

For flow past a semi-infinite flat plate, the slip velocity due to the free-stream isUf = 1.

Thus from (2.36) and (2.38) we find

β(ξ) = 0, Ω(ξ) = 2ξ, (4.1)

and hence (2.34) becomes

φ1NNN + φ1φ1NN = 2ξ (φ1Nφ1Nξ − φ1NNφ1ξ) , (4.2)

with the same boundary conditions as in (2.35). Atξ = 0, the above equation reduces

to the Blasius equation, which has solutionφ1(0, N) = f(N). However, as this solution

satisfies the full steady equation, and the corresponding boundary conditions, it remains

as the solution for allξ. Now from (2.37) the LUBLE becomes

φ2NNN + fφ2NN + 2ξiφ2N + f ′′φ2 + 2ξ (f ′′φ2ξ − f ′φ2Nξ) = 2ξiUd − 2ξ
dUd

dξ
, (4.3)

which when written in terms of the stream functionψ0 = h(ξ)φ2 = (2ξ)
1
2 φ2 becomes

ψ0NNN +fψ0NN +2ξiψ0N +f ′ψ0N +2ξ (f ′′ψ0ξ − f ′ψ0Nξ) = (2ξ)
3
2

(
i− d

dξ

)
Ud. (4.4)

The variables(ξ,N) from (2.33) and (2.23) are equivalent to

ξ = x = xG and N = (2ξ)−
1
2y = (2xG)−

1
2 ε−3yG = ηG,
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where the subscriptG denotes the variables used by Goldstein (1982) and Goldstein

(1983) andε6 = Re−1. Therefore the above form of the LUBLE is identical to equa-

tion (3.2) in Goldstein (1983). SinceUf = 1, comparison with the largeξ asymptotic

form (2.41), gives the coefficientsα andγ, which appear in the asymptotic eigenfunction,

to be zero. The steady solution has already been determined asf(N), hence from (2.59),

D = E(N) = 0. Substituting these values into (2.74) and (2.75) gives

τj = −
889 − 16ρ3

j

1260
, (4.5)

Tj(ξ) =
−λj (2ξ)

3
2

3U ′
0

. (4.6)

Also the variableM given by (2.67) is equivalent to the variableσ used by Goldstein

(1983), hence the form of the unsteady eigenmode is identical to the one given by Gold-

stein.

4.1.2 Orr-Sommerfeld region - PSE

If we substituteUf = 1 along withD = E(N) = 0 into (2.102) to (2.107), we recover

the Parabolized Stability Equation for a semi-infinite flat plate,

(L0 + L1 + L2)φ+M
∂φ

∂ξP
+

dα

dξP
Nφ = 0, (4.7)

where

L0 = − 1

R0

(
R0D

2

2ξP
− α2

)2

+

(
iα
∂ΨB

∂yP

− iωP

)(
R0D

2

2ξP
− α2

)

− iα
∂3ΨB

∂y3
P

, (4.8)

L1 =
R

1
2
0

(2ξP )
1
2

∂3ΨB

∂xP∂y2
P

D − R
1
2
0

(2ξP )
1
2

∂ΨB

∂xP

(
R0D

3

2ξP
− α2D

)
, (4.9)

L2 = − N

2ξP

(
∂ΨB

∂yP

(
R0D

3

2ξP
− 3α2D

)
+ 2ωPαD − ∂3ΨB

∂y3
P

D

)

− R0
∂ΨB

∂yP

1

2ξ2
P

D2, (4.10)

M =
∂ΨB

∂yP

(
R0D

2

2ξP
− 3α2

)
+ 2ωPα− ∂3ΨB

∂y3
P

, (4.11)

N = ωP − 3α
∂ΨB

∂yP

, (4.12)
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andD ≡ d/dN . The base flowΨB(ξP , N) is given by

ΨB(ξP , N) =
(2ξP )

1
2

R
1
2
0

f(N), (4.13)

and the relationship betweenξP andxG, defined in§4.1.1, is

ξP =
Re

R0

xG.

If we change the PSE variables from(ξP , N) to (xP , yP ), using the fact thatξP = xP and

N = (2xP )
1
2yP/R

1
2
0 , we derive a form of the PSE similar to the one derived by Bertolotti

et al. (1992) for a semi-infinite flat plate,

(L0 + L1)φ+M
∂φ

∂xP

+
dα

dxP

Nφ = 0, (4.14)

where

L0 = − 1

R0

(
D2 − α2

)2
+

(
iα
∂ΨB

∂yP

− iωP

)(
D2 − α2

)

− iα
∂3ΨB

∂y3
P

, (4.15)

L1 =
∂3ΨB

∂xP∂y2
P

D − ∂ΨB

∂xP

(
D3 − α2D

)
, (4.16)

M =
∂ΨB

∂yP

(
D2 − 3α2

)
+ 2ωPα− ∂3ΨB

∂y3
P

, (4.17)

N = ωP − 3α
∂ΨB

∂yP

, (4.18)

and where,D ≡ d/dyP . The difference between this form of the PSE, and the one given in

Bertolottiet al.(1992), is that we have neglected theO(R−1
0 ) terms given in the operators

M andN , as these only contribute up toO(R−2
0 ) to the final solution. We feel our form

of (4.14) gives a more consistent equation than Bertolotti because all theO(R−2
0 ) terms

have then been neglected. We found in our calculations that these extra terms make no

significant effect to the PSE solution far from the nose, and although these terms become

significant close to the nose, they are as significant as the otherO(R−2
0 ) terms which have

been neglected.

4.1.3 Upstream boundary conditions to the PSE

As we mentioned in§2.2, the PSE is solved with homogeneous boundary conditionsto

pick out the propagation of the unsteady eigenmodes, however the PSE is also subject to
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an upstream boundary condition of the form (2.112). This boundary condition takes the

form of an initial wavenumber, and an initial mode shape given at some upstream position

xP = x0. This condition could come from a number of different sources, three of which

are considered here.

Parallel flow assumption

The parallel flow assumption assumes that at the pointx0, bothα andφ, along with the

base flowΨB are independent ofxP . In this case, the PSE (4.7) reduces to

L0φ =

[
− 1

R0

(
R0D

2

2ξP
− α2

)2

+

(
iα
∂ΨB

∂yP

− iωP

)(
R0D

2

2ξP
− α2

)]
φ = 0, (4.19)

which is the usual Orr-Sommerfeld equation for parallel flows. This equation is solved

using a matrix eigenvalue solver described in chapter 3, andthe upstream boundary condi-

tion is taken as the most unstable discrete eigenvalue, and its corresponding eigenfunction.

The main drawback of this boundary condition, is that it doesn’t incorporate any of the

boundary-layer growth. Therefore close to the leading edgeregion, this method produces

an unsatisfactory boundary condition, because the wavenumber and mode shape would

be in poor agreement with the actual wavenumber and growth rate at that point, which

could be calculated via a full Navier-Stokes simulation.

Local PSE solution

The PSE contains all the information needed to resolve the boundary-layer growth, so

as an upstream boundary condition, we consider the local solution to the PSE given in

(2.115) and (2.116). In the case of a flat plate, the operatorssimplify to the ones given in

(4.8) to (4.12), and the operatorL4 simplifies to

L4 = −R0

2ξ2
0

(iα0ΨB1 − iω)D2 − iα0ΨB2ξ +
R0D

4

2ξ3
0

. (4.20)

Similarly we could look for a local solution to (4.14) about the upstream pointxP =
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x0. Expanding the solution gives

φ(xP , yP ) = φ(x0, yP ) + x̂
∂φ(xP , yP )

∂xP

∣∣∣∣
xP =x0

+O(x̂2) = φ0 + x̂φ1, (4.21)

α(xP ) = α(x0) + x̂
dα(xP )

dxP

∣∣∣∣
xP =x0

+O(x̂2) = α0 + x̂α1. (4.22)

wherex̂ = xP − x0, and theO(x̂2) terms are zero due to the PSE assumptions onφ and

α. Introducing these into (4.14) we find the two equations valid for varyingx̂ are

(L0 + L1 + α1N)φ0 +Mφ1 = 0, (4.23)

(L3 + iα1M)φ0 + L0φ1 = 0, (4.24)

where

L3 = iα0
∂2ΨB

∂xP∂yP

(
D2 − α2

0

)
− iα0

∂4ΨB

∂xP∂y3
P

, (4.25)

and inL0, L1,M andN , α is replaced byα0.

The standard approach for solving this type of problem (Bertolotti et al., 1992) is

to consider the approximationα = constant, i.e. α1 = 0, which is a normalization

condition for the problem, although it is different to the normalization condition (2.100).

This approach cuts down on computation time, as we need only to solve a simple linear

eigenvalue problem, rather than perform many iterations. Bertolotti et al.(1992) suggests

other iterative methods for solving this problem, however we found no advantage when

using these methods compared to the simpler one above. The simple α = constant

approach leads to the eigenvalue problem


 L0 + L1 M

L3 L0




 φ0

φ1


 =


 0

0


 , (4.26)

which when solved atxP = x0 gives us our upstream boundary conditionα = α0 and

φ = φ0. The solution to this problem produces a pair of eigenvalueswhich approach

the eigenvalue of the Orr-Sommerfeld equation in the limitR0 −→ ∞. Thus it appears

to be ambiguous as to which eigenvalue we take as our boundarycondition, however

we shall show later that both eigenvalues and mode shapes very quickly iterate on to

the same solution when used as the boundary condition so either is acceptable. It is
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also the case that although we get a pair of solutions, both solutions actually give the

same growth rate when we consider the contribution from the mode shape as well as the

eigenvalue (Bertolottiet al., 1992). Hence the difference in the eigenvalues is not mapped

to a difference in the growth rate, because the mode shape is adjusted accordingly for each

solution.

If we examine the form of (4.26) in the largeyP limit, we find that the asymptotic

form of φ(xP , yP ) in the region ofx0 is

φ(xP , yP � 1) = (xP + AyP ) e−α0yP (4.27)

where

A =
i

1 − V∞/i(1 − ωP/α0)
,

andV∞ = −ΨBxP
|yP−→∞, is the transverse mean velocity far from the plate. This asymp-

totic behaviour is different to that of the Orr-Sommerfeld equation, in which the largeyP

solution isBe−α0yP , whereB is a constant. Therefore the non-parallel effects slow the

rate of decay outside the boundary-layer by an amount proportional toyP .

4.2 Leading edge region

4.2.1 Illustration of the leading edge receptivity results

Earlier we stated that we wish to utilise the largeξ form of the leading edge receptivity

analysis, by using it as our upstream boundary condition to the PSE. We use the lowest

order eigenmode as our initial condition, as it is this mode which matches to the T-S wave

downstream and exhibits spatial growth. The full form of thelowest order eigenmode,

ψ1, in this region, in the limitξ −→ ∞, on a flat plate is given in chapter 2 by

ψ1 = Cξτ1g(ξ,N) exp

(
−λ1(2ξ)

3
2

3U ′
0

)
, (4.28)

where τ1 = −0.6921. Hence for the flat plate, our initial wavenumber comes from

(2.129), which becomes

α0 =
R0

Re

iλ1(2x
(0))

1
2

U ′
0

, (4.29)
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wherex(0) = R0x0/Re, i.ex(0) is the starting point in the leading edgeξ = xG variable.

The initial mode shape is given by

φ0 = x(0)τ1g(x(0), N), (4.30)

where

g(x,N) =





U ′
0

� M

0 (M−�M)Ai(z̃)d�M
�
∞

0 Ai(z̃)d�M
for N = O(x−

1
2 ),

(
2x(0)

) 1
2 f ′(N) +

iU ′

0
λ1

for N = O(1),((
2x(0)

) 1
2 f ′(N) +

iU ′

0
λ1

)
exp

(
−2ε3λ1ix(0)N

U ′

0

)
for N = O(ε−3x−1).

(4.31)

As it stands, we can’t use (4.31) as our initial mode shape, aswe need it in the form

of a single function. This is achieved by forming a compositesolution of the three layers.

To see how a composite function works, consider the following example. Consider the

function

h(x) =





h1(x) for x = O(1)

h2(x) for large x,

with the matching condition that

lim
x−→∞

h1(x) = lim
x−→0

h2(x) = R(x).

We form the composite solutionH(x) defined as

H(x) = h1(x) + h2(x) −R(x),

so asx −→ 0, h2(x) = R(x), henceH(x) = h1(x). However, asx gets large (x −→ ∞),

h1(x) = R(x), thereforeH(x) = h2(x), and there is a region in between where the

two solutions are smoothly joined. A composite function of this form is exact in the two

regions for which the original function was defined, but in the matching region between

the two regions, the solution may not be exact. However the composite solution produces

a smooth transition between the two regions, so as long as there are no discontinuities

between the regions, the composite solution provides a goodapproximation.

Applying this to our three layer boundary-layer structure (4.31), we find our initial

mode shape is

φ0 = xτ1


U ′

0

∫M
0

(
M − M̃

)
Ai(z̃)M̃

∫∞
0 Ai(z̃)dM̃

+ (2x)
1
2 f ′(N)

+

(
(2x)

1
2 +

U ′
0i

λ1

)
exp

(
−2ε3iλ1xN

U ′
0

)
− U ′

0 (2x)
1
2 N − (2x)

1
2 − U0i

λ1

]
, (4.32)
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evaluated atx = x(0). We can check that this is the correct solution, by lettingN vary

over different length scales. WhenN = O
(
x−

1
2

)
, then

f ′(N) ∼ U ′
0N +O(N4), and exp

(
−2ε3iλ1xN

U ′
0

)
∼ 1 +O(ε3x

1
2 ),

so

φ0 ∼ xτ1


U ′

0

∫M

0

(
M − M̃

)
Ai(z̃)M̃

∫∞
0
Ai(z̃)dM̃

+O(x−
3
2 )


 .

WhenN = O(1), then

exp

(
−2ε3iλ1xN

U ′
0

)
∼ 1+O(ε3x

1
2 ), and U ′

0

∫M

0

(
M − M̃

)
Ai(z̃)M̃

∫∞
0
Ai(z̃)dM̃

∼ iU ′
0

λ1

+U ′
0(2x)

1
2N,

so

φ0 ∼ xτ1

[
iU ′

0

λ1

+ (2x)
1
2f ′(N) +O(x−

3
2 )

]
.

Finally whenN = O(ε−3x−1),

f ′(N) ∼ 1 + EST, and U ′
0

∫M

0

(
M − M̃

)
Ai(z̃)M̃

∫∞
0
Ai(z̃)dM̃

∼ iU ′
0

λ1

+ U ′
0(2x)

1
2N,

so

φ0 ∼ xτ1

(
iU ′

0

λ1

+ (2x)
1
2

)
exp

(
−2ε3iλ1xN

U ′
0

)
.
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Figure 4.1: Plot of leading edge mode shape, given by (4.32),at x̃1 = 2ε2x/U ′2
0 = 0.3, 0.5

and1.0 for (a) ε = 0.05 and (b)ε = 0.1, where the mode shapes have been normalised so
thatRe(φ0) = 1.
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In figure 4.1, we compare the evolution of the leading edge mode shape, given by

(4.32) at the scaled variable positionsx̃1 = 2ε2x/U ′2
0 = 0.3, 0.5 and1.0, for ε = 0.05 and

0.1, where the mode shapes have been normalised so thatRe(φ0) = 1. We note that as we

move further from the leading edge,x̃1 = 0, in both cases the real part of the mode shape

tends to0 faster asN −→ ∞. Also, for both values ofε it appears that the inner layers

are about the same thickness, but since the width of the outerlayer in the matching region

is O(ε−1), we note that theε = 0.1 outer layer is much thinner, so the mode shapes are

more concentrated near to the wall than forε = 0.05. The reason that the outer layer is

O(ε−1) in this case is because the matching region occurs on anx length scale ofO(ε−2).

4.3 Orr-Sommerfeld region

For the flat plate, which is the simplest geometry to consider, Goldstein (1982) and Gold-

stein (1983) calculated the largeRe asymptotic solution for both the wavenumber and

mode shape in the Orr-Sommerfeld region. This will provide us with a means of check-

ing our numerical scheme. In section§4.3.1, we shall demonstrate the key stages in the

derivation of the asymptotics, but for the full derivation,the reader is referred to Goldstein

(1982).

4.3.1 Goldstein’s asymptotics up toO(ε3 ln ε)

Goldstein derived the governing equation for the motion of the boundary-layer from

the vorticity-stream function form of the non-dimensionalNavier-Stokes equations, and

wrote the equation as

−i∇̃2ψ + x
1

2

[
∂(x−1∇̃2ψ, x

1

2 f)

∂(x, η)
+
∂(x−

1

2 f ′′, ψ)

∂(x, η)

]
= ∇̃2

(
1

2x
∇̃2ψ

)
+O(ψε6Λ) (η, x > 0), (4.33)

where

∇̃2 =
∂2

∂η2
+ 2ε6x

∂2

∂x2
+ ε6

∂

∂x
,

Λ = max

(
η2

x
, x−1

)
,

ε6 = Re−1,
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and the variables(x, η) are equivalent to(ξ,N) used in chapter 2 withUf = 1. This

equation is solved with the boundary conditions

ψ =
∂ψ

∂η
= 0 on η = 0, x > 0.

In the limit ε −→ 0 with x = O(1), (4.33) reduces to the linearised unsteady

boundary-layer equation (4.4), and gives the Lam-Rott eigenmodes as part of its solution.

However, the leading edge solution breaks down whenx = O(ε−2), therefore, to look for

a solution to (4.33) in the Orr-Sommerfeld region, we introduce the scaled variable

x1 = ε2x, (4.34)

and look for solutions in the form of traveling waves

ψ = εsG(x1, η) exp

(
i

ε

∫ x

0

κ(x1, ε)dx

)
, (4.35)

whereκ andG areO(1), and the constants = −(2τj + 1), whereτj is given by (4.5). We

write the functionG(x1, η) as a product:

G(x1, η) = A(x1)γ(x1, η),

whereA(x1) is a slowly varying function ofx1, to be determined by the analysis, and

γ(x1, η) is the mode shape.

The equation for the evolution of the wavenumberκ up toO(ε3 ln ε) is

x̃
3
2
1 + (εe

1
4
iπζ

3
2
0 )x̃1

(
2 − x̃

3
2
1 J1

iζ3
0

)
+ (εe

1
4
iπζ

3
2
0 )2x̃

1
2
1

(
1 +

2x̃
3
2
1 J2

iζ3
0

− x̃3
1J3

ζ6
0

)

−e
1
4
iπ(x̃1ζ0)

3
2 ε3

2U ′2
0

ln

(
εe

1
4
iπζ

3
2
0

x̃
1
2
1U

′
0

)
= H(ζ0) ≡

e
5
2
iπζ2

0Ai
′(ζ0)∫ ζ0

∞1
Ai(ζ)dζ

, (4.36)
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where

x̃1 ≡ 2x1

U ′2
0

, (4.37)

ζ0 = e−
5
6
iπ

(
x̃

1
2
1

κ

) 2
3

, (4.38)

J1 ≡ U ′
0

∫ ∞

0

(
U2 − 1

U2
+

1

U ′2
0 η

2

)
dη, (4.39)

J2 = −U ′
0

∫ ∞

0

(
1

U3
− 2

U2
+ U − 1

(U ′
0η)

3
+

2

(U ′
0η)

2

)
dη, (4.40)

J3 = J2
1 − 2U ′2

0

∫ ∞

0

U2

∫ ∞

η

(
U2 − 1

U2

)
dηdη, (4.41)

U = f ′(η), (4.42)

and the subscript1 on∞ is used to indicate that the path of integration tends to infinity

in the sector−1
3
π < arg(ζ) < 1

3
π. Equation (4.36) is the same as equation (4.52) of

Goldstein (1983).

We solve (4.36) using a complex-plane eigenvalue search method at each step. At the

initial step,x̃1 = 0, we setζ0 = −1.0188, as this is the first root ofAi(ζj) = 0, and we

wish to track the evolution of the unstable eigenmode. We then march in steps of 0.01,

solving forζ0, and hence using (4.38), to solve forκ at each step. Figure 4.2 shows this

numerical result forε6 = 0, 10−6, 10−4.
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Figure 4.2: Plot of (a) the real part, and (b) the imaginary part of the wavenumber,κ, as a
function of the scaled downstream distance variablex̃1.

The ε = 0 case is the solution in the limitRe −→ ∞, and hence corresponds to the
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leading order term of the asymptotic expansion given below.Note, that at this order (up

to and including terms ofO(ε3 ln ε)) the lower branch neutral stability point (Im(κ) = 0)

first moves downstream, then upstream for increasingε. However this is not the case if

more terms in the smallε expansion are retained. Asε increases, the missingO(ε3) term

from this result becomes more and more important, and hence contributes more and more

to the solution, as we shall see later when we study the full PSE numerics.

We also note that for both the real and imaginary cases, the solution converges to the

same solution for differentε as x̃1 −→ 0. This is the previously discussed ‘matching

region’, where the leading edge solution and the Orr-Sommerfeld solution both become

valid.

An alternative approach to solving (4.36) is by asymptotically expandingκ in the form

κ = κ0 + εκ1 + ε2κ2 + ε3(ln ε)κ3 +O(ε3).

Substituting this into (4.36) and (4.38), expandingH(ζ0) in a Taylors series about

ζ00 = e−
5
6
iπ

(
x̃

1
2
1

κ0

) 2
3

, (4.43)

and equating coefficients of like powers ofε, leads to

H(ζ00) = x̃
3
2
1 , (4.44)

κ1

κ0

= −3

2
e

1
4
iπζ

1
2
00x̃1

(
2 − x̃

3
2
1 J1

iζ3
00

)
/H ′(ζ00) , (4.45)

κ2

κ0

= −1

3

(
1

2
− H ′′(ζ00)ζ00

H ′(ζ00)

)(
κ1

κ0

)2

+ 3e−
1
4
iπ

(
x̃1

ζ00

) 5
2

J1

(
κ1

κ0

)
/H ′(ζ00)

− 3

2
iζ2

00x̃
1
2
1

(
1 +

2x̃
3
2
1 J2

iζ3
00

− x̃3
1J3

iζ6
00

)
/H ′(ζ00) , (4.46)

κ3

κ0

=
3

4U ′2
0

e
1
4
iπζ

1
2
00x̃

3
2
1 /H ′(ζ00) , (4.47)

whereH(ζ00) is defined by (4.36) and primes onH denote derivatives with respect toζ00.

The majority of the correction atO(ε3) comes in via the slowly varying amplitude

functionA(x1), which is discussed in§4.3.2. However, a small amount of theO(ε3)
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correction comes via (4.36). If we extend the asymptotic analysis to incorporate this

term, we find

κ4

κ0

=
1

27

(
47 − 15

ζ00H
′′(ζ00)

H ′(ζ00)
− 2

ζ2
00H

′′′(ζ00)

H ′(ζ00)

)(
κ1

κ0

)3

+
2

3

(
1 +

ζ00H
′′(ζ00)

H ′(ζ00)

)
κ1κ2

κ2
0

− 3

2
e−

1
4
iπ

(
x̃1

ζ00

) 5
2

J1

((
κ1

κ0

)2

− 2
κ2

κ0

)
/H ′(ζ00)

+ 3iζ2
00x̃

1
2
1

(
1 +

x̃3
1J3

ζ6
00

)(
κ1

κ0

)
/H ′(ζ00) +

κ3

κ0

ln

(
e

1
4
iπζ

3
2
00

x̃
1
2
1U

′
0

)
. (4.48)
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Figure 4.3: Comparison of (a) the real part, and (b) the imaginary part of the asymptotic
and numerical value of the wavenumber,κ, for ε = 0.1.

Figure 4.3 shows a comparison between the full numerical form of the wavenumber,

κ, and its asymptotic form atO(1) and up to and includingO(ε3 ln ε). We see good

agreement between the numerics and the asymptotics over approximately the first half

of the region considered, however downstream we have a slight discrepancy between the

numerical and asymptotic results which proves to be cruciallater when trying to calculate

theO(ε3) term. TheO(1) asymptotic expansion, is quite different from the other two

results, although to leading order, they are the same, this proves that the correction terms

are very important, even for smallε.

The mode shape functionγ(x1, η) has a three layer structure similar to the leading
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edge region,

γ(x1, η) =





εc̄
� ζ

ζ0
(ζ−ζ̃)Ai(ζ̃)dζ̃

ζ0
� ζ0
∞1

Ai(ζ̃)dζ̃
+O(ε2) for η = O(ε),

U − εc̄− εᾱU
(∫ η

∞
(

1
U2 − 1

)
dη + η

)
+O(ε2) for η = O(1),

(1 − εc̄) e−ᾱη +O(ε2) for η = O(ε−1),

(4.49)

whereU = f ′(η), ᾱ = (2x1)
1
2κ, c̄ = 1/κ andζ = ζ0(1 − U ′

0η/(c̄ε)).

4.3.2 Determination of theO(ε3) term of the wavenumber

TheO(ε3) term in the asymptotic expansion for the wavenumber is not included in Gold-

stein (1983), however it is included in the NASA report Goldstein (1982). This section

looks at the equation from which theO(ε3) term is determined, and we derived the form

of the undetermined constants̃An which appear in this equation so that we can determine

theO(ε3) term. The form of these constants were not given in Goldstein(1982).

To find theO(ε3) correction term to the wavenumber,κ, we must find the form of

d lnA/dx1, because by considering (4.35), we see that

ψ = εsγ(x1, η, ε) exp

(
i

ε

∫ x

0

(
κ(x1, ε) − iε3

d lnA

dx1

)
dx

)
. (4.50)

Goldstein (1982) derives the governing equation forA(x1), and writes it in the form

2ᾱ
d lnA

dx1
+ ᾱx1 −

ᾱ

2x1
+
ᾱ

c̄

3∑

n=0

Ãnc̄
nᾱ(3−n)

= πU ′
0Bi

′(ζ0)

∫ ∞

0

(
H̄1

d lnA

dx1
+ H̄2

)
Ai(ζ)dη̄ − iᾱ

c̄U ′
0

∫ ∞

0
Γ†dη̄, (4.51)

whereÃn are O(1) constants and

H̄1 ≡ D̄(γ̄0 − η̄D̄γ̄0), (4.52)

H̄2 ≡ D̄

(
∂

∂x1

(γ̄0 − η̄D̄γ̄0) +
1

4x1

D̄(η̄2D̄γ̄0) −
iU ′

0

3!c̄
η̄3(γ̄0 −

1

4
η̄D̄γ̄0)

)
. (4.53)

In the above equation,̄η = η/ε, D̄ ≡ d/dη̄, andγ̄0 is defined by the mode shape in the

η = O(ε) layer of (4.49). In (4.51),
∫ ∞

0

Γ†dη̄ = −iζ0U ′
0

∫ ∞

0

(
Wi

(
H̄1

d lnA

dx1

+ H̄2 −
U ′

0

2x1

+
iU ′

0

2c̄
η̄2(a1 + U ′

0η̄) +
c̄(a1 + c̄)

2iU ′
0

)
+
c̄(a1 + c̄)

2iU ′
0ζ

)
dη̄, (4.54)
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where

Wi(ζ) = −π
(
Ai(ζ)

∫ ζ

ζ0

Bi(ξ)dξ −Bi(ζ)

∫ ζ

∞1

Ai(ξ)dξ

)
, (4.55)

and

ζ = ζ0

(
1 − U ′

0η̄

c̄

)
. (4.56)

Note that (4.54) is not derived completely in Goldstein (1982), but a full derivation for it

can be found in Appendix D. The majority of the integrals in (4.51) can actually be eval-

uated, or simplified, although this was not noted in the preparation of this work (Turner,

2006).

In his appendix B, Goldstein (1982) writes that the solution for γ in the middle deck

of the Orr-Sommerfeld region can be expressed as

γ = γH +O(ε4). (4.57)

He then states on p40, that it can be shown that

γH =
ᾱc̄3

2U ′3
0

ln η − iᾱ

U ′
0

3∑

n=0

Anc̄
nᾱ(3−n) +O(η ln η) as η −→ 0, (4.58)

where theAn’s areO(1) constants related to thẽAn’s. Hence to find the exact form of

theÃn’s to be able to solve (4.51), we have to find the asymptotic form of γH asη −→ 0,

and compare it with (4.58). To findγH we substitute (4.57) into Goldstein’s governing

equation (B-1) of Appendix B to show thatγH satisfies Rayleigh’s equation

(U(η) − εc̄)(D2 − ε2ᾱ2)γH − U ′′(η)γH = 0, (4.59)

whereD ≡ d/dη, c̄ is the wave speed of the problem, andᾱ is the corresponding wave

number. We solve this equation by expandingγH as an asymptotic expansion for smallε,

of the form

γH(η) = γ0(η) + εγ1(η) + ε2γ2(η) + ε3γ3(η) + ε4γ4(η) +O(ε5). (4.60)
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This yields the system of equations

O(1) : UD2γ0 − U ′′γ0 = 0, (4.61)

O(ε) : UD2γ1 − U ′′γ1 = c̄D2γ0, (4.62)

O(ε2) : UD2γ2 − U ′′γ2 = c̄D2γ1 − Uᾱ2γ0, (4.63)

O(ε3) : UD2γ3 − U ′′γ3 = c̄D2γ2 + Uᾱ2γ1 − c̄ᾱ2γ0, (4.64)

O(ε4) : UD2γ4 − U ′′γ4 = c̄D2γ3 + Uᾱ2γ2 − c̄ᾱ2γ1. (4.65)

Each of these equations has to be solved with the conditions that they match to the outer

and inner layers.

The first two equations (4.61) and (4.62) can be solved quite easily, and have the

solutions

γ0 = U(η), (4.66)

γ1 = −c̄− ᾱU(η)

(∫ η

∞

(
1

U2
− 1

)
dη + η

)
. (4.67)

Equation (4.61) has to be solved with the condition that the lowest order normal velocity

component of this solution has to vanish at the wall, i.e.

γ0(0, x1) = 0.

This is why we take (4.66) as our solution and we ignore the unimportant normalization

constant.

As η −→ 0 we can write each solution as an asymptotic series in powers of η. There-

fore,

γ0 ∼ U ′
0η −

U ′2
0 η

4

24
+

11U ′3
0 η

7

5040
− 5U ′4

0 η
10

48384
+ o(η11), (4.68)

γ1 ∼
(
c̄+

ᾱ

U ′
0

)
− ᾱU ′

0J0η −
ᾱη3

12
+
ᾱU ′2

0 J0η
4

24
+

3ᾱU ′
0η

6

800
+O(η7), (4.69)

whereJ0 =
∫ 0

∞

(
1

U2 − 1
(U ′

0η)2
− 1
)
dη. We can also solve (4.63) exactly, but writing down

the solution is very complicated, and as we only need the solution in the limit η −→ 0,

we find it beneficial to guess a smallη expansion forγ2, substitute it into (4.63) withU(η)

expanded for smallη, and equate powers ofη.
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Therefore for each of the remaining equations (4.63), (4.64) and (4.65), we assume a

general asymptotic expansion of the form

γn =
6∑

i=0

γniη
i + ln η

6∑

i=0

γ̂niη
i +O

(
η7
)
, (4.70)

for n = 2, 3, 4, where for each solution the constants,γn0 andγn1, are determined by

matching to the inner and outer expansions. Thus although this method won’t determine

the full form of γH , it will help us to determine the higher orderγni in terms of these

constants.

Substituting (4.70) into (4.63), (4.64) and (4.65) and equating powers ofη we get the

following expansions forγ2, γ3 andγ4,

γ2 = γ20 + γ21η −
c̄ᾱη2

4U ′
0

+

(
U ′

0ᾱ
2

6
− U ′

0γ20

12
+
U ′

0c̄ᾱJ0

12

)
η3

− U ′
0γ21η

4

24
+

13c̄ᾱη5

1200
+O(η6), (4.71)

γ3 = γ30 + γ31η −
c̄2ᾱ

2U ′2
0

η ln(η) +

(
− c̄ᾱ

2

2
+

ᾱ3

2U ′
0

+
c̄2ᾱJ0

4
− c̄γ20

4

)
η2

+

(
−U

′
0ᾱ

3J0

6
− U ′

0γ30

12
− c̄γ21

12

)
η3

+

(
c̄2ᾱ

240U ′
0

− U ′
0γ31

24

)
η4 +

c̄2ᾱ

48U0

η4 ln(η) +O(η5), (4.72)

γ4 = γ40 +
c̄3ᾱ

2U ′3
0

ln(η) + γ41η +

(
− c̄γ20

2U ′
0

+
c̄3ᾱJ0

2U ′
0

)
η ln(η) +O(η2). (4.73)

Now that we have determined the higher order terms in terms ofthe matching con-

stants, we can use another form of the Rayleigh equation givenby Miles (1962), which

is the inviscid Rayleigh equation transformed into a Riccati equation, to determine these

matching constants. His result can be written as

DγH

γH

=
U ′

U − εc̄
− 1

(U − εc̄)2Ω
+O(ε5), (4.74)

Ω =
1

εᾱ(1 − εc̄)2
+ Ω0 + εᾱΩ1 + ε2ᾱ2Ω2, (4.75)
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where

Ω0 = − 1

(1 − εc̄)2

∫ ∞

η

(
(U − εc̄)2

(1 − εc̄)2
− (1 − εc̄)2

(U − εc̄)2

)
dη, (4.76)

Ω1 = − 2

(1 − εc̄)2

∫ ∞

η

(U − εc̄)2Ω0dη, (4.77)

Ω2 = −
∫ ∞

η

(U − εc̄)2

(
2Ω1

(1 − εc̄)2
+ Ω2

0

)
dη, (4.78)

and the dash denotes derivative with respect toη.

To solve this equation, we expandγH as in (4.60), expand the right hand side and left

hand side for smallε, and equate powers ofε. Each equation can then be solved fully,

if possible, or we can letη −→ 0 and expand for smallη to pick out the leading order

term. The reason we only want the leading order term, is because that’s what we require

to substitute into (4.51). Doing this we find

γ0 = U(η), (4.79)

γ1 =

(
−c̄+

ᾱ

U ′
0

)
+ γ11η +O(η2), (4.80)

both as we found earlier. The constantγ11 can be written down as−ᾱU ′
0J0 as before, but

we decide to leave it in this form to make the analysis easier.Similarly in the next set of

equations,γ21 etc. can be determined, although their explicit form is not important here.

We find the solutions forγ2, γ3 andγ4 to be

γ2 = −
ᾱ
(
2c̄− ᾱJ1

U ′

0

)

U ′
0

+
γ11

(
−c̄+ ᾱ

U ′

0

)

U ′
0

+ γ21η +O(η2), (4.81)

γ3 =
ᾱ
(
c̄2 + 2ᾱc̄J2

U ′

0
+ ᾱ2J3

U ′2
0

)

U0

+
γ21

(
−c̄+ ᾱ

U ′

0

)

U ′
0

−
γ11ᾱ

(
2c̄− ᾱJ1

U ′

0

)

U ′2
0

+ γ31η +O(η2), (4.82)

γ4 = γ400 +
γ31

(
−c̄+ ᾱ

U ′

0

)

U ′
0

−
γ21ᾱ

(
2c̄− ᾱJ1

U ′

0

)

U ′2
0

+
γ11ᾱ

(
c̄2 + 2ᾱc̄J2

U ′

0
+ ᾱ2J3

U ′2
0

)

U ′2
0

+
ᾱc̄3

2U ′3
0

ln(η) +O(η), (4.83)
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where

γ400 = ᾱ4

(
2J1J3

U ′4
0

− J3
1

U ′4
0

+ J6

)
+ ᾱ3c̄

(
4J1J2

U ′3
0

+
6J2

1

U ′3
0

− J5 −
4J3

U ′3
0

)

+ ᾱ2c̄2
(
J4 −

8J2

U ′2
0

− 10J1

U ′2
0

− 5

24U ′4
0

)
+
ᾱc̄3

U ′3
0

, (4.84)

andJ1 to J6 are defined as

J1 = U ′
0

∫ ∞

0

(
U2 − 1

U2
+

1

(U ′
0η)

2

)
dη, (4.85)

J2 = −U ′
0

∫ ∞

0

(
1

U3
− 2

U2
+ U − 1

(U ′
0η)

3
+

2

(U ′
0η)

2

)
dη, (4.86)

J3 = J2
1 − 2U ′2

0

∫ ∞

0

U2

∫ ∞

η

(
U2 − 1

U2

)
dηdη, (4.87)

J4 = − 1

U ′
0

∫ ∞

0

(
3

U4
− 1 + 8U − 10U2 − 3

(U ′
0η)

4
− 1

2U ′3
0 η

)
dη, (4.88)

J5 =
4

U ′
0

(∫ ∞

0

(U2 − U)

∫ ∞

η

(
U2 − 1

U2

)
dηdη

+

∫ ∞

0

U2

∫ ∞

η

(
2U2 − 1

U3
− U

)
dηdη

)
, (4.89)

J6 =
1

U ′
0

(∫ ∞

0

U2

(
4

∫ ∞

η

U2

∫ ∞

η

(
U2 − 1

U2

)
dηdη

+

(∫ ∞

η

(
U2 − 1

U2

)
dη

)2

dη

))
. (4.90)

Thus with a little bit of rearranging and manipulation we find

Ã0 = iU ′
0

(
2J1J3

U ′4
0

− J3
1

U ′4
0

+ J6

)
, (4.91)

Ã1 = iU ′
0

(
4J1J2

U ′3
0

+
6J2

1

U3
0

− J5 −
4J3

U ′3
0

)
, (4.92)

Ã2 = iU ′
0

(
J4 −

8J2

U ′2
0

− 10J1

U ′2
0

− 5

24U ′4
0

)
, (4.93)

Ã3 =
i

2U ′2
0

, (4.94)

These are then used in (4.51) which can now be solved to findd lnA/dx1.

4.3.3 Matching of the leading edge and the Orr-Sommerfeld asymp-

totics

We stated, without proof in§4.3.1, that the Orr-Sommerfeld solution matches onto the

leading edge solution asx1 −→ 0. We now formally prove this statement by considering
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the asymptotic solutions in both regions. If we consider theform of the solution in the

Orr-Sommerfeld region asx1 −→ 0, it follows from (4.43) that

κ0 −→
i(2x1)

1
2λj

U ′
0

=
iε(2x)

1
2λj

U ′
0

, (4.95)

andλj is given bye
iπ
4 /ρ

3
2
j . More precisely it can be shown that

κ0 =
iε(2x)

1
2λj

U ′
0

+ 3C0x
2
1 + o(x2

1),

asx1 −→ 0, whereC0 is anO(1) constant. Also it follows thatH ′(ζ00) andH ′(ζ00)/H
′′(ζ00)

are non-zero constants asx1 −→ 0 (Abramowitz, 1964). Hence (4.45), (4.46) and (4.47)

imply

κ1 −→
5

2
C1x

3
2
1 , κ2 −→ 2C2x1, κ3 −→ 3C3x

2
1,

asx1 −→ 0, whereC1, C2 andC3 areO(1) constants. We can therefore conclude from

(4.35) that

exp

{
i

ε

∫ x

0

κ(x1, ε)dx

}
= exp

{
−λj(2x)

3

2

3U ′

0

+ iε3x2
(
C0x+ C1x

1

2 + C2

)
+ iC3ε

6 ln ε x3 +O(ε4)

}
,

= exp

[
−λj(2x)

3

2

3U ′

0

](
1 + iε3x2

(
C0x+ C1x

1

2 + C2

)
+O(ε4)

)
.

Hence this exponential term matches with the exponential term from (4.28) when the

subscript1 is replaced byj for the more general case.

Now by considering (4.95), we can see that

c̄ −→ U ′
0

iε(2x)
1
2λj

and ᾱ −→ iε2(2x)λj

U ′
0

,

asx1 −→ 0. Hence it is straightforward to prove that

γ −→ g0

(2x)
1
2

as x1 −→ 0,

in every layer, using the fact thatζ0 −→ ζj in the inner deck. So the amplitude functions

will match completely if

A(x1) −→ x
τj

1 (2x1)
1
2 ,

asx1 −→ 0. This can be proved by replacingζ0, c̄ and ᾱ in (4.51) by their first-order

approximationsζ00, κ
−1
0 and (2x1)

1
2κ0 respectively. We also note that asWi(ζ) and
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Bi′(ζ0)Ai(ζ) are bothO(1) asζ0 −→ ζj, we see that the second term on the right-hand

side of (4.51) will be negligible compared to the first. Expanding ζ00, for smallx1, shows

that∂ζ00/∂x1 is bounded for smallx1, but

∂c̄

∂x1

−→ − 1

2x1

c̄,

asx1 −→ 0. Hence it follows by using the chain rule that asx1 −→ 0

∂γ̄0

∂x1

−→ − 1

2x1

γ̄0 +
∂γ̄0

∂ζ

∂ζ

∂x1

= − 1

2x1

γ̄0 + D̄γ̄0
∂ζ

∂x1

∂η̄

∂ζ
,

where on insertinḡc = κ−1
0 into (4.56) and using (4.95) to eliminateζ gives

∂γ̄0

∂x1

−→ − 1

2x1

(
γ̄0 − η̄D̄γ̄0

)
.

Inserting this along with̄c = κ−1
0 into (4.53) gives

H̄2 −→ D̄

[
− 1

2x1

((
γ̄0 − η̄D̄γ̄0

)
+

1

2

(
η̄D̄2γ̄0 − 2η̄D̄γ̄0

)
− 1

6
σ3λj

(
γ̄0 −

η̄

4
D̄γ̄0

))]
,

(4.96)

asx1 −→ 0, whereσ = (2x)
1
2η = ε−1(2x1)

1
2η.

It also follows that in equation (4.51)

U ′
0πBi(ζ0)

∫ ∞

0

H̄1Ai dη̄,

is O(1) and will not go to zero asx1 −→ 0, whereas̄α does go to zero. Therefore the

first term on the left-hand side of (4.51) goes to zero, and theremaining terms tend to a

constant asx1 −→ 0, hence we can neglect them, as our leading order term on the right

hand side increases like1/x1 asx1 −→ 0.

Therefore (4.51) can be approximated by the first term on the right hand side. Thus

inserting (4.96) into this result, and usingγ0 = g0/2x1 to eliminateγ̄0 in terms ofg0, and

introducingσ, defined above, as the new variable of integration, leads to

d lnA

dx1

−→ 2τj + 1

2x1

as x1 −→ 0,

whereτj is defined in equation (3.16) of Goldstein (1983). Hence integrating with respect

to x1 and making the appropriate choice for the integration constant leads to the required
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result, showing that the amplitude functions do indeed match asx1 −→ 0. This is demon-

strated numerically in figure 4.4, which plotsd lnA/dx1 and(2τ1 + 1)/2x1 to show that

we have good agreement asx1 −→ 0, and in fact we have good agreement forx̃1 < 0.08.

The imaginary part ofd lnA/dx1 tends to zero asx1 −→ 0.
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Figure 4.4: Plot ofd lnA/dx1 as a function of̃x1 plotted with(2τ1+1)/2x1, to emphasise
the matching of these results asx̃1 −→ 0.

4.3.4 Re-normalization

For a semi-infinite flat plate, the PSE normalization condition simplifies to
∫ ∞

0

φxP
φ†dη = 0,

where we now useN = η to be consistent with Goldstein’s asymptotics. However the

normalization conditions used for the local PSE and Goldstein’s Orr-Sommerfeld region

asymptotics, were both different. The local PSE was normalized by settingα1 = 0, and

Goldstein (1982) chose to let his middle deck solution be of the form

γ = U − c̄− εᾱU

(∫ η

∞

(
1

U2
− 1

)
dη + η

)
+O(ε2),
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where he sets the constant multiplying theO(1) term,U(η), equal to 1, thus forcing a

split between the amplitude function and the wavenumber. The fact that more than one

normalization condition has been used means that, as they are, the different methods

cannot be easily compared. To overcome this, we re-normalize all of the solutions, by

factorizing the amplitude functionφ(xP , η) such that

φ(xP , η) = φmax(xP )φ̄(xP , η),

where the maximum value of̄φ is 1. The stream function,ψ, for this problem is then

given by

ψ = φ̄(xp, η) exp
(
iθ̃(xP ) − ωt

)
+ complex conjugate, (4.97)

with
dθ̃

dxP

= G(xP ),

whereG(xP ) is the wave amplitude growth rate, and is given by

G(xP ) =
Re

R0

(
iα+

1

φmax

∂φmax

∂xP

)
. (4.98)

We use a similar re-normalization onγ(x, η), and definêγ = (2x)
1
2γ, and Ā(x1) =

A(x1)/(2x)
1
2 , thus producing the growth rate

G =
i

ε

(
κ− ε3i

d ln(Ā)

dx1

)
+

2ε2

U ′2
0

1

γ̂max

∂γ̂max

∂x̃1

, (4.99)

for Goldstein’s asymptotics in the Orr-Sommerfeld region,wherex̃1 = 2x1/U
′2
0 .

4.4 Asymptotic results in the Orr-Sommerfeld region

4.4.1 Matching region

The PSE has three possible initial conditions which are the parallel Orr-Sommerfeld so-

lution, the local PSE and the leading edge receptivity analysis. Figures 4.5 and 4.6 show

a comparison between the initial mode shapes of the three upstream boundary conditions

at two different starting positions,̃x(0)
1 = 0.3 andx̃(0)

1 = 1.0 whenε = Re−
1
6 = 0.1 and

where the superscript(0) signifies that this is a starting position. The real parts, figure
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Figure 4.5: Comparison of the real part of the initial mode shapes of the three regimes at
streamwise locations (a)̃x(0)

1 = 0.3, and (b)x̃(0)
1 = 1.0, for ε = 0.1.
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Figure 4.6: Comparison of the imaginary part of the initial mode shapes of the three
regimes at streamwise locations (a)x̃

(0)
1 = 0.3, and (b)x̃(0)

1 = 1.0, for ε = 0.1.

4.5, and imaginary parts, figure 4.6, compare very well closeto the wall for both starting

points, but as we move away from the wall, they all decay to zero at slightly different rates,

and at̃x(0)
1 = 1.0 the parallel Orr-Sommerfeld and local PSE mode shapes vary more from

the receptivity mode shape than they do atx̃
(0)
1 = 0.3. This suggests that̃x(0)

1 = 0.3 lies

closer to the overlap region, between the leading edge and Orr-Sommerfeld regions, than

x̃
(0)
1 = 1.0. Considering smaller values of̃x(0)

1 for this value ofε does not improve the

agreement between the three mode shapes since the parallel Orr-Sommerfeld equation

and the local PSE become invalid asx̃(0)
1 −→ 0 due to non-parallel effects entering at

leading order. Also as we let̃x(0)
1 −→ 0, we encounter problems identifying the most

unstable eigenvalue for both the parallel Orr-Sommerfeld and local PSE calculations as
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Figure 4.7: Comparison of the real part of the initial mode shapes for the leading edge
receptivity, parallel Orr-Sommerfeld and local PSE analysis, where the line styles corre-
spond to those in figures 4.5 and 4.6. With (a)ε = 0.05 andx̃(0)

1 = 0.1, where the 3 mode
shapes lie over each other, and (b)ε = 0.05 andx̃(0)

1 = 0.2, where only the leading edge
mode shape is distinguishable from the other two.

(a)
 0

 5

 10

 15

 20

 25

 30

 35

 40

-0.1 -0.05  0  0.05  0.1  0.15

η

Magnitude (b)
 0

 5

 10

 15

 20

 25

 30

 35

 40

-0.15 -0.1 -0.05  0  0.05  0.1
Magnitude

η

Figure 4.8: Comparison of the imaginary part of the initial mode shapes for the leading
edge receptivity, parallel Orr-Sommerfeld and local PSE analysis, where the line styles
correspond to those in figures 4.5 and 4.6. With (a)ε = 0.05 andx̃(0)

1 = 0.1, where the
solutions are the same for smallη, and (b)ε = 0.05 and x̃(0)

1 = 0.2, where the leading
edge mode shape is more distinguishable.

discussed in§2.2.1. It is found that the unstable eigenvalue becomes indistinguishable

from the discrete approximation to the continuous spectrumof eigenvalues in each case.

In order to illustrate the existence of a matching region more clearly, we consider

corresponding results for a smaller value ofε. With ε = 0.05, we can solve the parallel

Orr-Sommerfeld and local PSE equations closer tox̃
(0)
1 = 0 due to the unstable eigen-

mode being distinguishable from the continuous spectrum closer to the leading edge, as
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discussed in§2.2.1. Figures 4.7 and 4.8 compare the real and imaginary parts of the mode

shapes respectively atx̃(0)
1 = 0.1 andx̃(0)

1 = 0.2. For this smaller value ofε, figure 4.7(a)

shows that the real part of the three solutions atx̃
(0)
1 = 0.1 overlap each other while fig-

ure 4.8(a) shows that for the imaginary part of the solution at this point, the local PSE

is in fact in slightly better agreement with the receptivitysolution than the parallel Orr-

Sommerfeld solution. From these figures it is clear thatx̃
(0)
1 = 0.1 lies within an overlap

region between the leading edge region and the Orr-Sommerfeld region.
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Figure 4.9: Plot of the mode shapes for Goldstein’s Orr-Sommerfeld solution (dashed
lines), and the leading edge solution (solid line and dottedline) for x̃1 = (a) 0.02, (b)
0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25 and (g) 0.3, withε = 0.1. Note that in figures (a)
and (b), the 2 solutions are indistinguishable.
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The existence of this matching region can be seen more clearly in figure 4.9. This

figure shows an evolution plot of both the leading edge and asymptotic Orr-Sommerfeld

mode shapes close to the leading edge, forε = 0.1. Note that from̃x1 = 0.02 to x̃1 = 0.1,

the mode shapes for both schemes are almost identical, suggesting that this region is the

matching region. As we go further out of this region, we see that the imaginary parts seem

to differ more from each other than the real parts, although there is no specific reason for

this.

(a)
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x
~

1
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Receptivity

Asymptotic O−S & Local PSE

(b) x
~

1

Parallel O−S

Re(G)
Asymptotic O−S
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Figure 4.10: Plot of the real part of the growth rateG as a function of downstream dis-
tance, calculated by leading edge receptivity analysis, parallel Orr-Sommerfeld theory,
local PSE theory, and asymptotic Orr-Sommerfeld theory forthe cases (a)ε = 0.05 and
(b) ε = 0.1.

Figure 4.10 shows a comparison of the real part of the growth rate,G, calculated using

the different methods described in the previous sections for two different values ofε.

The solid line shows the results for Goldstein’s asymptoticresults in the Orr-Sommerfeld

region given by (4.99), up to and including theO(ε3) term. This can be compared with

results from parallel Orr-Sommerfeld theory, (4.19) and from the local PSE (4.26) which

takes some account of non-parallel effects. Forε = 0.05 (figure 4.10(a)) results from

asymptotic analysis and the local PSE are indistinguishable, while the parallel flow results

start to differ as the leading edge is approached, which is tobe expected as non-parallel
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effects begin to dominate. Asε is increased toε = 0.1 (figure 4.10(b)), the difference

between the different solutions in the Orr-Sommerfeld region are larger. In addition, the

local PSE solution can only be calculated forx̃1 ' 0.25 due to the first eigenvalue of

(4.26) becoming indistinguishable from the other eigenvalues, as described earlier.

Figure 4.10 also shows the existence of a matching region between the receptivity

region close to the leading edge and the Orr-Sommerfeld region further downstream. The

dashed line marks the asymptotic growth rate of the first Lam-Rott mode given by (4.28).

For the caseε = 0.05 (figure 4.10(a)), the receptivity results overlap the results from

the asymptotic Orr-Sommerfeld and the local PSE in the range0.05 < x̃1 < 0.1 and so

a matching region clearly exists. For the larger value ofε (figure 4.10(b)), a reasonable

match between the receptivity and asymptotic Orr-Sommerfeld results is seen at̃x1 ≈ 0.1,

but there is no matching region between the receptivity results and local PSE results due

to the problem obtaining PSE results close enough to the leading edge.

4.4.2 Importance ofO(ε3) term

TheO(ε3) term in the asymptotic expansion ofκ is calculated from (4.51), and in this

section we illustrate its importance in the overall form of the wavenumber.
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Figure 4.11: Plot of the real part ofG as a function of downstream distance, comparing the
asymptotic Orr-Sommerfeld results up toO(ε3 ln ε), and when theO(ε3) term is included
for (a) ε = 0.05 and (b)ε = 0.1

Figure 4.11 shows the real part ofG, for the asymptotic Orr-Sommerfeld regime, when
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we include only terms up toO(ε3 ln ε) and up toO(ε3). Whenε = 0.05, figure 4.11(a)

shows that the overall effect of having the extra term seems small. However whenε = 0.1,

figure 4.11(b) shows that afterx̃1 = 4.0, the effect of this extra term becomes significant.

There is also a reasonable difference close to the leading edge, but figure 4.10(a) shows

that this difference may be necessary to match with the leading edge result. Therefore we

can conclude that theO(ε3) term is important to the overall result, as it is significant close

to the leading edge in the matching region. However thisO(ε3) term appears to become

non-uniform downstream, thus will introduce errors into our calculation of disturbance

amplitudes.

TheO(ε3) term in the asymptotic expansion forκ, plotted in figure 4.11, is constructed

by only retaining theO(1) terms from (4.51). This was done by usingκ0 everywhere that

κ appeared. However, if we useκ calculated up to and includingO(ε3 ln ε) in (4.51)

instead, we expect this solution to be a small perturbation from the previous one, because

we have included someO(ε4), O(ε5) and higher correction terms, although we haven’t

included all the correction terms at these orders. The resulting solutions are shown in

figure 4.12.
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Figure 4.12: Comparison of (a) the real part, and (b) the imaginary part ofG as a function
of downstream distance, when theO(ε3) term is calculated withκ of bothO(1), and
O(ε3 ln ε), for ε = 0.1.

We see that both solutions are in good agreement up tox̃1 = 5, but beyond this point,

there is a considerable difference between the two solutions. It’s relatively straightforward
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to show that this difference is due to the second term on the right-hand side of (4.51). The

functionWi(ζ) is very sensitive to small changes inζ, and henceκ, as this moves the

integration contour along whichWi(ζ) is evaluated. Figure 4.3 shows that there is a small

variation inκ as we add more terms to the asymptotic expansion, and it’s this variation

which is translated into the difference shown in figure 4.12.These growth rates will be

compared with our PSE calculations in the next section.

Another subtle, but equally important problem that arises when calculating the solu-

tion for A(x1), is that, in the derivation of (4.51), the asymptotic approximation a1 =

ᾱ/U ′
0 − c̄+O(ε) is used to simplify the equation, where

a1 = lim
η̄−→∞

(
γ̄0 − η̄

∂γ̄0

∂η̄

)
.

However if we don’t make this approximation, and keep the higher order terms, the gov-

erning equation forA(x1) becomes

U ′
0

(
a1 + c̄+

ᾱ

U ′
0

)
d lnA

dx1

+ U ′
0a1x1 + U ′

0c̄x1 − U ′
0

a1 + c̄+ ᾱ
U ′

0

4x1

+
ᾱ

c̄

3∑

n=0

Ãnc̄
nᾱ(3−n)

= πU ′
0Bi

′(ζ0)

∫ ∞

0

(
H̄1

d lnA

dx1

+ H̄2

)
Ai(ζ)dη̄ − i(a1 + c̄)

c̄

∫ ∞

0

Γ†dη̄, (4.100)

rather than (4.51). In figure 4.12, we showed that (4.51) can be solved usingκ = κ0, or the

expansion ofκ up toO(ε3 ln ε). The results forA(x1) obtained using (4.51) and (4.100)

with κ = κ0 are in close agreement except close to the leading edge. Similarly if κ is

taken up toO(ε3 ln ε), good agreement is found downstream. However when we consider

the growth rate curves with (4.51) and (4.100) solved withκ = κ0 close tox̃1 = 0, we see

a slight difference between the two curves. Figure 4.13 shows that the solution to (4.100)

actually gives a better match with the leading edge asymptotics, when compared to the

solution (4.51). Therefore this, along with figure 4.12, shows that the higher order terms

in the expansion forκ are very important, but they become very difficult to formulate.

Thus extending these asymptotics to bodies other than the flat plate would be extremely

tedious and we expect to find that, as for the flat plate, theO(ε3) term is significant close

to the leading edge, but that it has an apparent non-uniformity, due to numerical evidence,

downstream (Turner, 2006). Thus we use our PSE to march through the Orr-Sommerfeld
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region to eliminate the difficulty of deriving general asymptotics in the Orr-Sommerfeld

region.
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Figure 4.13: Plot ofRe(G) as a function of downstream distance for the Asymptotic
Orr-Sommerfeld problem, with theO(ε3) term calculated from (4.100) (dashed line) with
κ = κ0. The solid line represents the same solution, except with theO(ε3) term calculated
using (4.51), and the dotted line represents the leading edge growth rate.

4.5 PSE results in the Orr-Sommerfeld region

In this section, we consider results from PSE calculations.We compare results from the

three upstream boundary conditions discussed, and see how different starting positions

affect the downstream amplitude. We discuss some problems which occur when using

PSE, and in particular, we discuss the problem of initial transients from the initial data.

We go on to compare the results with the asymptotic results given by Goldstein (1982), in

order to justify the use of the PSE method.
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4.5.1 Comparison of different upstream boundary conditions

Previous studies of the PSE have either used the parallel Orr-Sommerfeld approximation,

or the local PSE analysis as their upstream boundary condition. We hope to justify the

use of the leading edge analysis as a suitable upstream boundary condition, and show that

the PSE results are in good agreement with the Orr-Sommerfeld asymptotics.
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Figure 4.14: Comparison of (a) the real part, and (b) the imaginary part ofG as a function
of downstream distance for the three different initial conditions for the caseε = 0.1 and
with the initial conditions given at̃x(0)

1 = 0.3.

Figure 4.14 compares the initial steps of the PSE for the initial conditions of the lead-

ing edge asymptotics, the local PSE and the parallel Orr-Sommerfeld analysis, given at

x̃
(0)
1 = 0.3. The initial mode shapes are given in figures 4.5(a) and 4.6(a), and the initial

PSE wavenumbers,α0, are given in table 4.1. We see that the three solutions iterate to the

same solution after about 2 or 3 streamwise steps, where in this case the streamwise step

size is∆x̃1 = 0.1. The local PSE and parallel Orr-Sommerfeld solutions are practically

identical, but the receptivity solution is slightly different, although after̃x1 = 0.5 all three

Regime α0

Receptivity Analysis 0.006849 + 0.006849i
O-S Theory 0.008236 + 0.005829i
Local PSE 0.006833 + 0.004813i

Table 4.1: Initial PSE eigenvalues for the three different regimes for the starting position
x̃1 = 0.3.
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are indistinguishable from the others. This justifies our choice of receptivity boundary

condition, although the solution requires two or three streamwise steps to iterate onto the

correct solution.
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Figure 4.15: Comparison of (a) the real part, and (b) the imaginary part ofG as a function
of downstream distance for both the possible local PSE conditions, for the caseε = 0.1

andx̃(0)
1 = 0.3.

We discussed in§4.1.3 that there is ambiguity over which eigenvalue and eigenmode

to choose for the local PSE problem, and atx̃
(0)
1 = 0.3, the local PSE problem has eigen-

valuesα01 = 0.006833 + 0.004813i andα02 = 0.009533 + 0.006518i. However figure

4.15 shows that either pair is acceptable, as they both iterate to the same solution, again

after only 2 or 3 streamwise steps, as expected, because Bertolotti et al. (1992) proved

that the difference in the eigenvalues does not carry over tothe growth rate.

We have now established that the leading edge asymptotics isa suitable upstream

boundary condition for the PSE, however we need to be confident that starting the analysis

at different starting points is consistent and leads to the same solution downstream.

4.5.2 Matching between the PSE and the leading edge region

For sufficiently smallε, we demonstrated in§4.4.1 that a matching region between the

leading edge and Orr-Sommerfeld regions exists, hence we can utilise this result by start-

ing our PSE analysis from inside or close to this region using(4.29) and (4.30) as the

initial conditions. Figure 4.16 shows the real part of the growth rateG, defined in (4.98),



4.5 PSE results in the Orr-Sommerfeld region 100

(a)
-12

-10

-8

-6

-4

-2

 0  0.2  0.4  0.6  0.8  1
x
~

1

Re(G)

PSE

Receptivity

(b)
-6

-5

-4

-3

-2

-1

 0  0.2  0.4  0.6  0.8  1
x
~

1

Re(G)

Receptivity

PSE

Figure 4.16: Plot of the real part of the growth rateG, given by the PSE, started at two
different positions (ringed) for (a)ε = 0.05 and (b)ε = 0.1.

calculated using the PSE at different starting points, withthe initial condition given by

the receptivity analysis. Two starting positions were chosen, one lying within the match-

ing region discussed above, and one further downstream where the LUBLE has become

invalid. The results in figure 4.16 illustrate the smallest possible value of̃x(0)
1 that the

PSE was able to be started at in each case, together with a sample calculation starting the

PSE marching solution further downstream. When we attemptedto use an initial condi-

tion further upstream of these smallest values, we found that the PSE would not iterate to

the correct solution. This is due to the unstable eigenvaluebeing close to the continuous

spectrum of eigenvalues, and hence the numerical scheme hasdifficulties picking out this

eigenvalue. We note that the minimum value ofx̃1 at which PSE marching solutions can

be initiated increases asε increases. The use of the initial condition further downstream

highlights the fact that the PSE will iterate to the correct solution, even if an incorrect

initial condition is imposed, as long as the point chosen is not so far downstream that the

numerical scheme does not converge. This failure to converge to the correct solution is

due to the first initial jump in the eigenvalue being too large. However if at this point

we use the same mode shape as before, but instead use an initial eigenvalue taken from

a previous calculation which passes through this point, we find that the solution does in-

deed match onto the previous runs. This appears to suggest that the numerical scheme

involved in solving the PSE needs a good initial approximation for the eigenvalue, but is



4.5 PSE results in the Orr-Sommerfeld region 101

more flexible in responding to the initial mode shape.

There are still two questions relating to the PSE which need addressing. Specifically,

how is the disturbance amplitude downstream affected by changing the starting position

of the PSE and by varying the step size? To address this, we define

Â(x̃
(0)
1 , x̃1) =

∣∣∣∣∣C1ψLR(x̃
(0
1 ) exp

(
U ′2

0

2ε2

∫ x̃1

x̃
(0)
1

G(s)ds

)∣∣∣∣∣ ,

to be the disturbance amplitude atx̃1, starting the PSE calculation atx̃(0)
1 , with the initial

condition given by the receptivity result (4.29) and (4.30). The functionC1ψLR(x̃
(0)
1 ) is

the amplitude of the Lam-Rott eigenmode from the leading edgeregion evaluated at the

point x̃(0)
1 , and at theη value where|ψLR| is at its maximum. This value ofC1ψLR(x̃

(0)
1 ) is

calculated from the composite solution of (2.70) and (2.87). Using this, the existence of

a matching region between the receptivity results and the region over which PSE calcula-

tions are possible corresponds to the range of values ofx̃
(0)
1 over whichÂ is independent

of x̃(0)
1 . Takingε = 0.05 and a step size∆x̃1 = 0.05, PSE calculations can not be started

closer to the leading edge thanx̃(0)
1 = 0.05, for reasons explained earlier. Thus in figure

4.17 we plot the amplitude at̃x1 = 0.5 as a function of starting position, but normalized

by the value wheñx(0)
1 = 0.05

Ã(x̃
(0)
1 ) =

Â(x̃
(0)
1 , 0.5)

Â(0.05, 0.5)
.

The positionx̃1 = 0.5 is chosen as the point of comparison of the amplitudes because

it is far enough from the turning point inRe(G), that the change in growth rate is much

smoother (see figure 4.16(a)), thus not affecting any interpolation of the final point in the

growth rate, which may introduce a small error. Taking larger values ofx̃1 at which to

calculate the amplitude increases the computation time butdoes not affect the results. For

a PSE step size of∆x̃1 = 0.05, it is seen that for0.05 < x̃
(0)
1 < 0.1 there is a 26 % change

in amplitude. This reinforces the earlier conclusion that awell defined matching region

exists, at least for sufficiently smallε. It is also apparent that changing the step size makes

about a4% change in the amplitude. Comparisons over a wider range of step sizes is not

possible due to the appearence of initial transients which are discussed in the next section.
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1 for ε = 0.05. The downstream amplitude is normalized with respect to the
value given wheñx(0)

1 = 0.05.

In general, we define the disturbance amplitude to be the absolute value ofψ at the

point where the real part ofψ attains its maximum value, i.e whereRe(φ̄) = 1. We must

take great care when evaluating the disturbance amplitude downstream, because of the

exp

(∫ x

G(x)dx

)
,

term in (4.97), which when we change variables tox̃1 becomes

exp

(
U ′2

0

2ε2

∫ x̃1

G(x̃1)dx̃1

)
,

as seen above. Thus any errors in the evaluation of the integral due to the step size∆x̃1

are magnified for very smallε. Thus we use Bode’s rule for equally spaced mesh points,

which has an error term ofO((∆x̃1)
7). This is applied to all the amplitude calculations

above and in future sections.
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4.5.3 Initial transients

In the previous section we encountered the problem that the PSE does not converge when

the initial condition, taken via the leading edge receptivity result, is too far downstream.

However, there is also a minimum̃x1, for each value ofε, before which the PSE will

not converge. Figure 4.16 shows this minimum value for the casesε = 0.05 and 0.1.

For smallerε, we can start the PSE closer tox̃1 = 0, however we have to increase the

streamwise step size to achieve this. We believe this is related to the problem experi-

enced by Bertolottiet al. (1992), where they see initial transients when they ran their

PSE code for large frequencies (largeε). An example of these initial transients is shown

in figure 4.18. Figure 4.18 shows two PSE calculations forε = 0.175, one with a step
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Figure 4.18: Plot of (a) the real part and (b) the imaginary part of G as a function of
downstream distance forε = 0.175, showing the effects of transients from the initial
conditions for the step sizes∆x̃1 = 0.15 and 0.175

size of∆x̃1 = 0.15 which has these initial transients present, and one with a step size of

∆x̃1 = 0.175, without the transients. As the step size is made smaller andsmaller, we

find that these transients become larger and larger, until eventually they become so large

that the numerical scheme fails to converge. This step size restriction is not the same

as the step size restriction encountered in the primitive variable formulation (Andersson

et al., 1998), because our PSE is formulated in terms of the stream function,ψ, which has

a less severe step size problem than the primitive variable formulation. We believe that

the minimum starting point problem may be related to this initial transient problem. This
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is because as we move closer to the leading edge, we are forcedto increase the step size

to make the PSE converge, which could be conceived as increasing the step size to over-

come these transients. Although these transients have beennoted in previous studies, no

systematic study has been conducted. However some general observations can be made

about the appearance of such transients. In figure 4.19 we seea more detailed plot of the

transients on the real part ofG for the caseε = 0.15. We note that for the two largest

step sizes,∆x̃1 = 0.2 and0.1 there are no oscillations, and the difference between these

solutions is small. As we decrease the step size to∆x̃1 = 0.06, we see these transients

beginning to appear and as we decrease the step size further,the amplitude of these oscil-

lations increases, while the wavelength remains approximately constant,λx̃1 ≈ 0.39. One

possible explanation for the appearance of these transients is that since the initial con-

dition is only a numerical approximation to the first eigenmode, the initial waveform is

likely to contain small contributions from higher eigenmodes. Thus our initial condition
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Figure 4.19: Plot of the initial transients onRe(G) for ε = 0.15 for 4 different step sizes,
∆x̃1 = 0.05, 0.06, 0.1, 0.2, showing the occurrence of these transients as the step size
reduces.
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is in fact a sum of these eigenmodes of the form

ψIC =
∞∑

i=1

Aiψi,

where theAi’s are constants. For small values ofε, where we can start the PSE from

within the matching region and where the composite solutionof (2.70) and (2.87) is an

accurate representation of the first Lam-Rott eigenmode, theAi’s for i ≥ 2 should be

small. However if we have to take our initial condition outside the matching region, then

theAi’s for i ≥ 2 will be larger because of the inaccuracy of the composite solution.

Initially the higher eigenmodes decay more slowly than the first eigenmode and hence

these contributions may become significant if theAi’s are large enough.

We can investigate the significance of the higher eigenmodes, by considering Gold-

stein’s asymptotic form of the wavenumber, as given in§4.3.1, up toO(ε3 ln ε). We define

the functionΨ̂ as

Ψ̂ = ψ1 + ε̂ψ2,

whereψn given by

ψn = ε−(2τn+1)γn(x1, η)A(x1) exp

(
i

ε

∫ x

0

κn(x1, ε)dx

)
,

for n = 1, 2, is thenth T-S mode, and̂ε is a small constant. We then define

Ψ =
Ψ̂

ψ1

= 1 + ε̂
ψ2

ψ1

, (4.101)

which we evaluate at the value ofη where the value of|ψ1| reaches its maximum. The

results we expect to see, when we plotΨ as a function of̃x1, is a region close to the leading

edge whereΨ = 1, i.e. whereψ1 dominates the solution, then a region of oscillation,

whereψ2 dominates, and finally another region whereψ1 dominates again. This behaviour

is clearly seen in figure 4.20(a), which shows the real part ofΨ as a function of̃x1 for

ε = 0.05, and ε̂ = 1 × 10−41. The reason̂ε was chosen so small in this case, is just to

make the oscillations the same order of magnitude as those inthe numerical solution for

ε = 0.15 illustrated in figure 4.20(b). Hence forε = 0.05 the oscillations would be very

large, if we had a large component ofψ2 in our initial condition to the PSE. However,

as we are able to start the PSE right back into the matching region for this value ofε,
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Figure 4.20: Figure of the real part ofΨ as a function of̃x1 for (a) ε = 0.05 and ε̂ =
1 × 10−41 and (b)ε = 0.15 andε̂ = 0.1.

we find the constant multiplying the second eigenmode is small. Also for this value of

ε, the wavelength of this oscillation,λx̃1 is very small, and in factλx̃1 ≈ 0.025. If we

now consider the caseε = 0.15, in figure 4.20(b), which was the value for which we saw

the transients in figure 4.19, we see that the region close to the leading edge whereψ1

dominates has now disappeared. The reason thatRe(Ψ) does not go to1 as x̃1 −→ 0,

is due to the neglectedO(ε3) term being important in the asymptotics. Despite this, we

still obtain the region whereψ1 dominates downstream, but the region over whichψ2

dominates is now larger. We note that for this value ofε, we chosêε = 0.1, and we can

see that the magnitude of the oscillations appears to be smaller than for theε = 0.05 case.

The wavelength of the oscillations is also larger for this case,λx̃1 ≈ 0.36, however we

note that this wavelength is of a similar size to the one seen in figure 4.19. The reason

we don’t notice these transients for theε = 0.05 case, as we do for theε = 0.15 case, is

possibly due to the wavelength of the oscillations seen in figure 4.20. The wavelength for

ε = 0.05 is very small, and generally we use a step size of about twice this wavelength.

However forε = 0.15, a step size of∆x̃1 = 0.05 is smaller than the wavelength of the

second eigenmode oscillations, and hence the PSE will pick up this behaviour. We saw no

transients for∆x̃1 = 0.1, and this step size is just larger than a quarter of the wavelength

of the oscillations.

While this is not conclusive evidence of the origin of transients in PSE solutions, it
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seems to suggest a connection between these transients and the higher eigenmodes. How-

ever further investigation is needed to find a step size limitin terms of this wavelength.

We believe it is a combination of these transients, which arerelated to the streamwise

step size, as well as the difficulty finding the eigenvalue which leads to the failure of PSE

convergence starting the calculation too close to the leading edge. The magnitude of the

initial transient oscillations become increasingly largefor smallerε or smallerx̃(0)
1 , and in

most cases become so large so quickly, that the PSE code failsto converge.

The comparisons described in the above sections show that the PSE scheme proposed

gives consistent results, independent of initial positionand step size. We now compare

these numerical results with the Orr-Sommerfeld asymptotic results defined earlier in this

section.

4.5.4 Comparison of PSE and asymptotics in the Orr-Sommerfeld

region

Having established that the leading edge receptivity analysis is a suitable upstream bound-

ary condition for the PSE, we compare the PSE results with Goldstein’s established as-

ymptotic results in the Orr-Sommerfeld region. In the following results, the upstream

boundary condition was given by the leading edge asymptoticanalysis.
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Figure 4.21: Comparison of (a) the real parts and (b) the imaginary parts ofG, calculated
using the asymptotics and PSE, as a function of downstream distance, forε = 0.1.

Figures 4.21 and 4.22 show a comparison of the PSE and asymptotic forms ofG, for
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Figure 4.22: Comparison of (a) the real parts and (b) the imaginary parts ofG, calculated
using the asymptotics and PSE, as a function of downstream distance, forε = 0.05. For
this value ofε, the two solutions are almost indistinguishable from one another.
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Figure 4.23: Comparison of (a) the real parts and (b) the imaginary parts ofG, calcu-
lated using the asymptotics and PSE, as a function of downstream distance, forε = 0.1,
including the asymptotics upO(ε3), denoted by the dotted line.

ε = 0.1 andε = 0.05, where the asymptotics are given up to and includingO(ε3 ln ε)

terms. For theε = 0.1 case in figure 4.21, we see that there is a small difference between

the real part of the two solutions near to the turning point, but as we discussed in the

previous section, this is due to theO(ε3) term being significant here. If we add this extra

term onto the asymptotics, figure 4.23, then we see we have a much better agreement up to

x̃1 = 3.0, but due to the likely non-uniformity of the asymptotics, wehave poor agreement

downstream of this point. Other than that, the real parts agree very well over the range of
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values shown in figure 4.21. The imaginary parts show more of adifference between the

solutions, and this difference increases as we move downstream. This slight difference

isn’t too significant, as this gives just a slight shift in thephase of the eigenmode, rather

than any difference to the amplitude. If we now compare the growth rates forε = 0.05 in

figure 4.22, we see that in this case both solutions are almostindistinguishable for both

the real and imaginary parts. This definitely shows that our PSE method is working and

is a very effective way to calculate the growth rate on a body.
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Figure 4.24: Plot of (a) the real parts and (b) the imaginary parts of the mode shape at
x̃1 = 2.0 with ε = 0.1.
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Figure 4.25: Plot of (a) the real parts and (b) the imaginary parts of the mode shape at
x̃1 = 4.0 with ε = 0.1.
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Figure 4.26: Plot of (a) the real parts and (b) the imaginary parts of the mode shape at
x̃1 = 6.0 with ε = 0.1.
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Figure 4.27: Plot of (a) the real parts and (b) the imaginary parts of the mode shape at
x̃1 = 8.0 with ε = 0.1.
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Figure 4.28: Plot of (a) the real parts and (b) the imaginary parts of the mode shape at
x̃1 = 10.0 with ε = 0.1.
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Figure 4.29: An evolution plot of (a) the real parts and (b) the imaginary parts of the mode
shape at̃x1 = 2.0, 4.0, 6.0, 8.0, 10.0.

The good agreement between the PSE and the asymptotics can also be seen in figures

4.24, 4.25, 4.26, 4.27 and 4.28, which show a comparison of the PSE and asymptotic

mode shapes at5 downstream positions forε = 0.1. In each case there is almost no

visible difference between the two solutions, further reinforcing the validity of our PSE

method.

Figure 4.29 shows an evolution plot of the mode shapes forε = 0.1, calculated using

the PSE. Figure 4.29(a) shows that the real parts are all of a similar shape, but the max-

imum point moves slowly towards the wall as we move downstream. Also as we move

downstream, the real parts decay to zero faster asη −→ ∞, so the main part of the mode

shape becomes more concentrated closer to the wall. The imaginary part on the other

hand, figure 4.29(b), shows that as the disturbance moves through the neutral stability

point, x̃1 = 3.946, the mode shape becomes purely real, and downstream of this point,

we find that the imaginary part has the opposite sign to that which it had upstream of the

neutral stability point, with the imaginary part slowly becoming more concentrated at the

wall.

The above figures show good visible agreement between the asymptotic and numerical

values ofG, and the mode shape, but we also compare some numerical properties of the

solutions to see if the two methods agree. Table 4.2 shows theneutral stability point,

whereIm(G) = 0, as a function ofε for both methods, with the asymptotics up to and
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including theO(ε3 ln ε) terms. The values in this table are also plotted in figure 4.30.

ε Asymptotic NS point̃x1 PSE NS point̃x1

0.035 3.282 3.278
0.05 3.402 3.405
0.075 3.643 3.647
0.1 3.928 3.946
0.125 4.267 4.328
0.15 4.689 4.818
0.175 5.187 5.456
0.2 5.774 6.359

Table 4.2: Neutral stability points for the PSE and asymptotics.
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Figure 4.30: Plot of the position of the neutral stability point as a function ofε comparing
the PSE and the asymptotics.

The results in table 4.2 are as expected, in that the difference between the two methods

increases asε increases. However, it also helps to confirm the importance of theO(ε3)

term in the asymptotics, although adding this term into the asymptotic expansion does not
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improve the results for largeε, due to the apparent non-uniformity seen in figure 4.11.

We note that for the case ofε = 0.05, for example, the error between the numerics and

asymptotics is0.007 ≈ 50ε. This sizable difference shows that the higher order terms of

the asymptotic expansion appear to be very significant.

The main reason for developing this PSE theory, is so that we can use it to calculate

the amplitude of the eigenmodes at different positions along the body. The amplitude

of the 1st T-S mode,ψ1(x, η), given at a pointx, and at theη value where|ψ1| is at its

maximum, is

|ψ1| =

∣∣∣∣C1ψLR(xLE) exp

(∫ x

xLE

G(s) ds

)∣∣∣∣ , (4.102)

whereψLR(xLE) is the amplitude of the Lam-Rott eigenmode evaluated at the point xLE

and at the position where|ψLR| is at its maximum. Also,C1 = −0.45 + 0.855i is the

receptivity coefficient for acoustic wave propagating parallel to the mean flow (Goldstein

et al., 1983), andxLE is a streamwise position in the matching region where the Lam-Rott

eigenmodes are valid. However at the moment, we are only interested in comparing the

relative accuracies of the PSE and the asymptotics, so rather than having the lower limit

of integration asxLE, which is not possible for largeε, we start our analysis at some given

point along the body. We also ignoreC1, as it’s the same for both methods. For this

analysis we chose our starting point to bex̃1 = 1.0, and our end point to be the lower

branch neutral stability point. Although this point is different for the PSE and asymptotic

methods, it still gives a very good comparison between the two methods. Hence in our

case we define
∣∣ψ̌
∣∣ =

∣∣∣∣exp

(
U ′2

0

2ε2

∫ x̃1NS

1.0

G(s)ds

)∣∣∣∣ , (4.103)

as the amplitude we compare, where theU ′2
0 /(2ε

2) term comes from changing variables

from x to x̃1 = 2ε2x/U ′2
0 .

Table 4.3 shows a comparison between the asymptotic and numerical values of (4.103),

and because the amplitudes at each value ofε are of the same order of magnitude the re-

sults appear to be satisfactory. We can compare the accuracyof the numerical method

better, if we consider table 4.4, which isε2 ln(ψ̌) of the values in table 4.3. This then

gives a comparison of the values of the integrals in the exponentials, which is a much bet-
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ε |ψ̌ASY| |ψ̌PSE|
0.035 4.783 × 10−126 4.872 × 10−126

0.05 1.275 × 10−46 8.616 × 10−47

0.075 6.771 × 10−16 3.618 × 10−16

0.1 7.191 × 10−8 3.556 × 10−8

0.125 8.130 × 10−5 3.801 × 10−5

0.15 2.207 × 10−3 9.564 × 10−4

0.175 1.297 × 10−2 5.105 × 10−3

0.2 3.663 × 10−2 1.314 × 10−2

Table 4.3: Table of|ψ̌| at the neutral stability point, for the PSE and the asymptotics.

ter comparison, as any errors in the integral is magnified by theε−2 term in the exponential

in table 4.3, as discussed earlier.

ε ε2 ln(ψ̌ASY) ε2 ln(ψ̌PSE)
0.035 −0.353 + 3.840i −0.353 + 3.832i
0.05 −0.264 + 2.882i −0.265 + 2.880i
0.075 −0.196 + 2.181i −0.200 + 2.175i
0.1 −0.164 + 1.872i −0.172 + 1.866i
0.125 −0.147 + 1.729i −0.159 + 1.699i
0.15 −0.138 + 1.686i −0.156 + 1.696i
0.175 −0.133 + 1.703i −0.162 + 1.734i
0.2 −0.132 + 1.767i −0.173 + 1.865i

Table 4.4: Table ofε2 ln(ψ̌) at the neutral stability point for the PSE and the asymptotics.

Table 4.4 shows excellent agreement between the amplitudesasε −→ 0, and we can

see this in figure 4.31, which shows the real part ofε2 ln(ψ̌). The difference between the

imaginary parts is almost constant asε varies, so we don’t get their values tending to the

same value quite as rapidly as we do for the real part asε −→ 0. This is possibly due to

the missingO(ε3) term in the asymptotics, which is very significant for theIm(G).

This section has proved that for sufficiently smallε, the numerical PSE results agree

very well with Goldstein’s asymptotics, and for larger values ofε, the PSE appears to be a

suitable way to calculate the growth rate. Thus, now we are satisfied that our PSE method

is valid, we can use it to calculate T-S wave amplitudes to compare with experimental

studies, and full numerical simulations.
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Figure 4.31: Plot of the real part ofε2 ln(ψ̌) as a function ofε comparing the PSE and the
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4.6 Experimental comparisons

We have now established that the PSE is a good method for calculating the solution to

the stability problem in the Orr-Sommerfeld region, we therefore now use this method

to calculate the amplitude of the eigenmode as a function of downstream position via

(4.102):

|ψ1| =

∣∣∣∣C1ψLR(xLE) exp

(∫ x

xLE

G(s)ds

)∣∣∣∣ ,

whereC1 is the receptivity coefficient. To calculate this amplitudewe need to be able

to integrate over the growth rate from some point in the receptivity region which we

believe to be in the matching region,xLE, and where the amplitude is known from (4.28),

downstream to the point at which the amplitude is to be calculated. This is straightforward

for small values ofε, as we can take the PSE right back to this matching region. However,

for largerε, we have to ‘patch’ this region using a curve fitting technique.
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4.6.1 Patching

For moderately small values ofε, the need to patch the solutions valid in different down-

stream regions can be seen in figure 4.16(b), whereε = 0.1. The PSE result has to be

taken fromx̃1 ≈ 0.5, and matched with the leading edge asymptotics atx̃1 ≈ 0.09, as

this appears to be a point in the matching region forε = 0.1. The difficulty in patching

this region is that the real part ofG has a turning point between these two points. De-

termining exactly where this turning point lies, and the minimum value ofRe(G) are not

straightforward. We can overcome this problem slightly by using the solution to the local

PSE problem from a point at which the PSE result has settled onto a solution, backwards

towards the leading edge. By doing this we decrease the size ofthe patch needed, and

hence hope to increase the accuracy of the result.
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Figure 4.32: Plot of the real part ofG as a function of̃x1 showing the local PSE patching
(dotted line) over the gap between the PSE (solid line) and leading edge solutions (dashed
line) for ε = 0.1.

Figure 4.32 shows that the PSE and local PSE lie over one another from about̃x1 =
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0.45, and the local PSE patches back to approximatelyx̃1 = 0.3, for the caseε = 0.1.

Hence we now only have to patch from aboutx̃1 = 0.3 back to the leading edge. For the

caseε = 0.1, the local PSE brings the PSE solution just back far enough sothat we have

an idea where the turning point is, and how large it is, see figure 4.32. For larger values of

ε we are not so lucky, and some element of guess work is required. We patch the growth

rate,G, in the rangẽxα < x̃1 < x̃β, wherex̃α is a point in the receptivity region that we

believe to be in the matching region, andx̃β is the closest point to the leading edge that

we could calculate the result in the Orr-Sommerfeld region.We require that

G(x̃1) ≈





f1(x̃1) x̃1 < x̃α

f2(x̃1) x̃1 > x̃β

,

or better still we require equality, where the functionf1 is the asymptotic receptivity result

andf2 is the PSE/local PSE result.

There are various patching methods available, and we only consider two of them here.

Patching method 1

The first method introduces the function defined onx̃α < x̃1 < x̃β as,

G1(x̃1) = λ1(x̃1)f̃1(x̃1) + λ2(x̃1)f̃2(x̃1),

where

λ1 =
1

2
(1 − tanh θ) and λ2 =

1

2
(1 + tanh θ),

and

θ =
5
(
x̃1 − 1

2
(x̃α + x̃β)

)

x̃β − x̃α

.

The functionf̃1 is taken to be the straight line extension off1 from x̃α to x̃β, andf̃2 is

taken to be the straight line extension off2 from x̃β to x̃α.
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Patching method 2

For the second patching method, we defineG2 to be

G2(x̃1) =





f1(x̃1) x̃1 < x̃α

Ax̃3
1 +Bx̃2

1 + Cx̃1 +D x̃α < x̃1 < x̃β

f2(x̃1) x̃1 > x̃β

,

whereA, B, C andD are constants found by ensuring thatG(x̃1) is continuous and has

continuous slope at̃xα andx̃β. Hence we require

G2(x̃α) = f1(x̃α),

G′
2(x̃α) = f ′

1(x̃α),

G2(x̃β) = f2(x̃β),

G′
2(x̃β) = f ′

2(x̃β),

where the dash denotes differentiation with respect tox̃1.

The results of patching the growth rates,Re(G1) andRe(G2), can be seen for two

values ofε in figure 4.33. For the caseε = 0.075, only a small amount of patching was

required around̃x1 = 0.1 and both methods gave similar results. However whenε = 0.2,

we had to patch a much larger region between0.25 < x̃1 < 1.0, which leads to the growth

rate curve ofG1 possibly dropping more rapidly between0.5 < x̃1 < 1.0 than expected

when we compare its shape to theε = 0.075 curve. However theG2 curve appears to

give a shape similar to theε = 0.075 curve, and this curve also has the correct values at

x̃α and x̃β, rather than approximations using the first patching method. It is because of

these reasons that we choose to use the second patching technique for the remainder of

this work.

Figure 4.34 shows the imaginary part of the growth rate corresponding to the real part

in figure 4.33. We notice that theG1 curve forε = 0.2 doesn’t have quite as smooth an

arc as theG2 curve has, and in fact theG1 curve has a slight rise in value atx̃1 ≈ 0.55.

This rise is completely due to the choice of patching method.However, this is not too

significant in our work, because when we integrateG, the imaginary part just gives us
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Figure 4.33: Plot of growth rates,Re(G1) andRe(G2), for ε = 0.075 which requires very
minimal patching, andε = 0.2 which requires much more patching. The lower of the two
curves for theε = 0.2 case corresponds toRe(G1).

the phase of the eigenmode at that point. Hence this slight rise will only cause a slight

change of phase rather than any change of amplitude. We foundthat with the first patching

method, this rise inIm(G1) increase slightly asε increases.

Based on the results shown in figures 4.33 and 4.34, we chose to use the second

patching method. Table 4.5 shows the values ofx̃α that we thought were appropriate,

along with the values of̃xβ which are the closest positions to the leading edge that the

local PSE could be solved. Note that both values increase asε increases.

Now that we can successfully patch the solution data to give acontinuous complex

growth rate,G, we can now consider amplitudes of the eigenmodes at variousplaces

downstream.
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Figure 4.34: Plot of the imaginary parts of the growth rates,Im(G1) andIm(G2), for
ε = 0.075 which requires very minimal patching, andε = 0.2 which requires much more
patching. The lower of the two curves for theε = 0.2 case corresponds toIm(G2).

ε x̃α x̃β

0.035 0.05 0.05
0.05 0.05 0.05
0.075 0.05 0.10
0.1 0.09 0.14
0.125 0.15 0.30
0.15 0.22 0.40
0.175 0.25 0.50
0.2 0.25 0.90
0.225 0.25 1.00

Table 4.5: Table of values of̃xα andx̃β that we found appropriate for the present work.

4.6.2 Eigenmode amplitudes at lower branch

The position commonly used in numerical and experimental work to calculate T-S wave

amplitudes is at the branch I (lower branch) neutral stability point. Thus to calculate these
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values, we use the asymptotic form of the leading edge solution as our initial condition

to the PSE, calculate the form of the growth rateG(x), patch it where necessary and

integrate it to the lower branch point. If we assume the free-stream disturbance to be an

acoustic wave propagating parallel to the mean flow, then thereceptivity coefficientC1 is

then given by Goldsteinet al. (1983) as|C1| = 0.9662, and hence the amplitude ofψ1 at

lower branch is given by

|ψI
1| =

∣∣∣∣C1ψLR(xLE) exp

(∫ xNS

xLE

G(x)dx

)∣∣∣∣ ,

wherexLE is a position in the matching region andxNS is the position of the neutral

stability point. The values of|ψI
1| are displayed in table 4.6 for the two patching methods.

ε |ψI
1| |ψI

1| % difference
Patching 1 Patching 2

0.05 1.068×10−121 1.068×10−121 0
0.075 1.769×10−39 1.915×10−39 7.62
0.1 1.488×10−18 1.670×10−18 10.90
0.125 7.154×10−11 7.887×10−11 9.29
0.15 2.471×10−7 2.605×10−7 5.14
0.175 1.143×10−5 1.486×10−5 23.08
0.2 1.502×10−4 1.922×10−4 21.85
0.225 7.493×10−4 9.324×10−4 19.63

Table 4.6: Table of T-S wave amplitudes at the lower branch neutral stability point, using
both patching methods. The two methods are compared using the % difference between
them,100 ×

∣∣|ψI
1|2 − |ψI

1|1
∣∣ /|ψI

1|2.

Table 4.6 shows a rapid increase in the size of the T-S wave at lower branch as we

move fromε = 0.05 through toε = 0.15, but we see a much slower increase after

ε = 0.15. This slowdown in growth can be seen much more clearly in figure 4.35, which

shows a plot of|ψI
1|, using the second patching method, from table 4.6, as a function of ε,

plotted on a log scale. We only plot the amplitudes fromε = 0.075, in order to emphasise

the slowing down of the amplitude growth asε gets larger. Results for very smallε are

asymptotically valid due to the well-defined matching region, but are perhaps of limited

physical relevance, while results for larger values ofε involve numerical patching but do

allow comparison with experimental and numerical results such as Haddad and Corke
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Figure 4.35: Plot of|ψI
1| at the lower branch neutral stability point as a function ofε for

the second patching method.

(1998) and Wanderley and Corke (2001).

Haddad and Corke (1998) consider a parabola at zero angle of incidence to a uniform

flow with a small amplitude acoustic disturbance propagating parallel to the mean flow.

The steady flow around the body is solved numerically and the unsteady disturbance ob-

tained by solving as a linear perturbation. Downstream, theunsteady disturbance consists

of a Stokes-wave determined by the local forcing at that location, together with a sum of

Tollmien-Schlichting waves. Upstream of the first neutral stability point, the T-S waves

are small compared with the Stokes wave. The asymptotic formof the Stokes wave far

downstream at leading order is given by

ψST (x, η) = (2x)
1

2

(
η − 1 + i

2

1

x
1

2

+
iβ

2

1

x
+

13U ′

0

32

1

x2
− 39iU ′

0

64

1

x3
− 4051(1 − i)U ′2

0

2048

1

x
7

2

)
+O(Re−1).

But rather than use this form, Haddad and Corke obtain a numerical approximation to the

Stokes solution by solving the unsteady equation with convective-inertia terms dropped. If

we calculate the leading order term of the largex asymptotic solution using the equations
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used by Haddad and Corke, we find that

ψST = (2x)
1
2η +O(Re−1).

Therefore Haddad and Corke’s Stokes solution is the same as (2.66) except without the

O(1) correction terms. Having obtained an expression for the Stokes solution, this is sub-

tracted from the unsteady solution in order to provide an approximation to the magnitude

of the T-S waves, after a filtering process in which any waves of wavelength greater than

2λTS are removed, whereλTS is the wavelength of the unstable T-S wave. As well as

removing the higher T-S modes, this filtering process shouldalso remove any remaining

contribution from the Stokes solution. Haddad and Corke checked their method against

the asymptotics of Ackerberg and Phillips (1972) for a flat plate by considering the limit

as the nose radius goes to zero. We illustrate the results from our numerical scheme by

comparing them to the numerical results of Haddad and Corke, in the limit as the nose

radius goes to zero.

Figure 4.36 shows a plot of the streamwise velocity,uTS, atη = 0.033 as a function of

Rx = U∞x
∗/ν, wherex∗ is a dimensional distance from the leading edge. The streamwise

velocity,uTS is defined asuTS = ∂ψTS/∂y, where

ψTS = ψ1 = C1φ(x, η) exp

(∫ x

G(x′)dx′
)
,

therefore

uTS =
∂ψTS

∂y
= C1

1

(2x)
1
2

∂φ

∂η
exp

(∫ x

G(x′)dx′
)
,

after the filtering process. The results of the present work (solid line) agree well with the

results of Haddad and Corke (dotted line) (cf figure 13(b) fromHaddad and Corke (1998),

after the data has been filtered), downstream of the lower branch point and in particular

around the upper branch of the neutral stability curve. The discrepancy between the two

sets of results around the lower branch point could be due to two factors. Firstly, the value

of ε = 0.248 is relatively large and hence we are considering points close to the turning

point of the neutral stability curve, where all numerical methods are very sensitive (see

Schmid and Henningson (2001), figure 7.30). Secondly, any numerical errors associated

with the subtraction of the Stokes wave and the filtering of higher modes in Haddad and
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Figure 4.36: Plot of the T-S wave velocity,uTS, as a function ofRx = U∞x
∗/ν at the level

η = 0.033, for both Haddad and Corke’s method, and our PSE method, forε = 0.248.

Corke (1998) are likely to be most significant at this point since the unstable T-S wave

has its lowest amplitude there. This comparison strongly suggests that our receptivity/PSE

method is valid.

4.6.3 Leading edge receptivity coefficient

As well as producing amplitude results at lower branch to compare with experimen-

tal measurements, the numerical methods of Corke and co-workers were used to com-

pare with leading edge receptivity results. Wanderley and Corke (2001) define a gen-

eral form of the receptivity coefficient as the ratio of the maximum T-S wave ampli-

tude at anx-location to the amplitude of the free-stream disturbance,and denote it by

Kx = |(uTS)|/|(u∞)|, whereuTS is the streamwise velocity andu∞ is the free-stream

disturbance. This definition of the receptivity coefficientdepends on downstream distance

and has a very different meaning from the receptivity coefficient defined in the asymptotic
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analysis.

Wanderley and Corke (2001) consider flow over a Modified Super Ellipse (MSE) at a

zero angle of incidence to the free-stream. A MSE is half an ellipse stuck onto a flat plate

with the discontinuity in curvature at the join removed. This body is of great importance

to experimentalists, and we discuss its properties in more detail in chapter 6. Wanderley

and Corke solve the flow around a MSE in an identical fashion to Haddad and Corke. The

steady flow is solved numerically and the unsteady disturbance is obtained by solving a

linear perturbation problem.

Wanderley and Corke calculate the value ofKLE, which isKx evaluated at the leading

edge, by considering results close to the neutral stabilitypoint. Corke and co-workers

assumed that the1st T-S wave dominates the solution at this point, and they extrapolate

the amplitude of this wave back to the leading edge in order tocompare their numerical

results with the receptivity results of Goldstein (1983) and Hammerton and Kerschen

(1996). For the MSE, Wanderley and Corke considered the disturbance amplitude in

a region just upstream of the lower branch neutral stabilitypoint believing that in this

region the first T-S mode dominates. We are able to investigate this assumption for a flat

plate in figure 4.37, which shows the log of the amplitudes (ln(ψ1) =
∫
Re(G)dx) of the

first 5 eigenfunctions calculated using Goldstein’s asymptotic method as a function of the

streamwise variable,Rx. The value ofF = νω/U2
∞ = 54 × 10−6 used in Wanderley and

Corke (2001) corresponds toε6 = 54 × 10−6, and henceε = 0.194. For this value of

ε the neutral stability point occurs atRx ≈ 3.1 × 105, whereRx = U∞x
∗/ν andx∗ is

the dimensional distance from the leading edge. In the region 2 × 105 < Rx < 3 × 105

considered by Wanderley and Corke it does not appear that the1st T-S mode dominates

the 3rd, 4th and5th T-S modes, although it does dominate the2nd. However, Goldstein

et al. (1983) showed that for a flat plate the receptivity coefficients multiplying the3rd,

4th and5th T-S modes, are at least 5 times smaller than the coefficient multiplying 1st T-S

mode. Hence if similar results hold for the rounded leading edge geometry considered,

then the assumption that the first T-S mode dominates all other T-S modes may indeed be

valid.
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Figure 4.37: Plot of the log of the amplitudes (
∫
Re(G)dx) of the first 5 T-S modes

(numbered) as a function ofRx, with ε = 0.194. The neutral stability point occurs at
Rx ≈ 35 × 10−4.

Wanderley and Corke (2001) then assume that this T-S mode has constant decay rate

at all locations back to the leading edge and thus they obtainan amplitude for the unsteady

disturbance at the leading edge, though the physical interpretation of such a quantity is

unclear. This extrapolation is marked as the dotted line in figure 4.38 (cf figure 10 of

Wanderley and Corke (2001)) forε = 0.194. However this analysis does have some

possible flaws. The most important of these is the assumptionof constant decay rate

between the leading edge and the lower branch neutral stability point. If the extrapolation

was performed on results closer to the neutral stability point the measured decay rate

would be much less and the value ofKx extrapolated to the leading edge would be much

smaller. In figure 4.38 the results from this thesis for a flat plate are compared with

the numerical results, on a MSE, of Wanderley and Corke (2001). This shows that the

assumption of constant growth rate is not valid in this case.It is possible that the points

calculated by Wanderley and Corke in figure 4.38 could be solely that of the1st T-S mode,

however a better comparison between leading edge receptivity analysis and the numerical

analysis of Wanderley and Corke would be possible if T-S amplitudes slightly downstream
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Figure 4.38: Plot of figure 10 from Wanderley and Corke (2001) for a 20:1 MSE with the
results from PSE calculations forε = 0.194.

of the lower branch neutral stability point were available,since then there would be no

question that the unstable T-S mode dominated the solution as seen in figure 4.36. Also

when we compare the value ofKx, evaluated at the lower branch point, for a MSE from

Wanderley and Corke with the corresponding value for a flat plate calculated using the

PSE, we find that these values differ by three orders of magnitude. Hence, leading edge

curvature is very important in calculating T-S wave amplitudes. Using results from PSE

calculations for the particular geometry would then allow the extrapolation of the T-S

amplitude to positions closer to the leading edge. This would then allow comparison with

the receptivity coefficients used in asymptotic investigations which have more physical

relevance in this leading edge region than theKLE calculated by Wanderley and Corke.
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4.7 Summary

In this chapter we consided the Orr-Sommerfeld region asymptotics, derived for a flat

plate by Goldstein (1983), and numerical results in this region via the PSE. We found

that theO(ε3) term of the asymptotics given in Goldstein (1982) is very complicated and,

due to terms which contain integrals of Airy functions, appears to be non-uniform as we

move downstream. However this term is important near the leading edge as shown by

comparing the asymptotic and the numerical growth rates. Thus the conclusion is that the

O(ε3) term is very important for the accurate calculation of T-S wave amplitudes. How-

ever because of the complexity of its derivation, and the apparent non-uniform behaviour,

it is not feasible to extend this method to general bodies.

The asymptotics and the local PSE calculations proved the existence of a matching

region between the leading edge region and the Orr-Sommerfeld region, for sufficiently

small ε. This result was confirmed by the PSE, when a region was found for ε = 0.05

where the amplitude at a point downstream was almost independent of the starting posi-

tion of the PSE within that region. The PSE results also proved to be in excellent agree-

ment with Goldstein’s asymptotics, up toO(ε3 ln ε), away from the leading edge region,

in the limit asε −→ 0. As ε gets larger, the asymptotics become more dependent on the

missingO(ε3) term, but the PSE appear to be a good alternative to the asymptotics.

PSE calculations for largerε suffer from numerical problems in the form of initial

transients, which come from a poor guess for the first Lam-Rotteigenmode for the initial

upstream boundary condition. Although no definite mechanism was found to be respon-

sible for these transients, it was shown that higher T-S waveeigenmodes are the likely

cause. These modes enter the problem through the initial condition, and propagate with

the T-S wave via the PSE, and these higher modes have a region where they dominate over

the primary T-S wave. Hence the growth rate will contain contributions to these waves in

the form of transients.

A patching method was developed in order to calculate successfully T-S wave ampli-

tudes in the Orr-Sommerfeld region for values ofε for which a matching region appears

not to exist. In these cases we were not able to start our PSE calculation right back at the
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leading edge receptivity result, because of the non-convergence of the PSE. We decided

on a patching method based on a cubic curve fitting technique,however an extensive study

of this, and the convergence of the PSE are left as areas of future study.

The results for the semi-infinite flat plate were in good agreement with those of Had-

dad and Corke (1998) in the limit as the nose radius of the parabola goes to zero. At this

stage we weren’t able to make comparisons with more realistic geometries, because it

appears, from numerical studies, that the introduction of anon-zero nose radius can make

lower branch amplitude values increase by as much as three orders of magnitude. Thus

we next consider the effect of non-zero mean pressure gradients and a rounded leading

edge.

The next chapter extends the PSE method to the case of a parabola, to examine how a

favourable pressure gradient affects the propagation of the T-S wave.
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Chapter 5

A parabolic body

In chapter 4, we were able to validate our numerical stability method on a semi-infinite

flat plate, where asymptotics were available in the Orr-Sommerfeld region, with which

to compare our results. However we are interested in performing stability calculations

on more realistic bodies which have a non-zero nose radius. In this chapter we look

at a parabolic body, which was considered by Hammerton and Kerschen (1996). We

will show how the favourable pressure gradient on the body pushes the neutral stability

point downstream compared to the flat plate value, and show that as the leading edge

curvature increases, the value of the T-S wave amplitude evaluated at the lower branch

neutral stability point reduces. In chapter 4, we considered only acoustic incident waves

parallel to the flat plate, but in this chapter, we consider how the receptivity coefficient,

and hence the disturbance amplitude, varies as a function ofthe incident wave angle.

This is important for experimentalists, because it allows comparisons with wind tunnel

experiments, where reflected sound waves from the walls are incident to the airfoil.

5.1 The governing equations

Hammerton and Kerschen (1996) considered flow past a parabola at zero angle-of-attack

to the mean flow. A schematic illustration of the boundary-layer structure can be seen in

figure 5.1.
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Figure 5.1: A schematic illustration of the boundary-layerstructure for a body with a
parabolic leading edge at zero angle of attack. The three decks in the Orr-Sommerfeld
region are 1- the viscous wall layer; 2- the main inviscid layer; 3- the outer irrotational
layer. Againε6 = Re−1.

The non-dimensional quantityS is called the Strouhal number and is defined as

S =
ωrn

U∞
, (5.1)

wherern is the dimensional nose radius of the airfoil. The Strouhal number is the non-

dimensional form of the nose-radius. The inviscid flow around the airfoil can be calcu-

lated using slender wing theory, and around the nose by localcomplex potential methods.

Hammerton and Kerschen (1996) formulated their work in terms of parabolic coordinates

(ξH , ηH), whereξH is the coordinate along the body, andηH is the coordinate normal to

the body, and the subscriptH distinguishes between their variables and ours. In terms of

the streamwise variable,ξH , it can be shown that the slip velocity,Uf , at the outer edge

of the boundary-layer due to the free-stream is

Uf (ξH) =
ξH

(ξ2
H + S)

1
2

. (5.2)
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The derivation of equation (5.2) will be given in§5.3.

In order to obtain the corresponding form ofUf (ξ) to use in the governing equations

defined in chapter 2, we need to find the relationshipξ = ξ(ξH). From equation (2.33) we

know ξ = ξ(x) wherex is the distance measured along the body from the leading edge,

hence we can find the relationshipξ = ξ(ξH) by

ξ =

∫ x

0

Uf (x
′)dx′ =

∫ ξH

0

Uf (ξ
′
H)

dx

dξH
(ξ′H)dξ′H , (5.3)

where

dx

dξH
=

((
dxH

dξH

)2

+

(
dyH

dξH

)2
) 1

2

, (5.4)

is evaluated on the surface of the parabola (N = ηH = 0). The coordinates(xH , yH) are

Cartesian coordinates related to the parabolic coordinatesby

xH + iyH =
1

2

((
ξH + iε3ηH + iS

1
2

)2

+ S

)
, (5.5)

andηH is measured normal to the body withηH = 0 corresponding to the parabola’s

surface. So far we have usedN andηH interchangeably, but we shall see later that there

is no problem doing this, as they are the same to leading order. Thus the relation between

the ξH variable used by Hammerton and Kerschen (1996) and the one,ξ, in the present

study isξ = ξ2
H/2. Using this transformation, the slip velocity due to the free-stream, the

mean pressure gradient,β(ξ), and the functionΩ(ξ) are given by

Uf (ξ) =
(2ξ)

1
2

(2ξ + S)
1
2

, β(ξ) =
S

2ξ + S
, and Ω(ξ) = 2ξ + S. (5.6)

Similarly it is found that to leading orderN = ηH , as

dȳ

dηH

=

((
dxH

dηH

)2

+

(
dyH

dηH

)2
) 1

2

= ε3(ξ2
H + S)

1
2 +O(ε6ηH),

whereȳ is the non-dimensional normal coordinate of the Navier-Stokes equation intro-

duced in (2.6) and

N = g(ξ)y =
ε−3ȳ

(ξ2
H + S)

1
2

= ηH +O
(
ε3η2

H

)
where ε6 = Re−1 � 1.

Under this change of variables, it has been shown by Nichols (2001) that both the steady

equation (2.32) and the LUBLE (2.37) are identical to those found by Hammerton and

Kerschen (1996).
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If we consider the form of the inviscid slip velocity asξ −→ ∞, we find

Uf (ξ) ∼ 1 − S

4ξ
+

3S2

32ξ2
+O

(
ξ−3
)
. (5.7)

Thus when we compare this with (2.41), we see thatα = −S/4. We can now use this to

determine the largeξ asymptotic form of the solution in the leading edge region, and also

obtain the governing equation in the Orr-Sommerfeld region.

5.1.1 Leading edge asymptotic solution

In the leading edge region, (2.59) gives the asymptotic formof the steady solution for

flow past a parabola as

φ1(ξ,N) ∼ f(N) + 0.300575
S

ξ
ln(ξ) + (D (Nf ′ − f) + E(N))

1

ξ
+O(ξ−1.887), (5.8)

where the constantD can be calculated by comparison with the numerical solution(Nichols,

2001), and is found to beD ≈ 0.0263 for the caseS = 0.01. We can remove the depen-

dency on the valueS from the steady flow equation (2.34), and hence the above equation,

by introducing the new variablêξ = 2ξ/S. With respect tôξ, the asymptotic form of the

steady solution becomes

φ1(ξ̂, N) ∼ f + 0.60115(Nf ′ − f)
ln(ξ̂)

ξ̂
+
B1(Nf

′ − f) + Ê

ξ̂
+O(ξ̂−1.887), (5.9)

where

B1 =
2D

S
+ 0.60115 ln

(
S

2

)
, and Ê(N) =

2E(N)

S
. (5.10)

Nichols (2001) calculates the value ofB1 ≈ 2.075, which agrees with the approximate

valueB1 ≈ 2.08 given by Hammerton and Kerschen (1996). The convenience of this

formulation is now apparent, because the constantD can now be calculated for different

values ofS, without the need for the numerical solution of the steady flow equation (2.34)

to be calculated each time.

In the new variable,̂ξ, both the steady slip velocity,Uf , and the mean pressure gradi-

ent,β, become

Uf (ξ̂) =
ξ̂

1
2

(1 + ξ̂)
1
2

and β(ξ̂) =
1

1 + ξ̂
,
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which have been plotted in figure 5.2. Note from figure 5.2(b) that the pressure gradient

is everywhere positive along the body, hence we say that thisis a favourable pressure

gradient, as it helps to keep the boundary-layer attached tothe body. A negative pressure

gradient is said to be adverse, and this then encourages the boundary-layer to become

detached from the body, and we get boundary-layer separation.
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Figure 5.2: Plot of (a)Uf (ξ̂) and (b)β(ξ̂) for a parabolic body.

Equations (2.74) and (2.75) give

τ1 = −0.9621 − 1.9878Si, (5.11)

T1(ξ) =
−λ1(2ξ)

3
2

U ′
0

(
1

3
− 0.300575S

ln(ξ)

ξ
+ (1.35115S −D)

1

ξ

)
, (5.12)

which are precisely the solutions given by Hammerton and Kerschen (1996) whenξ is re-

placed byξ2
H/2 in (5.12). Equation (5.12) gives the asymptotic evolution of the wavenum-

ber for this flow over a parabola.

5.1.2 Upstream boundary conditions to the PSE

Equations (5.11) and (5.12) along with (2.129) produce the initial conditions for the PSE.

The initial value of the wavenumber for the lowest order Lam-Rott eigenmode is given by

α0 =
R0

Re

iλ1(2ξ)
1
2

U ′
0

(
1 − 0.300575S

ln(ξ)

ξ
+

(0.75S −D)

ξ

)
, (5.13)
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and the initial mode shape given by (2.70) and (2.87) is foundby the composite solution

of

φ(ξ0, N) =





ξτ1
0

(
U ′

0

� M0
0 (M0−�M)Ai(z̃)d�M

�
∞

0 Ai(z̃)d�M

)
N = O(ξ−

1
2 ),

ξτ1
0

(
(2ξ0)

1
2f ′(N) +

U ′

0i

λ1

)
N = O(1),

ξτ1
0

(
(2ξ0)

1
2 +

U ′

0i

λ1

)
exp

(
− ε3

√
2(1+i)ξ0N

U ′

0γ̂(ξ0)ρ
3
2
1

)
N = O(ε−3ξ−1),

(5.14)

where for the parabola

M = (2ξ)
1
2

(
1 +

S

4ξ

)
N, (5.15)

γ̂(ξ) = 1 + 0.300575S
ln(ξ)

ξ
+

(
D − 3S

4

)
1

ξ
. (5.16)

Hence for givenε, S and starting positionξ0, we can march downstream via the PSE to

calculate the growth rate of the T-S wave as a function ofξ and hencex.

5.2 Results for the parabola

In this section we consider the matching region. How does thenose radius affect this

region? Does the region remain well-defined asε varies. We also look at how the non-

zero pressure gradient on the body affects the position of the neutral stability point and

we again calculate the T-S wave amplitude at this point.

In figure 5.3 we show how a non-zero nose radius affects the matching region we

found in chapter 4 for a flat plate, using the local PSE and the leading edge asymptotics

(see figure 4.10 for flat plate case,S = 0). Just as for the flat plate, we see that the

ε = 0.05 case, in figure 5.3(a), has a clearly defined matching region for both values

of S considered. We were unable to extrapolate the solution backtoward the leading

edge quite as far as for the flat plate, however the appearanceof this overlap region from

ξ̃1 = 2ε2ξ/U ′2
0 ≈ 0.075 is very satisfactory. Not being able to extrapolate solutions

as close to the leading edge as we did for the flat plate may be expected, because the

favourable pressure gradient acts so to shift the whole growth rate curve downstream by

an amount proportional to a function ofS, which will be discussed later. Figure 5.3(b)

shows the same as in figure 5.3(a), except withε = 0.1. In this case we see that we cannot
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Figure 5.3: Plot of the real part of the growth rateG as a function of downstream distance,
calculated by leading edge receptivity analysis and local PSE theory, forS = 0.1 and
S = 0.2 for the cases (a)ε = 0.05 and (b)ε = 0.1. See figure 4.10 for theS = 0 case.

solve the local PSE right back to the leading edge receptivity asymptotics, as we found

for the flat plate case, hence we will again patch the two curves so that we can extract

amplitude calculations.

The shift in the real part of the growth rate curve due to the Strouhal number is shown

in figure 5.4 which plotsRe(G) for ε = 0.05 andS = 0, 0.15 and0.3. From figure 5.4

we note that theS = 0.15 curve always lies to the right of theS = 0 curve and similarly

theS = 0.3 curve lies to the right of both curves.

Table 5.1 and figure 5.5 show the variation in the position of the lower branch neutral

stability point as a function ofS. The neutral stability point was calculated both in terms

of the scaled variablẽξ1 and the variablẽx1 = 2ε2x/U ′2
0 , which is the scaled variable

along the body which does not contain any geometry effects. For all three cases we see an

increase in the position of both forms of the neutral stability point due to the favourable

pressure gradient. We also note that this increase appears to be almost linear inS, but this

is possibly due to the small range ofS chosen rather than a linear relation actually being

the case. We decided against checking this relation by increasingS further, because

S = 0.2 is a typical Strouhal number for an airfoil (Hammerton and Kerschen, 1996),
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Figure 5.4: Plot of the growth rate,Re(G), for ε = 0.5 for S = 0 (solid line),0.15 (dashed
line) and0.3 (dotted line), showing the downstream shift in the curves asS increases.

ξ̃1 ξ̃1 ξ̃1 x̃1 x̃1 x̃1

S ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.05 ε = 0.1 ε = 0.2
0.0 3.402 3.946 6.359 3.402 3.946 6.359
0.025 3.406 3.962 6.432 3.408 3.968 6.454
0.05 3.410 3.977 6.492 3.413 3.988 6.533
0.1 3.417 4.003 6.601 3.423 4.024 6.676
0.15 3.424 4.028 6.706 3.432 4.058 6.813
0.2 3.430 4.052 6.809 3.441 4.090 6.947
0.25 3.437 4.074 6.906 3.450 4.121 7.074
0.3 3.443 4.096 6.994 3.459 4.151 7.191

Table 5.1: Neutral stability points for the parabola,ε = 0.05, 0.1 and0.2 for variousS.

henceS > 0.3 gives nose radii which are not typical of airfoils. However this does

suggest that in the vicinity of the neutral stability point,the form of the neutral stability

point is

ξ̃1NS = ξ̃FP
1NS + Sf(ε),
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Figure 5.5: Plot of the neutral stability point on a parabolaas a function ofS for both ξ̃1
andx̃1 for (a) ε = 0.05, (b) ε = 0.1 and (c)ε = 0.2.

whereξ̃FP
1NS is the neutral stability point for the flat plate case, andf(ε) is a function which

solely depends onε.

S |C−1
1 ψI

1| × 10121 |C1| |ψI
1| × 10121

0.0 1.105 0.9662 1.068
0.025 0.6010 0.98 0.5890
0.05 0.3401 0.95 0.3231
0.1 0.1104 0.78 0.08611
0.15 0.03630 0.57 0.02069
0.2 0.01206 0.37 0.004463
0.25 0.004040 0.19 0.0007676
0.3 0.001365 0.10 0.0001365

Table 5.2: Eigenfunction,|C−1
1 ψI

1|, and T-S mode,|ψI
1|, amplitudes on a parabola at

lower branch for varyingS with ε = 0.05. The values of the receptivity coefficient,|C1|
are taken from Nichols (2001).
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S |C−1
1 ψI

1| × 1018 |C1| |ψI
1| × 1018

0.0 1.728 0.9662 1.670
0.025 1.247 0.98 1.222
0.05 0.9120 0.95 0.8664
0.1 0.4893 0.78 0.3817
0.15 0.2698 0.57 0.1538
0.2 0.1434 0.37 0.05528
0.25 0.08705 0.19 0.01654
0.3 0.05042 0.10 0.005042

Table 5.3: Eigenfunction,|C−1
1 ψI

1|, and T-S mode,|ψI
1|, amplitudes on a parabola at lower

branch for varyingS with ε = 0.1. The values of the receptivity coefficient,|C1| are taken
from Nichols (2001).

S |C−1
1 ψI

1| × 104 |C1| |ψI
1| × 104

0.0 1.989 0.9662 1.922
0.025 1.805 0.98 1.769
0.05 1.636 0.95 1.545
0.1 1.337 0.78 1.043
0.15 1.057 0.57 0.6023
0.2 0.8062 0.37 0.2983
0.25 0.6382 0.19 0.1213
0.3 0.4940 0.10 0.04940

Table 5.4: Eigenfunction,|C−1
1 ψI

1|, and T-S mode,|ψI
1|, amplitudes on a parabola at lower

branch for varyingS with ε = 0.2. The values of the receptivity coefficient,|C1| are taken
from Nichols (2001).

As for the flat plate case, we choose to calculate the amplitude of the T-S wave

|ψI
1| =

∣∣∣∣C1ψLR(ξLE) exp

(∫ ξNS

ξLE

G(x)dx

)∣∣∣∣ ,

at the neutral stability point. Tables 5.2, 5.3 and 5.4 alongwith figure 5.6 show how

the amplitude of the unstable eigenmode varies as a functionof S. In figure 5.6, we see

that for all three cases the amplitude of the eigenmode at lower branch decreases asS

increases. Although the amplitude of the eigenmode itself,|C−1
1 ψ1|, decays, we see that

when we include the effect of the receptivity coefficient,C1, the overall amplitude of the

T-S mode,|ψI
1|, decays faster.

The reason why we included the valueS = 0.025 in these calculations is because
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Figure 5.6: Plot on a log scale for the eigensolution,|C−1
1 ψI

1|, and the T-S mode,|ψI
1|,

amplitudes on a parabola at lower branch, as a function ofS for (a) ε = 0.05, (b) ε = 0.1
and (c)ε = 0.2.

Hammerton and Kerschen (1996) showed that atS = 0.025, the receptivity coefficient

|C1| rises from the flat plate value. However, even though the receptivity coefficient

increases, the decay in the eigenmode was great enough that the T-S mode amplitude

decreased from the flat plate value forS = 0.025, at least for the values ofε chosen.

5.3 Free-stream disturbances at an incident angle

Up to this point we have only considered a free-stream acoustic wave traveling at a zero

incidence angle with the chord of the body. We now consider what happens if we have a

free-stream acoustic wave interacting at an angleθ to the chord of the airfoil as shown in

figure 5.7.
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Figure 5.7: Sketch of a thin symmetric airfoil of chord length 2b and nose radiusrn in a
uniform stream,U∞, at zero angle of attack with a plane wave incident at an angleθ to
the downstream direction of the airfoil chord.

Having the acoustic wave at a non-zero angle of incidence affects the flow solution

around the parabola directly through the receptivity coefficientC1, see appendix E. Ham-

merton and Kerschen (1996) discuss how this incident angle affects the receptivity co-

efficient for the two particular cases of very small Mach numbers, and the case when

the acoustic wavelength is long compared to the hydrodynamic length scale,U∞/ω, but

shorter than the airfoil itself. These two cases can be described in terms of the reduced

acoustic frequencyk = ωb/c, wherec is the speed of sound in the undisturbed fluid, as

k � 1 andk � 1 respectively. As the amplitude of the T-S wave is just the receptivity

coefficient multiplied by the amplitude of the eigenmode, the results for the receptivity

coefficient are analogous to the results for the T-S wave amplitude at lower branch. Hence

we briefly describe the results here.
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Figure 5.8: Variation of|C1| with the acoustic incident angleθ, for k � 1 and with a
non-dimensional airfoil chord lengtha = 10, for S = 0 andS = 0.2.

5.3.1 Small Mach numbers (k � 1)

In equation (E.6), we show that the receptivity coefficient,C1, can be decomposed into a

symmetric,Cs, and an antisymmetric,Ca, part as follows,

C1(S, θ) = κs(θ)Cs(S) + κa(θ)Ca(S),

where the symmetric coefficient,κs(θ), and the antisymmetric coefficient,κa(θ), are cal-

culated in appendix E.

For the case of very small Mach numbersk � 1, figure 5.8 shows the variation of

|C1| as a function of acoustic incident angleθ, where the value ofa = 10 was chosen,

to coincide with a typical value for an airfoil. For the caseS = 0, which corresponds

to a flat plate, we see that the receptivity is dominated by theantisymmetric part, and

the curve resembles that of thesin(θ) curve, except nearθ = 0 andπ, where the flow

is dominated by the symmetric part. The valuesS = 0.2, a = 10 correspond to typical
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airfoil values, and for these values we see that the antisymmetric part still dominates, but

not as much. This is due to the fact that asS increases, the value of|Cs| decreases more

than the value of|Ca| (Hammerton and Kerschen, 1996). The peak receptivity valuefor

S = 0.2 is approximately one fifth of that for the flat plate.

As the amplitude of the T-S wave is directly proportional to the value of|C1|, we note

that the amplitude at lower branch has its maximum value around θ = ±π/2, and has its

minimum value close toθ = 0. The angleθ has a strong physical effect on the amplitude

of the T-S wave at the lower branch neutral stability point.

5.3.2 Case wherek � 1
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Figure 5.9: Variation of|C1| with the acoustic incident angleθ, for k � 1 and with a
Mach numberM∞ = 0.1, for S = 0 andS = 0.2.

For the casek � 1, the variation of|C1| as a function ofθ for a Mach number of0.1

is shown in figure 5.9 (The largek case is very different from the casek � 1 already

considered in figure 5.8). TheS = 0 case is dominated by the antisymmetric part of the
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flow, and the curve resembles that of thesin
(

θ
2

)
graph, except nearθ = 0, where the

symmetric part dominates. As for the casek � 1, the overall receptivity forS = 0.2 is

reduced, but again the symmetric component is becoming moreimportant. We note that

this effect means that the amplitude of the T-S mode at lower branch reaches its maximum

value at approximatelyθ = ±π, hence we again see that the value ofθ can have a huge

influence on the value of the T-S wave amplitude.

The main reason for considering the free-stream disturbance at an incident angle is

because in experiments, the results are sometimes contaminated by waves reflecting from

the walls of the wind tunnel, and interfering with the airfoil. Thus the results from this

section can be used by experimentalists to see how much of an effect these stray distur-

bances have on their measured results.

5.4 Summary

As for the flat plate, the numerical solution to the local PSE shows that a matching region

exists between the leading edge, and Orr-Sommerfeld regions, for sufficiently smallε.

Thus we can use the PSE as we did for the flat plate, to calculateT-S wave amplitudes at

the lower branch point.

The parabolic body has a monotonically decreasing, favourable pressure gradient

along its surface, and this moves the neutral stability point downstream of its flat plate

value, with increasing Strouhal number, in line with experimental observations. The

favourable pressure gradient also produces a decrease in both the eigenmode and T-S

wave amplitudes at the lower branch point, as the Strouhal number increases, when com-

pared to the flat plate value. This is consistent with experimental observations, and the

numerical work of Haddad and Corke (1998).

The effect of the disturbance wave’s incident angle,θ, is also considered to try and

answer contamination observations in wind tunnel experiments. When the acoustic wave-

length is long compared to the hydrodynamic length scale andairfoil chord, the T-S waves

display maximum amplitudes whenθ ≈ ±π
2
. However, when the acoustic wavelength is

long compared the the hydrodynamic length scale but shorterthan the length of the airfoil
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itself, the T-S wave has its maximum whenθ ≈ ±π.

Although the parabola satisfies the condition that the inviscid slip velocityUf −→ 1

far downstream, it actually has an infinite thickness which is not realistic. Hence in the

next chapter we apply the same ideas from this chapter to a Rankine body.
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Chapter 6

Realistic experimental bodies - The

Rankine body

In the previous two chapters, we considered two simple body geometries, the flat plate and

the parabola. The flat plate was useful because its geometry lead to simple equations, and

we also had the advantage that we have asymptotic results in the Orr-Sommerfeld region

(Goldstein, 1983), with which to check our PSE code. The flat plate asymptotics also give

us insight into what happens as the T-S wave disturbance, generated at the leading edge,

moves into the Orr-Sommerfeld region. Next we considered a parabolic body, which

had the advantage of being slightly more realistic, in that,it had a non-zero thickness,

and the curved leading edge is more like that of a typical airfoil. However a parabola

isn’t very widely used in experiments, because although itsinviscid slip velocity tends

to a constant far downstream, the body there has an infinite thickness. This makes wind

tunnel experiments difficult, as the body would increase in thickness and block the tunnel,

producing interactions between the flow and the wall of the wind tunnel. Thus there exists

very little experimental data with which to compare our results in the last section, and only

the numerics of Haddad and Corke (1998) give any meaningful insight. However, they do

not calculate the T-S wave amplitude at lower branch as we didin the previous section.

Most experimental and numerical studies on receptivity andstability are carried out on

flat plates with an elliptical leading edge, whether that be an ellipse stuck on to a flat plate
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(Saric and Rasmussen, 1992), or a specially machined ModifiedSuper Ellipse (MSE)

(Saricet al., 1995). The geometry of a MSE is reasonably complicated, andobtaining

the slip velocity on the surface is difficult even before we could begin to use the methods

described in this thesis. However an approach which leads usto a body which is more

like a MSE than a parabola, is to consider a line source in a uniform flow, one of whose

streamlines has a shape known as a Rankine body. Although the analysis for a Rankine

body is not trivial, it’s more straightforward than the MSE,so we use it as a stepping stone

to a further method described later.

We will show that the analysis for the Rankine body is dependent on one real dimen-

sionless parameter,A, which is directly related to the dimensional nose radius,rn. We

will then use this information to calculate results similarin kind to those we obtained for

the parabola. We then discuss how we could calculate similarresults for a MSE by using

slender body theory to calculate the inviscid slip velocity, Uf .

6.1 The Rankine body

The formulation for the inviscid flow around a Rankine body wasstudied by Nichols

(2001), and the formulation for the inviscid pressure gradient and the slip velocity can be

found in appendix F.

We introduce the scaled variablesẑ = z/A, wherez = xc + iyc is a complex variable,

and the subscriptc denotes that these are the usual real Cartesian coordinates.Under this

change of variables, the slip velocity,Uf , and pressure gradient,β, can be written as

Uf (ŷc) =

(
1 +

sin2(ŷc)

ŷ2
c

− sin(2ŷc)

ŷc

) 1
2

, (6.1)

β(ŷc) =
2ξ̂

U3
f

dŷc

dx

(
sin(2ŷc)

ŷ2
c

− sin2(ŷc)

ŷ3
c

− cos(2ŷc)

ŷc

)
, (6.2)

whereξ̂ is defined by (F.17), andx is a curvilinear coordinate measured parallel to the

body from the leading edge.

The plots ofUf (ξ̂) andβ(ξ̂) are shown in figure 6.1 and these hold for allA. We see

that the slip velocity reaches a maximum ofUfmax = 1.260, and this occurs at̂yc = 2.043
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Figure 6.1: Plot of (a)Uf (ξ̂) and (b)β(ξ̂) for a Rankine body.

which correspond tôξ = 2.873. This leads to the pressure gradientβ(ξ̂) starting off

favourable forξ̂ < 2.873, but becoming adverse, and slowly tending to zero far down-

stream. The minimum value for the pressure gradient isβmin = −0.2434 and occurs at

ŷc = 2.614, which corresponds tôξ = 7.130. The position of the neutral stability point on

a body depends on the pressure gradient along the body, and hence because the favourable

pressure gradient on the parabola moves the neutral stability point downstream of the po-

sition for a zero pressure gradient, we expect an adverse pressure gradient to move it

upstream of the position for a zero pressure gradient.

6.1.1 Largeξ asymptotics, in the leading edge receptivity region, for

a Rankine body

To be able to construct all the leading edge asymptotics formulated in chapter 2, we

first need to find the largex asymptotic form ofUf (x). To do this, we first note that as

x −→ ∞, yc −→ Aπ. Hence to construct the asymptotics for the Rankine body, we

introduce the new variablep = Aπ − yc, and find the solution aboutp = 0. In this new

variable, the asymptotic form of the slip velocity,Uf , anddx/dyc are

Uf ∼ 1 +
p

Aπ
+

p2

A2π2
+

(3 − 2π2)

3

p3

A3π3
+

(6 − π2)

6

p4

A4π4
+O(p5), (6.3)

dx

dyc

∼ A2π

p2
+
π

3
− 2

3A
p+

(15 + 2π2)

30π

p2

A2
− 4

45A3
p3 +O(p4). (6.4)
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Hence we can integrate (6.4) with respect toyc and get

x ∼ A2π

p
− π

3
p+

1

3A
p2 − (15 + 2π2)

90π

p3

A2
+

1

45A3
p4 +O(p5). (6.5)

Inverting (6.5) to findp in terms ofx gives

p ∼ A2π

x
− A4π3

3x3
+O(x−4), (6.6)

which on insertion into (6.3) gives

Uf (x) ∼ 1 +
A

x
+
A2

x2
+ (1 − π2)

A

x3
+O(x−4). (6.7)

From equation (2.33) we can then write the largex asymptotic form ofξ as

ξ(x) ∼ x+ A ln(x) − A2

x
− (1 − π2)

2

A3

x2
+O(x−3), (6.8)

hence comparing (6.7) with (2.41) we note that for a Rankine body

α = A and γ = A2.

Using these in comparison with (2.45) and (2.46), we can write the largeξ asymptotic

form for β(ξ) andΩ(ξ) as

β(ξ) ∼ −2A

ξ
− 4A2 ln ξ

ξ2
+O(ξ−3 ln2(ξ)), (6.9)

Ω(ξ) ∼ 2ξ − 4A− 4A2 ln ξ

ξ
+

2A2

ξ
+O(ξ−2 ln2(ξ)). (6.10)

From (2.59) we can now see that the asymptotic form of the steady flow past a Rankine

body is

φ1(ξ,N) ∼ f − 1.2023A(Nf ′ − f)
ln ξ

ξ
+
D(Nf ′ − f) + E(N)

ξ
+O(ξ−1.887), (6.11)

where the constantD is given by Nichols (2001) in terms ofA as

D = A(−4.71125 + 1.2023 ln(A)). (6.12)

The corresponding forms of (5.11) and (5.12) for the Rankine body, from (2.74) and (2.75)

respectively are

τ1 = −0.6921 + 7.9508A i, (6.13)

T1 = −λ1(2ξ)
3
2

U ′
0

(
1

3
+ 1.2023A

ln ξ

ξ
− (5.4046A+D)

1

ξ

)
+O(ξ−0.387). (6.14)
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From (2.129) the initial form of the wavenumber for the PSE code is

α0 =
R0

Re

iλ1(2ξ)
1
2

U ′
0

(
1 − 1.2023A

ln ξ

ξ
− (3A+D)

1

ξ

)
(6.15)

and again the initial mode shape is given by the composite solution of

φ(ξ0, N) =





ξτ1
0

(
U ′

0

� M0
0 (M0−�M)Ai(z̃)d�M

�
∞

0 Ai(z̃)d�M

)
N = O(ξ−

1
2 ),

ξτ1
0

(
(2ξ0)

1
2f ′(N) +

U ′

0i

λ1

)
N = O(1),

ξτ1
0

(
(2ξ0)

1
2 +

U ′

0i

λ1

)
exp

(
− ε3

√
2(1+i)ξ0N

U ′

0γ̂(ξ0)ρ
3
2
1

)
N = O(ε−3ξ−1),

(6.16)

where for the Rankine body

M = (2ξ)
1
2

(
1 − A

ξ

)
N, (6.17)

γ̂(ξ) = 1 − 1.2023A
ln(ξ)

ξ
+ (D + 3A)

1

ξ
. (6.18)

6.1.2 Stability results for a Rankine body

In this section we shall compare results for the position of the lower branch neutral sta-

bility point on a Rankine body, along with T-S wave amplitude calculations at the lower

branch point.

Position of the neutral stability point

In chapter 5, we compared the position of the neutral stability point, for a parabolic body

in terms of ξ̃1 = 2ε2ξ/U ′2
0 and x̃1 = 2ε2x/U ′2

0 , and also the eigenmode amplitudes at

lower branch for a range of values forS. In this section, we will do similar calculations

for a range of values ofA.

Tables 6.1 and 6.2 together with figure 6.2 show how the position of the lower branch

neutral stability point varies with increasingA, for ε = 0.05, 0.1 and0.2. The adverse

pressure gradient along the Rankine body forces the neutral stability point to move up-

stream asA increases, in contrast to the parabola, where the favourable pressure gradient

moves it downstream. Also we note that, asε increases, the percentage change in the

position of the lower branch point for̃ξ1, atA = 0.7 compared toA = 0.0 increases from

1.5% for ε = 0.05, to 4.5% for ε = 0.1, to 14% for ε = 0.2.
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A ξ̃1 x̃1

0.0 3.402 3.402
0.005 3.398 3.397
0.01 3.395 3.393
0.015 3.391 3.388
0.02 3.388 3.384
0.025 3.385 3.381
0.0275 3.384 3.379
0.033 3.380 3.374
0.04 3.376 3.370
0.05 3.370 3.362
0.055 3.367 3.359
0.06 3.364 3.355
0.067 3.360 3.350
0.07 3.358 3.348

Table 6.1: Neutral stability points for the Rankine body, forε = 0.05 for variousA.

ξ̃1 ξ̃1 x̃1 x̃1

A ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2
0.0 3.946 6.359 3.946 6.359
0.005 3.932 6.297 3.928 6.284
0.01 3.918 6.237 3.911 6.214
0.015 3.906 6.179 3.897 6.147
0.02 3.893 6.126 3.881 6.085
0.025 3.881 6.072 3.867 6.023
0.03 3.870 6.017 3.853 5.961
0.04 3.846 5.905 3.825 5.834
0.05 3.823 5.788 3.798 5.704
0.055 3.811 5.735 3.783 5.645
0.06 3.800 5.680 3.770 5.584
0.07 3.777 5.565 3.748 5.475

Table 6.2: Neutral stability points for the Rankine body, forε = 0.1 and ε = 0.2 for
variousA.

Comparison of favourable and adverse pressure gradients

Before we go on to calculate T-S wave amplitudes at the lower branch point, we first make

a comparison of how the position of the neutral stability point is affected by a favourable

or adverse pressure gradient.

For theε = 0.05 case in table 6.1, we note that we have included the values ofA =
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Figure 6.2: Plot of the neutral stability point for the Rankine body, as a function ofA for
both ξ̃1 andx̃1 for (a) ε = 0.05, (b) ε = 0.1 and (c)ε = 0.2.

A : S ξ̃1 x̃1 ξ̃1 x̃1

parabola parabola Rankine body Rankine Body
0.033 : 0.05 3.410 3.413 3.380 3.374
0.067 : 0.1 3.417 3.423 3.360 3.350
A : S |ξ̃1 − ξ̃1NS| |x̃1 − x̃1NS| |ξ̃1 − ξ̃1NS| |x̃1 − x̃1NS|

parabola parabola Rankine body Rankine body
0.033 : 0.05 0.008 0.011 0.022 0.028
0.067 : 0.1 0.015 0.021 0.042 0.052

Table 6.3: Table showing the position of the neutral stability points, ξ̃1 and x̃1, for the
parabola and Rankine body forε = 0.05 (top two rows), and their relative shift from the
flat plate valuẽξ1NS = x̃1NS = 3.402 (bottom two rows).

0.033 and0.067. We considered these values, because by using (6.23) and (6.24), we see

that these correspond to the Strouhal number valuesS = 0.05 and0.1 respectively. Table

6.3 shows the position of the lower branch neutral stabilitypoint for both the parabola and
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the Rankine body, whenε = 0.05, along with the size difference between these values and

the position of the neutral stability point on a flat plate (A = S = 0). We see that although

the neutral stability points are moving in opposite directions, the relative change in thẽξ1

position for the Rankine body is about2.8 times that of the parabola, and thex̃1 change

is about2.5 times that of the parabola. The absolute value of the pressure gradient,β, for

the parabola at these neutral stability points is1.7× 10−4 for S = 0.05 and3.3× 10−4 for

S = 0.1. These values are about2.5 times smaller than the corresponding values on the

Rankine body, which are4.4 × 10−4 for A = 0.033 and9.0 × 10−4 for A = 0.067. This

suggests that at least for these bodies an adverse pressure gradient is more significant on

the position of the neutral stability point than a favourable one, although it is unclear how

much difference the size of the pressure gradient at the neutral stability point makes.

T-S wave amplitudes at lower branch

The position of the neutral stability point affects the amplitude of the eigenmode, by

changing the value of the integral of the growth rateG(x). The favourable pressure gradi-

ent on the parabola moved the neutral stability point downstream, thus making the integral

of the growth rateG(x) more negative, hence decreasing the amplitude of the eigenmode.

Consequently, we expect the adverse pressure gradient on theRankine body to make the

integral ofG(x) less negative, hence increasing the amplitude of the eigenmode asA in-

creases. By considering tables 6.4, 6.5, 6.6 and figure 6.3, wesee that this is in fact the

case.

Tables 6.4, 6.5 and 6.6 show the amplitudes of the1st eigenmode,|C−1
1 ψI

1| at the

lower branch neutral stability point forε = 0.05, 0.1 and0.2, along with the amplitude of

the T-S mode,|ψI
1|, where

|ψI
1| =

∣∣∣∣C1ψLR(ξLE) exp

(∫ ξNS

ξLE

G(x)dx

)∣∣∣∣ .

The value of the receptivity coefficient,|C1|, for the Rankine body tends to zero much

faster than for the parabola (Nichols, 2001). We can see thisif we consider the values

S = 0.05 and0.1 which correspond toA = 0.033 and0.067. ForS = 0.05 the value of

|C1| for the parabola (see§5.2) is0.95 and the corresponding value for the Rankine body
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A |C−1
1 ψI

1| × 10121 |C1| |ψI
1| × 10121

0.0 1.105 0.9662 1.068
0.005 1.632 0.82 1.338
0.01 2.658 0.61 1.621
0.015 4.341 0.40 1.736
0.02 7.071 0.22 1.556
0.025 11.64 0.12 1.397
0.0275 14.95 0.11 1.644
0.033 24.27 0.13 3.156
0.04 46.24 0.12 5.552
0.05 130.5 0.08 10.44
0.055 215.6 0.06 12.94
0.06 340.9 0.04 13.64
0.067 958.7 0.01 9.587
0.07 993.2 0.01 9.932

Table 6.4: Eigenfunction amplitudes at lower branch for theRankine body, for varying
A with ε = 0.05. The values of the receptivity coefficient,|C1| are taken from Nichols
(2001).

A |C−1
1 ψI

1| × 1018 |C1| |ψI
1| × 1018

0.0 1.728 0.9662 1.670
0.005 2.082 0.82 1.707
0.01 2.768 0.61 1.689
0.015 3.678 0.40 1.471
0.02 4.906 0.22 1.079
0.025 6.559 0.12 0.7870
0.03 8.825 0.11 0.9707
0.04 17.97 0.12 2.156
0.05 34.70 0.08 2.770
0.055 48.33 0.06 2.900
0.06 66.91 0.04 2.677
0.07 130.7 0.01 1.307

Table 6.5: Eigenfunction amplitudes at lower branch for theRankine body, for varying
A with ε = 0.1. The values of the receptivity coefficient,|C1| are taken from Nichols
(2001).

is 0.13. Similarly for S = 0.1, the receptivity coefficient for the parabola is0.78 and for

the Rankine body it’s0.01.

The amplitude of the T-S mode for the Rankine body is much more interesting than for
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A |C−1
1 ψI

1| × 104 |C1| |ψI
1|

0.0 1.989 0.9662 1.922
0.005 2.085 0.82 1.710
0.01 2.234 0.61 1.363
0.015 2.411 0.40 0.9645
0.02 2.610 0.22 0.5743
0.025 2.801 0.12 0.3361
0.03 3.095 0.11 0.3404
0.04 3.687 0.12 0.4414
0.05 4.336 0.08 0.3469
0.055 4.715 0.06 0.2829
0.06 5.077 0.04 0.2031
0.07 5.963 0.01 0.05963

Table 6.6: Eigenfunction amplitudes at lower branch for theRankine body, for varying
A with ε = 0.2. The values of the receptivity coefficient,|C1| are taken from Nichols
(2001).

the parabola, because there is a conflict between the increasing eigenmode amplitude, asA

increases, and a decrease in the receptivity coefficient. The resulting T-S mode amplitudes

can be seen in figure 6.3. While the eigenmode amplitudes appear to be straight lines, the

T-S mode amplitude has a double maximum as a function ofA. For the caseε = 0.05

in figure 6.3(a), this double maximum is very clear, with maxima aroundA = 0.015

andA = 0.055, with the second being almost a factor of10 larger than the first. The

caseε = 0.1 has a slightly different appearance, because the increase of the eigenmode

amplitude is less than theε = 0.05 case, while the values of the receptivity coefficients

remain unchanged. Hence in this case the first maximum of the T-S mode amplitude

appears to occur closer toA = 0 and in fact the amplitude appears to be almost constant

betweenA = 0 andA = 0.015. We still get another maximum aroundA = 0.05, but the

relative increase in this maximum compared to the first one ismuch smaller than for the

ε = 0.05 case, and is only a factor of1.8 times larger in this case. Figure 6.3(c) shows

the same graph again except this time forε = 0.2, and we see a decay of the T-S mode

away fromA = 0, and the second maximum which occurs aroundA = 0.04 has in fact

a lower magnitude than the one atA = 0. So asε increases the growth of the eigenmode

with respect toA decreases, and hence for theε = 0.05 case, we find the two maxima are
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Figure 6.3: Plot on a log scale for the eigensolution,|C−1
1 ψI

1|, and the T-S mode,|ψI
1|,

amplitudes on a Rankine body at lower branch, as a function ofA for (a) ε = 0.05, (b)
ε = 0.1 and (c)ε = 0.2.

larger than the flat plate value, whereas forε = 0.2, the first maximum now corresponds

to the flat plate value, and the second maximum has a value lower than the flat plate value.

In the next section we look at the physical properties of the parabola and the Rankine

body, in an attempt to get a better idea of what results may be expected for a MSE.

6.2 Comparison of experimental and numerical bodies

In this section, we discuss both the parabola and Rankine body, compare their pressure

gradients and slip velocities, and where we can, compare these with the MSE which is

used so much in experimental and numerical studies.
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6.2.1 Body geometry

The equation for the upper surface of the Rankine body,xc = xc(yc), was derived in

appendix F, and given by

xc = A− yc cot
(yc

A

)
. (6.19)

The equations for the upper surface of the parabola and MSE,yc = yc(xc), are

yc = (2Sxc)
1
2 , (6.20)

yc =





b
(
1 −

(
a−xc

a

)m) 1
2 , m = 2 +

(
xc

a

)2
xc < a

b xc > a
, (6.21)

respectively, whereS is the Strouhal number defined in (5.1),b is the semi-width of the

flat plate on which the MSE is drilled, anda is the length of the elliptical part of the

nose, as shown in figure 6.4. The ratioa : b is known as the aspect ratio for the MSE,

and typical values used in experimental and numerical workssuch as Saric and White

(1998) and Wanderley and Corke (2001) are20 : 1 or 40 : 1. For a regular elliptical nose

considered by Saric and Rasmussen (1992),m = 2 in (6.21).

a
x

yc

c

b

Figure 6.4: Sketch of MSE to show the definitions ofa andb in (6.21).

To be able to compare these three bodies, we have to find a suitable parameter which

describes all three bodies. A suitable choice for this is to calculate the dimensionless nose

radius for each body. This is defined as

r(0) = r(x = 0) =

(
1 +

(
dxc

dyc

)2
) 3

2

d2xc

dy2
c

∣∣∣∣∣∣∣∣∣
x=0

. (6.22)
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Calculating the nose radius for these three bodies we find

rP = S, (6.23)

rR =
3A

2
, (6.24)

rMSE =
b2

a
, (6.25)

where the subscriptsP ,R andMSE correspond to the parabola, Rankine body and MSE

respectively. Thus for a givenA it is straightforward to convert to a value ofS, and vice

versa. However for the MSE, the situation is a little bit morecomplicated. For a Rankine

body and a MSE, we have two choices, we can either fix the nose radius of the Rankine

body, or we can fix the aspect ratio of the MSE. If we fix the nose radius of the Rankine

body, i.e. we stipulateA, then the thickness of the body is automatically fixed at2Aπ

(b = Aπ for the MSE), as noted in the previous section. Thus if we forma MSE with the

same nose radius as the Rankine body, with thicknessb = Aπ, this leads to the value ofa

being

a =
2b2

3A
=

2π2A

3
, (6.26)

which fixes the aspect ration of the MSE at2π/3.

On the other hand, if we start with a MSE of thicknessb, and if we fix the aspect ratio

to bea : b, then we find from comparing the nose radii of the MSE and the Rankine body

that

A =
2b2

3a
, (6.27)

and hence the nose radius of the Rankine body is fixed at2b2/(3a).

When modeling a MSE using a Rankine body, it seems logical to require that we make

the nose radii the same so that the leading edge receptivity results are the same, however

when we move downstream into the stability region, it would be more appropriate to fix

the aspect ratio of the bodies, so that the far downstream forms are similar. The parabola,

Rankine body and MSE with the same nose radius, for the caseA = 0.1, have been

plotted in figure 6.5. We see that the parabola increases in thickness asxc increases and

it also always lies outside the MSE. The Rankine body on the other hand tends to the flat

plate of the MSE from inside, and always lies inside the MSE. Thus the geometry of the
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Figure 6.5: The shapes near the nose of the parabola, the Rankine body and the Modified
Super Ellipse for the caseA = 0.1.

MSE lies between the parabola and the Rankine body. However the stability properties of

the bodies rely on the form of the pressure gradient, so just considering the geometry of

the bodies won’t give us an insight into the stability properties of the MSE.

As well as comparing the physical shape of the bodies, we can also compare the

curvature too. We define the curvature as

κ = −
d2yc

dx2
c(

1 +
(

dyc

dxc

)2
) 3

2

. (6.28)

The curvature as a function ofxc, for the caseA = 0.1, for these three bodies can be seen

in figure 6.6. We can see that the Rankine body’s curvature is higher than the parabola’s

up untilxc ≈ 0.475 and then the parabola has the larger curvature. The MSE on theother

hand has a curvature similar to that of the parabola up toxc ≈ 0.1, then the MSE has a

region of constant curvature before decaying to zero atxc = a, which in this case equals

2π2/30.
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Figure 6.6: Plot of the curvature of the parabola, Rankine body and the MSE, for the case
A = 0.1, as a function ofxc.

We can prove that the parabola’s curvature tends to zero slower than the Rankine

body’s, by looking at the largexc form of the curvature. Using the same method and

variables as in§6.1.1, withp = Aπ − yc, we see that the smallp asymptotic limit of the

Rankine body’s geometry is

xc ∼
A2π

p
− π

3
p+

1

3A
p2 − π

45A2
p3 +O(p4),

and thus inverting this, we find that to leading order

yc = Aπ − A2π

xc

+O(x−2
c ). (6.29)

Therefore asxc −→ ∞, the leading order curvature terms for the parabola and Rankine

body are

κP ∼ S
1
2

(2xc)
3
2

,

κR ∼ 2A2π

x3
c

,
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which when we use the fact that

S =
3A

2
,

we find

κP ∼ (3A)
1
2

4x
3
2
c

,

κR ∼ 2A2π

x3
c

,

so clearly the Rankine body’s curvature tends to zero much faster than the parabola’s.

Just by looking at the geometries and body curvature, it’s very difficult to tell how the

receptivity disturbances will behave on the MSE. To get a better idea of this, we need to

consider the pressure gradients for the three bodies.

6.2.2 Slip velocity and pressure gradient

Although comparing the body geometries gives as an insight into how the receptivity

disturbances will behave as they move downstream, the best insight into how they will

behave comes from comparing the slip velocity,Uf , and the pressure gradient,β. Figure

6.7 shows a comparison of the slip velocity and pressure gradient for the parabola and the

Rankine body as a function ofx, the coordinate along the body’s surface from the leading

edge, for the caseA = 0.1.
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Figure 6.7: Plot of (a)Uf (x) and (b)β(x) for a Rankine body and a parabola forA = 0.1.
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The maximum value of the slip velocity for the Rankine body occurs close to where

the parabola’s slip velocity becomes constant. Similarly the minimum inβ occurs near

the point where the parabola’s pressure gradient turns sharply and tends to zero. The

pressure gradient for the parabola tends to zero faster thanfor the Rankine body, which

perhaps is not as expected, as the curvature of the Rankine body is less than the parabola

far downstream, see figure 6.6.

In a way similar to the treatment of the curvature of the two bodies, we can prove that

the pressure gradient for the parabola tends to zero faster than that of the Rankine body,

by using the largex asymptotic form ofβ(x). From§6.1.1 we found that for the Rankine

bodyα = A andγ = A2, hence from (2.45), we can write the largeξ form of βR(ξ) as

βR(ξ) ∼ −2A

ξ
− 4A2 ln ξ

ξ2
+O(ξ−3 ln2(ξ)).

The corresponding largeξ form of βP (ξ) for the parabola comes from (5.6) and is

βP (ξ) ∼ S

2ξ
− S2

4ξ2
+
S3

8ξ3
+O(ξ−4).

Hence using the fact thatξ ∼ x asξ −→ ∞ for both bodies, and thatS = 3A/2, we see

that to leading order

βR = −2A

x
,

βP =
3A

4x
.

Thus both pressure gradients tend to zero like1/x, however the pressure gradient on the

parabola will tend to zero faster than for the Rankine body, due to the smaller constant

multiplying the1/x term. These expressions also show the difference in sign ofβ for the

Rankine body and the parabola as shown in figure 6.7(b).

Calculating the slip velocity, and hence the pressure gradient on a MSE is a non-trivial

exercise, but is possible via a full numerical inviscid simulation. However, we would like

to gain an analytic approximation to the slip velocity of theform (2.41). A possible

method to calculate this would be to increase the number of sources on the real axis, until

the streamline through the stagnation point resembles the geometry of the MSE. The next

section on slender body theory discusses how this is possible.
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6.2.3 Slender body theory

Consider first the flow produced by a source, strength2πK, at z = πK and a sink,

strength2πK, at z = 2πK in a uniform stream of unit strength. The complex potential,

w, for this flow is

w(z) = z +K ln(z − πK) −K ln(z − 2πK), (6.30)

wherez = x+ iy.

-2

-1

 0

 1

 2

-2 -1  0  1  2  3x

y

Figure 6.8: Plot of the streamlines for the complex potential (6.30) for the caseK = 1.

The streamlines for this flow whenK = 1 are shown in figure 6.8. We can see that

this flow produces a closed streamline, which can be replacedby a solid body, so the flow

can be thought of as the uniform flow of unit strength, past that body. Slender body theory

extends this idea to put a continuous distribution of sources and sinks on the real axis to

produce a streamline which matches, or in some cases, approximates, the surface of the

body we wish to model the flow around.
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Here we consider a symmetric body, of length2b, with the uniform flow at zero angle

of attack, although this theory can be extended to incorporate cambered bodies and bodies

at non-zero attack angles.

Following Thwaites (1964), the complex potential for a linesource of strengthmδx1

at z = z1 = x1 + iy1 is

w(z) =
mδx1

2π
ln(z − z1).

If we consider this line source to be ony1 = 0, and integrate over the continuous distrib-

ution of sources in the intervalx1 ∈ [0, 2b], we have

w(z) = Uz +

∫ 2b

0

m(x1)

2π
ln(z − x1)dx1, (6.31)

where theUz term is the complex potential for a uniform stream of strength U , and the

length of the body we wish to model is2b. For the body formed to be closed, we also

require ∫ 2b

0

m(x1)dx1 = 0. (6.32)

However this does not have to hold if we consider bodies similar to the Rankine body

which tend to a flat plate downstream, but this is only relevant for b −→ ∞.

The velocity field produced by the presence of the body will have the form

u = (U + u)x̂ + vŷ,

where(u, v) is the perturbed velocity in thêx andŷ directions respectively, which are unit

vectors in the horizontal and vertical directions respectively. On the body, inviscid theory

says that the velocityu is tangential to the body’s surface, so the boundary condition is

dy

dx

∣∣∣∣
y=F (x)

=
dF

dx
=

v

U + u
,

wherey = F (x) � 1 is the equation for the upper surface of the body. For a slender

body we expect only small changes in the horizontal velocity, hence we expectu � U ,

hence
dF

dx
=
v

U
,
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approximately. Using the fact thatu− iv = dw/dz, we can write this boundary condition

as

Im

(
dw

dz

)
= −U dF

dx
. (6.33)

Differentiating (6.31) with respect toz gives

u− iv =
dw

dz
= U +

∫ 2b

0

m(x1)

2π

1

z − x1

dx1,

which on the introduction ofz = x+ iy we find that the imaginary part gives

v =
1

2π

∫ 2b

0

m(x1)y

(x− x1)2 + y2
dx1.

Evaluating this ony = F (x) we find

1

2π

∫ 2b

0

m(x1)F

(x− x1)2 + F 2
dx1 = U

dF

dx
. (6.34)

We split this integral up into three integrals, to carefullytreat the integrand around the

pointx1 = x, giving

F (x)

2π

(∫ x−δ

0

m(x1)

(x− x1)2 + F 2
dx1 +

∫ 2b

x+δ

m(x1)

(x− x1)2 + F 2
dx1

+

∫ x+δ

x−δ

m(x1)

(x− x1)2 + F 2
dx1

)
= U

dF

dx
,

where0 < δ.

For F � 1, the first two integrals are much smaller than the third, as inthe third

integral, the integrand is very large nearx = x1, hence we can ignore the contribution

from the first two integrals. The third integral, under the approximation thatδ is small

compared with2b, but δ � F (x), can be approximated using a Taylors series expansion

for m(x1),

m(x1) = m(x) + (x1 − x)
dm

dx1

∣∣∣∣
x1=x

+O((x1 − x)2),

for x1 ∈ [x− δ, x+ δ].

Hence to leading order we have

F (x)m(x)

2π

∫ x+δ

x−δ

dx1

(x1 − x)2 + F 2
= U

dF

dx
,
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which can be integrated to give

m(x)

2π

(
tan−1

(
δ

F

)
− tan−1

(
− δ

F

))
= U

dF

dx
.

In the slender body limit (F −→ 0 with δ fixed), we find

m(x) = 2U
dF

dx
. (6.35)

Thus given any slender body geometry, we can find the source distribution to approximate

the flow around this body in a uniform flow.

6.2.4 Approximating the MSE using Slender body theory

Using the analysis from§6.2.3, we write the dimensional complex potential for the invis-

cid flow past a MSE as

w∗ = U∞z
∗ +

U∞

π

∫ ∞

0

dF ∗

dx∗1
ln(z∗ − x∗1)dx

∗
1,

wherey∗ = F ∗(x∗) is the dimensional form of the equation for the MSE’s surfaceand

U∞ is the free-stream velocity. Introducing the non-dimensional quantityz = ωz∗/U∞,

the dimensionless body geometryF = ωF ∗/U∞, and changing the integration variable

to x1 = ωx∗1/U∞, gives

w∗ =
U2
∞
ω
z +

1

π

U2
∞
ω

∫ ∞

0

dF

dx1

(
ln(z − x1) + ln

(
U∞

ω

))
dx1.

We define the dimensionless complex potentialw = ωw∗/U2
∞, and use the fact that the

upper surface of the MSE in Cartesian coordinates is given byyc = F (xc), where

F (xc) =





b
(
1 −

(
a−xc

a

)m) 1
2 m = 2 +

(
xc

a

)2
xc < a

b xc > a
, (6.36)

wherea andb are defined in§6.2.1, to simplify the complex potential to

w = z +
1

π

∫ a

0

dF

dx1

ln(z − x1)dx1 +
b

π
ln

(
U∞

ω

)
. (6.37)

As a complex potential is defined up to an arbitrary constant,the constant term from

(6.37) can be dropped without loss of generality. The upper limit of integration has been

changed from∞ to a, becausedF/dx1 = 0 for x1 > a.
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The velocity field is calculated from (6.37), and is

u− iv =
dw

dz
= 1 +

1

π

∫ a

0

dF

dx1

1

z − x1

dx1. (6.38)

Due to the assumptions of slender body theory, (6.37) and (6.38) do not give the exact

flow past the bodyyc = F (xc). This can be seen by looking at the flow close to the nose,

where the slip velocity−→ ∞ (see§6.2.5).

Equations (6.37) and (6.38) can be integrated by parts to make them more convenient

to use, giving

u− iv =
dw

dz
= 1 +

b

π((xc − a) + iyc)
− 1

π

∫ a

0

F (x1)

((xc − x1) + iyc)2
dx1, (6.39)

w = z +
b

π
ln((xc − a) + iyc) +

1

π

∫ a

0

F (x1)
(xc − x1) − iyc

(xc − x1)2 + y2
c

dx1 +
b

π
ln

(
U∞

ω

)
. (6.40)

From (6.40) it is now straightforward to write down the velocity potential,φ, and the

stream function,ψ, as

φ = xc +
b

2π
ln((xc − a)2 + y2

c ) +
1

π

∫ a

0

F (x1)(xc − x1)

(xc − x1)2 + y2
c

dx1 +B, (6.41)

ψ = yc +
b

π
arg((xc − a) + iyc) −

yc

π

∫ a

0

F (x1)

(xc − x1)2 + y2
c

dx1, (6.42)

whereB = b/π ln (U∞/ω) is a constant.

Although we wish to calculate the flow around the MSE, the actual body shape formed

by the slender wing theory is not quite that of the MSE. We can see this more clearly if

we consider thev component of velocity given by (6.38),

v =
yc

π

∫ a

0

dF

dx1

1

(xc − x1)2 + y2
c

dx1.

If we consider the limit asxc −→ ∞, thenyc −→ b, and

v ∼ b

π

∫ a

0

dF

dx1

(
1

x2
c

+
2x1

x3
c

+O(x−4
c )

)
dx1,

v ∼ b2

π

1

x2
c

+O(x−3
c ).

Hence we see thatv only tends to0 asxc gets large, whereas on an MSE,v would be

identically zero on the flat plate part, and hence the slenderbody approximation only

tends to a flat plate far downstream, whereas the MSE is exactly a flat plate. Thus rather

than just assuming the body geometry is that of a MSE, we calculate the body shape found
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by the theory. This is done by solvingψ = C whereC is a constant, andψ is given in

(6.42). The streamline corresponding to the surface of the body is obtained by considering

the body far downstream,xc −→ ∞, whenyc −→ b. From (6.42),ψC −→ b in this limit,

and hence the streamline corresponding to the upper surfaceof the body is given by the

solution of

yc +
b

π
arg((xc − a) + iyc) −

yc

π

∫ a

0

F (x1)

(xc − x1)2 + y2
c

dx1 = b. (6.43)

Care must be taken with the choice of the argument function. This takes the form

arg((xc − a) + iyc)) = tan−1

(
yc

(xc − a)

)
for xc > a,

arg((xc − a) + iyc)) = π − tan−1

(
yc

|xc − a|

)
for xc < a.

Equation (6.43) is not valid in the vicinity of the leading edge, and in this region we

approximate the equation of the surface by a parabola of the form

yc =

(
2b2

a
xc

) 1
2

.

The reason that (6.43) is not valid in the vicinity of the leading edge, is because the

slender body assumption thatdF/dxc � 1 is no longer correct. As we approach the

leading edge of a blunt body such as a MSE, the gradient of the surface becomes infinite,

and hence violates this assumption. Figures 6.9 and 6.10 show the breakdown of (6.43)

as the leading edge is approached, and they also show the matching between the leading

edge parabolic solution and the slender body solution. For the smaller,20 : 1, aspect

ratio in figure 6.9, we see a relatively small matching regionbetween the two solutions,

but as the aspect ratio increases to100 : 1 in figure 6.10 we see that the length of the

matching region, between the two solutions, increases. This is due to the slender body

theory becoming a better approximation to the MSE, because alarger aspect ratio means

that the body is more slender, i.e. the gradient of the surface is smaller. This leading

edge region, and the breakdown of the slender body theory arediscussed in more detail in

§6.2.5, when we consider the slip velocity and pressure gradient produced by the slender

body theory.
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Figure 6.9: Plot of the matching between the leading edge parabolic solution (dotted line)
and the slender body solution (solid line) for a20 : 1 MSE. Figure (b) shows a more
detailed plot of figure (a).
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Figure 6.10: Plot of the matching between the leading edge parabolic solution (dotted
line) and the slender body solution (solid line) for a100 : 1 MSE. Figure (b) shows a
more detailed plot of figure (a).

A selection of body shapes for different aspect ratios is plotted in figure 6.11, and in

figure 6.12 we see two different aspect ratios plotted with the corresponding MSE that

they are approximating. In both these figures, the leading edge is approximated by a

parabolic body. We see that as the aspect ratio increases, the slender body approximation

becomes much more accurate. This is because the higher aspect ratio means the body

is becoming more ’slender’ in the sense thatdF/dxc is becoming much smaller. The

agreement between the MSE and the higher aspect ratio slender body theory can also be
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Figure 6.11: Plot of the approximations to the MSE for the three different aspect ratios,
20 : 1, 40 : 1 and100 : 1.
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Figure 6.12: Plot of a comparison of the upper body surface for the MSE and the slender
body approximation to the MSE for the aspect ratios (a)20 : 1 and (b)100 : 1.

seen in figure 6.13, which shows a plot of the curvature for thetwo aspect ratios,20 : 1 and

100 : 1, where the curvatureκ is defined by (6.28). We see that for the20 : 1 aspect ratio,

the MSE and the slender body have good agreement up to the point where the curvature
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Figure 6.13: Plot of a the curvature comparing the slender body theory (solid line) with
the MSE (dotted line) for the aspect ratios (a)20 : 1 and (b)100 : 1.

starts to become constant, but then the slender body’s curvature tends to zero at a more

constant rate than the MSE. For the100 : 1 MSE on the other hand, we observe very good

agreement between the MSE and the slender body, for allxc considered.

6.2.5 Slip velocity and pressure gradient

The steady slip velocity,Uf , on a MSE is given by

Uf = (u2 + v2)
1
2 , (6.44)

whereu andv are given by

u = 1 +
1

π

(
b(xc − a)

(xc − a)2 + y2
c

−
∫ a

0

F (x1)((xc − x1)
2 − y2

c )

((xc − x1)2 + y2
c )

2
dx1

)
,

v =
yc

π

(
b

(xc − a)2 + y2
c

+ 2

∫ a

0

F (x1)(x1 − xc)

((xc − x1)2 + y2
c )

2
dx1

)
.

If we consider the complex form of the velocity (6.39) evaluated atxc = 0,

u− iv = 1 − b

πa
− 1

π

∫ a

0

F (x1)

x2
1

dx1, (6.45)

we find that for blunt bodies, i.e. for bodies where there is nodiscontinuity in curvature at

the nose, we get infinite velocities at this point, and hence we need a local solution about

the nose, which has to be matched to the slender body solution. The MSE is a blunt body,
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and the smallxc expansion of (6.36) is

F (xc) ∼ s1x
1
2
c + s3x

3
2
c + s5x

5
2
c + s7x

7
2
c +O(x

9
2
c ), (6.46)

where

s1 = b

(
2

a

) 1
2

,

s3 = − b

4a

(
2

a

) 1
2

,

s5 =
7b

32a2

(
2

a

) 1
2

,

s7 = − 41b

128a3

(
2

a

) 1
2

.

Local solution near the nose

For the local solution near the nose, we introduce scaled variables, scaled on the dimen-

sionless nose radius,r = rMSE, given by (6.25). The local solution, to leading order, is

flow past a parabola as discussed in detail in chapter 5, so we just present the results here.

The variables,Z, in the nose region are related to the slender body variables, z, by

z =
r

2
(Z2 + 1),

and the complex potential,w, in the vicinity of the nose is

w =
1

2
Ur(Z − i)2,

where the surface of the body is given byIm(Z) = 1 andU is a constant. Thus we can

write the slip velocity in terms ofxc = Re(z) as

Uf =
Ux

1
2
c

(xc + r
2
)

1
2

. (6.47)

This solution is then matched with the slender body solution(6.39) to give

U = 1 − b

πa
+
s
√

2b

πa
− 1

π

∫ a

0

(
F − b

(
2

a

) 1
2

x
1
2
1

)
1

x2
1

dx1, (6.48)

From (6.44) it is straightforward to plot the slip velocity as a function ofxc, however

in previous chapters, we plotted the slip velocities with respect toξ which is defined in
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(2.33). To make the calculation ofξ more straightforward, we change the variable of

integration fromx to xc, wherex is measured along the body. Hence we have

ξ =

∫ xc

0

Uf (xc)

(
1 +

(
dyc

dxc

)2
) 1

2

dxc. (6.49)

In the local leading edge region, we findξ = Uxc, whereU is given by (6.48). Else-

where we evaluate the integral by means of the trapezoidal rule. Figure 6.14(a) shows the
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Figure 6.14: Plot of the slip velocity on (a) a20 : 1 MSE and (b) a100 : 1 MSE as a
function ofxc, showing the matching region between the leading edge region (solid line)
and the slender body theory (dotted line).
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matching region between the slender body theory, and the solution in the nose region for

a 20 : 1 MSE. The overlap region is very hard to see, due to the chosen large value of

ε = (90 × 10−6)
1
6 . This value is the same as that used in figure 6.15, and is chosen so

that results can be easily compared with those of Wanderley and Corke (2001). The size

of this over lap region increases as the aspect ration of the MSE increases, and this can

be seen in figure 6.14(b) which shows the two slip velocities for a100 : 1 MSE. For the

100 : 1 MSE, the overlap region is hard to see because the two solutions are close to each

other over the whole region considered, however it is clearer than for the20 : 1 MSE.

Figure 6.15 shows a plot of the slip velocity from the slenderbody theory approxima-

tion of the MSE for different aspect ratios, as a function ofξ for the caseε6 = 90× 10−6.

The constantε only affects the unsteady solution, whereas the steady solution is indepen-

dent ofε, however the value ofε enters the streamwise length scaleξ, and hence we have

to consider it in the steady solution too. The slip velocity is made up of the two solutions,

given by (6.44) in the main region, and (6.47) close to the nose. Figure 6.15(a) shows the

slip velocity, as it rises from0 at ξ = 0, however on this scale, we see very little detail

of the curves outside the nose region, as their maximums are actually quite small. Thus

figure 6.15(b) shows a close up of the curves aroundUf = 1, where we can see a rapid

increase in the slip velocity until it reaches a value close to its maximum, and then a slow

growth until it reaches it’s maximum, before decaying away to 1. The value ofξ where

the maximum occurs increases as the aspect ratio increases,and also the maximum value

of Uf itself decreases. The maximum value ofUf and its correspondingξ value can be

see in table 6.7. For the smaller aspect ratios, the maximum is reached earlier compared

to the larger aspect ratios, and also the slip velocity tendsto 1 faster for the smaller aspect

ratios. The results presented in figure 6.15 are calculated with ε6 = 90 × 10−6, how-

ever changing the value ofε doesn’t affect the shape of the curves, all this affects is the

value ofξ, i.e. changingε acts like multiplyingξ by a function ofε. The steady base

flow would be independent ofε if it were plotted against the variablexw = Rexc/RL,

used by Wanderley and Corke (2001), whereRe = ε−6 andRL is the Reynolds number

based on the length of the body. The reason we do not use this variable here is because,
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Figure 6.15: Plot of the slip velocity from the slender body theory approximation to the
MSE as a function ofξ, for the aspect ratios20 : 1, 40 : 1 and 100 : 1, and with
ε6 = 90 × 10−6. Figure (b) is a more detailed plot of figure (a).

our analysis in the leading edge region was non-dimensionalised using a different length

scale to Wanderley and Corke, which left theε scaling in. To keep the variables used in

this section consistent with the variables from chapters 4 and 5, we decided against using

thexw variable.

Experimentalists typically report pressure distributions rather than fluid velocities,

hence we don’t have any experimental data to compare our results with. However a more
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a : b ξmax Uf (ξmax)
20 : 1 2.223 1.037
40 : 1 4.447 1.020
100 : 1 11.146 1.008

Table 6.7: Values of the maximum value ofUf for the MSE for the caseε6 = 90 × 10−6

and the corresponding value ofξmax.

suitable quantity to measure in experiments is the pressureon the surface of the body,

and it is this which Wanderley and Corke (2001) compares in their numerical model. We

define the pressure coefficient,Cp to be

Cp =
2(p∗ − p∗∞)

ρU2
∞

, (6.50)

wherep∗ is the dimensional pressure on the plate andp∗∞ is the dimensional pressure as

xc −→ ∞. The numerical calculations ofCp here agree with those of Wanderley and

Corke (2001), but there is a typing error in equation (3) of Wanderley and Corke, and

a factor of2, present in (6.50), is missing from their equation forCp. The form of the

surface pressure can be found by considering the steady partof the slip velocity in (2.15),

and integrating with respect tox to give

p = −1

2
U2

f + C.

This form of the non-dimensional pressure is the same as thatgiven by Bernoulli’s equa-

tion along the streamline at the surface of the airfoil. Putting this pressure into dimen-

sional form, and then evaluating it far downstream, whereUf −→ 1, to findp∗∞ gives the

two equations

p∗ = −1

2
ρU2

∞U
2
f + C ′,

p∗∞ = −1

2
ρU2

∞ + C ′,

whereC ′ = ρU2
∞C.

Substituting these dimensional pressures into (6.50) gives the pressure coefficient as

Cp = 1 − U2
f . (6.51)
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The resultant plots forCp using the slender body theory are given in figure 6.16(b), and

they are of identical shape to the ones given in figure 4 of Wanderley and Corke (2001),

which is also presented in figure 6.16(a). The pressure distribution for the slender body

(a)
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Figure 6.16: Figure showing the surface pressure distribution,Cp on a MSE as a function
of xw, which is the streamwise variable of Wanderley and Corke (2001) defined in§4.6.3.
(a) is figure 4 taken from Wanderley and Corke, and (b) is the same plot produced with
our slender body theory. The ‘present study’ shown in figure (a) refer to the numerical
solutions of Wanderley and Corke.

approximation to the20 : 1 MSE in figure 6.16(b) is compared to the solid line in 6.16(a),

and the40 : 1 aspect ratio MSE result is compared to the long dashed line in6.16(b). For
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the 20 : 1 case, we see that the minimum of the pressure distribution isapproximately

−0.09 for Wanderley and Corke’s work, and−0.075 for the slender body approximation.

Similarly for the 40 : 1 MSE, the minimum pressure distributions are approximately

−0.05 for Wanderley and Corke’s work, and−0.04 for the slender body approximation.

Thus as the aspect ratio increases, the body becomes more slender, and hence the slender

body approximation gives a better approximation to the MSE.
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Figure 6.17: Plot of the pressure gradient,β, for the slender body theory approximation
to the MSE as a function ofξ, for the aspect ratios20 : 1, 40 : 1 and100 : 1. Figure (b)
is a more detailed plot of figure (a). Figure (c) shows a close up of figure (b) to make the
first minimum inβ clearer.

Now that we have calculated the slip velocity for a MSE, we cannow convert this into

the pressure gradient,β given by (2.36). By changing variables fromξ to xc to simplify

the algebra, we find

β =
2ξ

U2
f

(
1 +

(
dyc

dxc

)2
)− 1

2
dUf

dxc

. (6.52)
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The form ofβ in the nose region (xc � r) can be found simply as

β =
r

2xc + r
,

wherer = rMSE = b2/a. The resulting calculations forβ can be seen in figure 6.17. As

for the slip velocity plots, figure 6.17(a) shows the pressure gradient as it decays from 1

down to zero, but to get a better view of what is happening aroundβ = 0, we have plot-

ted figure 6.17(b). As for the Rankine body, we observe a regionof favourable pressure

gradient close to the nose, and then a region of adverse pressure gradient further down-

stream. The pressure gradients decay from1 towards zero, and then reach a minimum

value, greater than0, rise slightly, and then decay to another minimum which is less than

0 before increasing again towards zero. The first minimum for the 20 : 1 MSE is seen

more clearly in figure 6.17(c). As the aspect ratio is increased, we find that both the min-

imums are shifted downstream, and that both the values at these minimums are closer to

β = 0. Theξ values for both these minimums and the corresponding valuesof β are given

in table 6.8. As with the slip velocity, a change in the value of ε just acts as a scaling factor

on the valueξ, and doesn’t actually affect the shape of the curves. The link between the

a : b ξ1 β(ξ1) ξ2 β(ξ2)
20 : 1 0.932 0.006939 4.107 -0.08292
40 : 1 1.356 0.001977 8.034 -0.04768
100 : 1 2.560 0.000264 19.830 -0.02050

Table 6.8: Values of the minimum values ofβ for the MSE for the caseε6 = 90 × 10−6

and the corresponding values ofξ1 andξ2.

pressure gradientβ and the geometry of the MSE can be seen in figure 6.18, which plots

the pressure gradient and the curvature,κ, against the chord lengthxc for a 20 : 1 MSE.

The first minimum which occurs aroundxc = 1, along with the next maximum, are due

to the curvature of the body becoming more constant, and decaying much slower. Once

this happens, the pressure gradient becomes adverse, and starts to decay to the second

minimum. This second minimum occurs aroundxc = 4 which is the point at which the

curvature is almost0, and the body resembles that of a flat plate. Over the rest of the body

we see the pressure gradient recovering to the value for a flatplate.
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Figure 6.18: Plot of the the pressure gradient,β and the curvatureκ for a 20 : 1 MSE
generated using slender body theory.

In order to use the PSE to calculate the T-S wave growth rate for the MSE, we require

the largex form of Uf (x) to find the constant,α multiplying thex−1 term in (2.41). In

the analysis below, the variablex is again the streamwise variable along the body, andxc

is the usual Cartesian coordinate. The largexc form of (6.44) is

Uf ∼ 1 +
b

πxc

+

(
ab

π
− 1

π

∫ a

0

F (x1)dx1

)
1

x2
c

+O
(
x−3

c

)
, (6.53)

where we have used the fact that

yc ∼ b− b2

πxc

+O
(
x−2

c

)
,

asxc −→ ∞. To write the slip velocity in terms ofx, rather thanxc, we use the fact that

dx

dxc

=

(
1 +

(
dyc

dxc

)2
) 1

2

,

to show that

x ∼ xc −
b4

6π2x3
c

+O
(
x−4

c

)
,
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for largexc, and consequently that

xc ∼ x+
b4

6π2x3
+O

(
x−4
)
,

asx −→ ∞. Substituting this into (6.53) gives the largex form of the slip velocity as

Uf ∼ 1 +
b

πx
+

(
ab

π
− 1

π

∫ a

0

F (x1)dx1

)
1

x2
+O

(
x−3
)
. (6.54)

Thus, comparing (6.54) with (2.41) we see that for the MSE,α = b/π, which is inde-

pendent ofa, and hence independent of the aspect ratio. This may seem a little counter

intuitive, however, we are in a region far from the leading edge of the body, and so the

affect of the aspect ratio has diminished. This behavior hasbeen observed before by

Nichols (2001), who found that for a body generated by a source and a sink, theO (x−1)

correction term to the slip velocity was in fact the body halfthickness divided byπ.

Using the fact thatα = b/π, we can calculate the form of the lowest order Lam-

Rott eigenmode from (2.70) and (2.87), by settingj = 1. This initial mode shape and

the initial eigenmode given bydT1/dξ, whereT1 is given in (2.75), are then used as

initial conditions to the PSE (2.102) which can be marched tolower branch to give the

eigenmode amplitude there. To complete the calculation of the T-S wave amplitude at

lower branch, the receptivity coefficient needs to be calculated. This is done by using the

method of Nichols (2001), who compares the asymptotic solution with the full numerical

solution in the leading edge region in a part of the complex plane, where the lowest order

eigenmode dominates the solution. Nichols conducted this numerical procedure for a

source and a sink in a uniform flow, and this method can be extended by adding more

sources and sinks along the real axis, until we have the same source distribution as we do

for our slender body theory.

6.3 Summary

In this chapter, we have presented T-S wave amplitude calculations at lower branch for

a Rankine body, as we did for the parabola in chapter 5. We also presented the method

of slender body theory, to approximate the geometry of the MSE, and allow us to calcu-
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late the inviscid slip velocity,Uf , and the pressure gradient,β, at the outer edge of the

boundary layer.

Unlike the parabola, the Rankine body has a pressure gradientwhich starts off favourable

at the nose, then becomes adverse downstream, tending to zero far downstream. This be-

haviour moves the neutral stability point upstream of the corresponding flat plate value,

and for the Rankine body we also found that as the nose radius increases, the amplitude

of the eigenmode, excluding the receptivity coefficient, also increases. However, this

combined with the rapid decrease in the receptivity coefficient for the Rankine body pro-

duces T-S wave amplitudes which have a double maximum appearance as the nose radius

increases, for certain values ofε. For small values ofε this behaviour is clearly seen,

however asε increases to values more readily found in wind tunnel experiments, then this

behaviour disappears, and we are left with a T-S amplitude which decreases from the flat

plate value. Thus if experiments were carried out on the Rankine body, it is unlikely that

parameter ranges which exhibit this double maximum would beattainable and it would

be expected that only the decrease in amplitude compared to the flat plate value would be

seen.

When comparing the shape of the parabola, Rankine body and the MSE, it was shown

that the geometry of the MSE lies between the other two bodies. However, the MSE

exhibits a very different surface curvature, due to the removal of the junction of the el-

liptical edge and the flat plate, and this produces a different form of the pressure gradient

compared to the parabola and the Rankine body.

The MSE itself is modelled using slender body theory and the results for the slip

velocities and pressure distributions proved to be very satisfactory, when compared to the

work of Wanderley and Corke (2001). The pressure distributions have a minimum close

to the nose, which decreases for larger aspect ratios, although the pressure tends to zero

faster for the smaller aspect ratio. The pressure gradientson the other hand have a small

positive maximum before decreasing to their minimum adverse pressure gradient. Both

this maximum and the minimum move closer to the zero pressuregradient line, as the

aspect ratio increases. The slip velocities obtained have asimilar property to the pressure



6.3 Summary 183

gradient, with the largest slip velocity occurring for the smallest aspect ratio.

Using the slender body theory, we made comparisons of the pressure distribution with

the calculations of Wanderley and Corke (2001), and found good agreement as the aspect

ratio reduced. When the slender body theory is extended to give the form of the Lam-

Rott eigenmode in the leading edge region, and when we can use the PSE to march this

solution downstream, we will be able to make further comparisons with Wanderley and

Corke. Firstly, we will be able to make comparisons of the position of the lower branch

neutral stability point, and the neutral curve in general. Secondly, we will be able to

calculate the amplitude of the T-S wave at lower branch asε varies, and compare these

results with figure 9 from Wanderley and Corke.



184

Chapter 7

Conclusions

In this work, we have focused our attention on the propagation of Tollmien-Schlichting

waves, through the Orr-Sommerfeld region of a two-dimensional boundary-layer on an

airfoil. In particular we have considered the propagation of T-S waves generated by an

energy conversion process in a region at the nose of the body,where the body has con-

tinuous curvature and where the inviscid slip velocity tends to a constant far downstream.

The disturbances in the nose region for a flat plate were foundto be Lam-Rott eigenmodes

(Lam and Rott, 1960). For more general bodies, these disturbances were generalizations

of these Lam-Rott eigenmodes, with added components to account for the mean pressure

gradient. We were only concerned with the propagation of thelowest order eigenmode

of this set, as it is this mode which matches (in the matched asymptotic sense) to the T-S

wave, which exhibits spatial growth downstream in the Orr-Sommerfeld region. The main

aim of this work was to compare results for T-S wave amplitudes in the Orr-Sommerfeld

region with existing direct numerical schemes and experiments, in order to help to bridge

the gap between numerical and experimental results.

All of the results are discussed in more detail at the end of the appropriate chapter,

so only the more important results are discussed here. In chapter 2 we formulated the

asymptotic form of the generalized Lam-Rott eigenmodes, including the outer inviscid

layer, where this had not previously been derived. We also derived the generalized form

of the Parabolized Stability Equation, for non-zero pressure gradients, for which the Lam-

Rott eigenmodes provide us with a suitable upstream boundarycondition. Both these
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results are valid for bodies for which the Navier-Stokes equations can be approximated by

the plane wall boundary-layer equations to leading order. The two methods are completely

determined by the inviscid slip velocity in its far downstream limiting form, and in fact,

we only require the coefficient multiplying the first correction term, to produce results to

the desired order. Hence, combining the asymptotics in chapter 2 with the numerics in

chapter 3, allows us to solve a huge range of receptivity problems, where the slip velocity

is known fully in terms of the streamwise variable.

For the case of a semi-infinite flat plate, we were able to utilize the asymptotic form

of the wavenumber and mode shape of the T-S wave given in Goldstein (1983), to justify

fully our PSE results in chapter 4. For sufficiently large values of the Reynolds number,

we were able to show that the PSE method is problem free, because of the well defined

matching region. For smaller values of the Reynolds number, we found inconsistencies in

our results when compared with the asymptotics, and this wasattributed to the difficulties

in deriving theO(ε3) term of the asymptotics (Goldstein, 1982). Thus, we concluded

that even if this term is correct to the desired order, it is impractical to try to extend the

asymptotics to other bodies.

In chapter 4 we also examined the occurrence of initial transients which appear in the

solution to the PSE for particular values of the Reynolds number and step size. No spe-

cific cause for these transients was found, although we foundstrong evidence to suggest

that these transients are consequences of having small contributions from higher Lam-

Rott eigenmodes in the initial condition to the PSE. The higher eigenmodes enter via the

composite solution of the three deck eigenmode structure. These higher Lam-Rott modes

match onto higher T-S modes in the Orr-Sommerfeld region, which initially decay more

slowly than the unstable T-S wave, and so we have a region where they may dominate the

solution. It is this domination that we believe is the cause of these transients.

The T-S wave amplitude calculations at the lower branch neutral stability point for the

parabola, in chapter 5, were consistent with experiments, where the amplitude was seen

to decrease with increasing Strouhal number. This has been attributed to the favourable

pressure gradient which exists along the whole boundary of the parabola. For the values
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of the Reynolds number considered, it was seen that the slightincrease in receptivity co-

efficient for small Strouhal numbers, noted by Hammerton andKerschen (1996), makes

very little difference to the amplitude of the T-S wave, due to the fact that the amplitude

of the eigensolution had decayed by a sufficient amount to force the amplitude of the T-S

wave to decay from the flat plate value. However, corresponding results for the Rank-

ine body in chapter 6 are much more interesting, as the T-S wave amplitude was found

to increase and decrease depending on the values of both the Reynolds number and the

nose radius. This is due to the adverse pressure gradient along the body, which forces the

eigensolution’s amplitude to increase with increasing nose radius, which is in direct con-

flict with the decreasing value of the receptivity coefficient. However, experimentalists

may not be able obtain this result in wind tunnel experiments, because the wind tunnel

has a restriction on the range of Reynolds number that it can produce. Thus the experi-

mentalists will probably just observe a decrease in T-S waveamplitudes at lower branch,

as the nose radius is increased, similar to the parabola.

The slender body theory work on the Modified Super Ellipse (MSE) has a lot of scope

for further work. Although very little work has been carriedout on the MSE in this thesis,

we believe that a detailed study of how the slender body work relates to numerical and

experimental data will be of huge benefit. The most interesting work will possibly be

on the far downstream section, where the slender body theoryis tending to a flat plate,

whereas the MSE is exactly a flat plate in this region. Work in this thesis concludes that

this makes very little difference to the pressure field alongthe surface of the body, but

this could still lead to large differences in the amplitude of the T-S wave downstream.

The MSE extension could also be taken as far as to calculate downstream amplitudes in

a similar way as we did for the parabola and the Rankine body. However the receptivity

coefficient for an MSE would have to be calculated first, usingmethods similar to Nichols

(2001).

This work could also be extended to look at other airfoil geometries such as cambered

airfoils (Hammerton and Kerschen, 2005) or Joukowski airfoils. A relatively simple ex-

tension might be to consider a parabola at an angle of attack to the free-stream, as then
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results could be compared with those of Corke and co-workers (Haddad and Corke, 1998,

Erturk and Corke, 2001, Erturket al., 2004 and Haddadet al., 2005). The asymptotic/PSE

method described in this thesis could also be extended to consider other mechanisms of

receptivity, such as the receptivity due to an element of surface roughness. Our PSE

method is linear, so we can compare the evolution of T-S wavesfrom each receptivity

mechanism separately. Thus we can make a comparison of the amplitudes of T-S waves

generated at the leading edge and waves generated at surfaceroughness elements, and see

which type of wave dominates at the neutral stability point,as the position of the rough-

ness element is changed. However, a simple starting place for further research would be

to use the source/sink bodies studied by Nichols (2001) to look at the effect of pressure

gradients on the overall T-S wave amplitude downstream.

To summarize, we have developed a method to calculate T-S wave amplitudes at

streamwise positions along a body via the numerical solution of the Parabolized Stability

Equation, which uses the leading edge asymptotic result as its initial condition. Using this

method we have obtained T-S wave amplitudes for various bodyshapes, which agree with

other numerical and experimental schemes, where these results are available. This method

has the potential to solve many receptivity problems, some of which are described in this

chapter, and contribute greatly to this area of applied mathematics. The recent develop-

ments described in this thesis and in other papers addressedin this work, in my opinion,

show that the area of receptivity and stability has a bright and exciting future.
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Appendix A

Derivation of the Orr-Sommerfeld

equation

In this appendix, we derive the Orr-Sommerfeld equation, which is the governing equation

for parallel flow problems. The dimensional Navier-Stokes equations for the fluid velocity

vector,ũ∗
T

= (U, V,W ), in Cartesian(x∗, y∗, z∗) coordinates is

∂ũ∗
T

∂t∗
+ ũ∗

T
· ∇∗ũ∗

T
= −1

ρ
∇∗p̃∗T + ν∇∗2ũ∗

T
, (A.1)

∇∗ · ũ∗
T

= 0, (A.2)

whereρ is the fluid density,ν is the kinematic viscosity,̃p∗T is the pressure, and

∇∗ =

(
∂

∂x∗
,
∂

∂y∗
,
∂

∂z∗

)
,

where∗ denotes a dimensional quantity.

Using suitable dimensionless variables, the Navier-Stokes equations become

∂ũT

∂t
+ ũT · ∇ũT = −∇p̃T +

1

Re
∇2ũT, (A.3)

∇ · ũT = 0, (A.4)

whereRe is the Reynolds number, which is defined by,

Re =
U0L

ν
,

whereU0 is a common velocity scale, andL is a common length scale. Typical velocity

scales could be a constant velocity, in a constant flow over a wing, or a mean velocity,
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in channel flow. Similarly a typical length scale could be thewidth of a channel, or the

length of an airfoil etc.

For parallel flows, we assume the velocity has the form

ũT = U(y)x̂ + εũ(x, t), (A.5)

whereU(y) is the purely parallel part of̃uT, ũ is the perturbation velocity, andε is a

small parameter. The pressure has a main component which drives the parallel flow, and

a perturbation component, in the form

p̃T = P + εp̃. (A.6)

Substituting (A.5) and (A.6) into (A.3) gives,

ε
∂ũ

∂t
+ εU

∂ũT

∂x
+ εũT ·∇(U x̂) = −∇P − ε∇p̃+

1

Re
(∇2U)x̂+

ε

Re
∇2ũ+O(ε2). (A.7)

Equating the coefficients ofε0 gives

−∇P +
1

Re

d2U

dy2
x̂ = 0.

Theŷ andẑ components implyP = P (x), hence thêx component gives,

dP

dx
=

1

Re

d2U

dy2
.

The right hand side of this equation is a function ofy only, and the left hand side is a

function ofx only, hence both sides must be a constant. So the base flow musthave a

constant pressure gradient, and the velocity profile must bequadratic,

U(y) = ry2 + sy + t, (A.8)

wherer, s andt are constants, andr = Re/2 dP/dx.

TheO(ε) equation from (A.7) gives

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽU ′x̂ = −∇p̃+

1

Re
∇2ũ, (A.9)

whereũ = (ũ, ṽ, w̃), andU ′ = dU/dy.
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We can now separate the variables of this equation by taking independent normal

modes of the form

ũ = (u(y), v(y), w(y))ei(kx+lz−αct), (A.10)

p̃ = p(y)ei(kx+lz−αct), (A.11)

wherek andl are the streamwise and transverse wavenumbers andc is the wave speed.

Substituting these into (A.9) gives

(D2 − α2 − (ik Re)(U − c))u = ik Re p+Re U ′ v, (A.12)

(D2 − α2 − (ik Re)(U − c))v = Re Dp, (A.13)

(D2 − α2 − (ik Re)(U − c))w = il Re p, (A.14)

whereα = (k2 + l2)
1
2 andD ≡ d/dy. The continuity equation gives

iku+Dv + ilw = 0. (A.15)

We now use Squire’s transformation to simplify the system. This transformation re-

duces the problem from a 3D problem to a 2D one. Squire’s transform is

αū = ku+ lw,

p̄ =
α

k
p,

v̄ = v,

R̄e =
k

α
Re,

where the quantities on the left-hand side are the new transformed variables.

Now using this transform, and eliminatingu,w andp from (A.12), (A.13), (A.14) and

(A.15), and dropping the bar for clarity, we get the equation

(U − c)(D2 − α2)v − U ′′v =
1

iαRe
(D2 − α2)2v. (A.16)

This equation is known as theOrr-Sommerfeld equation. This is a fourth order equation,

and hence we need four boundary conditions. As with most viscous fluid problems, the
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boundary conditions are, no flow at the solid boundariesy = y1 andy = y2. The no

normal flow condition is simply

v(y1) = v(y2) = 0.

To find the condition for no tangential flow, we take (A.15), use Squire’s transformation

and drop the bar for clarity. Doing this we find

Dv = −αu,

henceu = 0 aty = y1, y2 implies

Dv(y1) = Dv(y2) = 0.

Hence the boundary conditions are

v(y1) = v(y2) = Dv(y1) = Dv(y2) = 0,

wherey1 andy2 can be infinite. Ify1 and/ory2 are infinite, then we use the condition that

the perturbation velocity has decayed to zero at infinity.
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Appendix B

Airy functions

Airy functions are solutions of

d2w(z)

dz2
− zw(z) = 0, (B.1)

which is known as Airy’s (differential) equation, in the complexz plane. It has three pairs

of linearly independent solutions

Ai(z) , Bi(z),

Ai(z) , Ai(ze
2πi
3 ),

Ai(z) , Ai(ze−
2πi
3 ).

For realx, the functionAi(x) and its derivativeAi′(x) are plotted in figure B.1. Both

these functions tend to zero exponentially asx −→ ∞, and asx −→ −∞, Ai(x) −→ 0.

The functionBi(x) and its derivativeBi′(x), which are plotted in figure B.2, both have

exponential growth asx −→ ∞, but againBi(x) −→ 0 asx −→ −∞.

The Wronskian of the linearly independent functionsAi(z) andBi(z) is

W (Ai(z), Bi(z)) = Ai(z)Bi′(z) − Ai′(z)Bi(z) =
1

π
. (B.2)

For more information on the Airy functions and their properties, see Abramowitz

(1964), page 446.
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Figure B.1:Ai(x), Ai′(x)
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Appendix C

Chebyshev polynomials

Chebyshev polynomials are widely used in spectral collocation problems, especially in

parallel flow problems, where the domain can be mapped to the[−1, 1] domain, where

these polynomials are valid.

Chebyshev polynomials are an orthogonal set of polynomials which satisfy the differ-

ential equation,

(1 − x2)
d2y

dx2
− x

dy

dx
+ n2y = 0, (C.1)

wheren is an integer. We define thenth Chebyshev polynomial of the first kind by

Tn(x) = cos(n cos−1 x). (C.2)

These polynomials are orthogonal, with respect to the weighting function

w(x) = (1 − x2)−
1
2 ,

and satisfy the orthogonality condition,

∫ 1

−1

(1 − x2)−
1
2TnTmdx =





0, n 6= m

π
2
, n = m 6= 0

π, n = m = 0

. (C.3)

If we write cos θ = x, and use the trigonometric identity

cosnθ + cos(n− 2)θ = 2 cos θ cos(n− 1)θ,
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then we see that Chebyshev polynomials satisfy the recurrence relation forn ≥ 2

Tn(x) = 2xTn−1(x) − Tn−2(x). (C.4)

From (C.2) we can easily see that

T0(x) = 1,

T1(x) = x.

Then using (C.4) we can write down the first few Chebyshev polynomials.

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

which are plotted in figure C.1. Note that the odd numbered polynomials are odd func-

tions, and the even numbered ones are even functions. This fact comes in handy when

solving symmetric problems.
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Figure C.1: Plot of the Chebyshev polynomials,Tn(x), for n = 1, 2, 3, 4, 5.



196

Another fact which follows from (C.2) is that Chebyshev polynomials satisfy the con-

dition
cn

n+ 1
T ′

n+1(x) −
dn−2

n− 1
T ′

n−1(x) = 2Tn(x) (C.5)

for n ≥0, wherecn = dn = 0 if n < 0, c0 = 2, d0 = 1, andcn = dn = 1 if n > 0.

We can represent a functiong(x), defined onx ∈ [−1, 1], as a series of Chebyshev

polynomials,

g(x) =
N∑

i=0

aiTi(x),

where theai are constants. To findai we use (C.3), so that

ai =
2

π

∫ 1

−1

(1 − x2)−
1
2 g(x)Ti(x)dx,

a0 =
1

π

∫ 1

−1

(1 − x2)−
1
2 g(x)dx.

For more information on Chebyshev Polynomials, see Rivlin (1974).
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Appendix D

Derivation of equation (4.54)

This equation is merely stated in Goldstein (1982), howeverits derivation is important,

and is derived here.

We define

Γ† = πiU ′
0ζ0

(
Ai(ζ)

∫ ζ

ζ0

gBi(ξ)dξ −Bi(ζ)

∫ ζ

∞1

gAi(ξ)dξ

)
+
η̄2U ′

0

2

(
1 − (a1 + c̄)ζ0

c̄ζ

)
,

(D.1)

whereg = H̄1
d ln(A)

dx1
+ H̄2.

Changing the variable from̄η to ζ we find

− c̄

ζ0U ′
0

∫ ∞

0

Γ†dη̄ =

∫ ∞

ζ0

Γ†dζ.

Integrating the first term ofΓ† by parts and using (4.55), we end up with

∫ ∞

ζ0

Γ†dζ = πiU0ζ0

[∫ ζ

∞1

Ai(ζ)dζ

∫ ζ

ζ0

gBi(ζ)dζ −
∫ ζ

ζ0

Bi(ζ)dζ

∫ ζ

∞1

gAi(ζ)dζ

]∞1

ζ0

−πiU ′
0ζ0

∫ ∞1

ζ0

Wi

π
g dζ +

∫ ∞1

ζ0

η̄2U ′
0

2

(
1 − (a1 + c̄)ζ0

c̄ζ

)
dζ. (D.2)

Let us consider the first part of (D.2). We note that asη̄ (or ζ) −→ ∞,

g ∼ g∞ = λ0 + λ1ζ + λ2ζ
2 + λ3ζ

3,
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where

λ0 = − ic̄

U ′
0

(
c̄

ζ3
0

+
(a1 + c̄)

2

)
, (D.3)

λ1 =
ic̄

U ′
0ζ0

(a1 +
3

2
c̄), (D.4)

λ2 = − ic̄

2U ′
0ζ

2
0

(a1 + 3c̄), (D.5)

λ3 =
ic̄

2U ′
0ζ

3
0

. (D.6)

Note that in the first part of (D.2), the zero limit gives a zerocontribution, but to evaluate

the infinite limit, we have to insertg∞ for g, and carry out the resulting integrals, noting

that
∫
zBi(z)dz = Bi′(z), (D.7)

∫
z2Bi(z)dz = zBi′(z) −Bi(z), (D.8)

∫
z3Bi′(z)dz = z2Bi(z) − 2zBi(z) + 2

∫
Bi(z)dz, (D.9)

and similar results hold forAi(z).

We now define

I1 =

∫ ζ

∞1

Ai(ζ)dζ

∫ ζ

ζ0

g∞Bi(ζ)dζ, (D.10)

I2 =

∫ ζ

ζ0

Bi(ζ)dζ

∫ ζ

∞1

g∞Ai(ζ)dζ. (D.11)

So using (D.7), (D.8) and (D.9) we find

I1 − I2 = λ1

(
Bi′(ζ)

∫ ζ

∞1

Ai(ζ)dζ − Ai′(ζ)

∫ ζ

ζ0

Bi(ζ)dζ

)

+ λ2

(
ζ

(
Bi′(ζ)

∫ ζ

∞1

Ai(ζ)dζ − Ai′(ζ)

∫ ζ

ζ0

Bi(ζ)dζ

)
(D.12)

−
(
Bi(ζ)

∫ ζ

∞1

Ai(ζ)dζ − Ai(ζ)

∫ ζ

ζ0

Bi(ζ)dζ

))
(D.13)

+ λ3

(
ζ2

(
Bi′(ζ)

∫ ζ

∞1

Ai(ζ)dζ − Ai′(ζ)

∫ ζ

ζ0

Bi(ζ)dζ

)
(D.14)

− 2ζ

(
Bi(ζ)

∫ ζ

∞1

Ai(ζ)dζ − Ai(ζ)

∫ ζ

ζ0

Bi(ζ)dζ

))
+ EST, (D.15)

which upon using (4.55) becomes

I1 − I2 =
1

π

(
λ1Wi′ + λ2ζWi′ − λ2Wi+ λ3ζ

2Wi′ − 2λ3ζWi
)
. (D.16)
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This is now differentiated with respect toζ, so that it can be put under an integral sign,

which gives

d

dζ
(I1 − I2) =

1

π

((
λ1ζ + λ2ζ

2 + λ3ζ
3 − 2λ3

)
Wi+

(
λ1 + λ2ζ + λ3ζ

2
))
,

=
1

π

(
(g∞ − λ0 − 2λ3)Wi+

(
λ1 + λ2ζ + λ3ζ

2
))
, (D.17)

where we have used the fact thatWi′′ − ζWi = 1.

If we now write part 3 of (D.2) in terms ofζ andλi we find

η̄2U ′
0

2

(
1 − (a1 + c̄)ζ0

c̄ζ

)
= −iU ′

0ζ0

(
λ1 + λ2ζ + λ3ζ

2 +
c̄(a1 + c̄)

2iU ′
0ζ

)
, (D.18)

which on combining with part 1 of (D.2) and (D.17), we achieve(4.51).
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Appendix E

Free-stream disturbances at an incident

angle

This appendix considers the effect on the receptivity coefficient if the free-stream distur-

bance interacts with the body at a non-zero incident angle,θ. In chapters 4 and 5 we

have been able to ignore the length of the body, however, whenthe incoming flow is not

symmetric, the length of the body affects the local flow at theleading edge. Hence, we

consider a body of length2b with a dimensional nose radius ofrn, shown in figure 5.7,

where the leading edge is assumed to be parabolic.

From equation (5.5) we see that the non-dimensional Cartesian (xc, yc) coordinates

are related to our parabolic(ξ,N) coordinates by

xc + iyc =
1

2

(
(Z + iS

1
2 )2 + S

)
,

whereZ =
(
(2ξ)

1
2 + iε3N

)
. Under this conformal mapping, the parabola in figure 5.1

gets mapped to flow in a right angle corner in theZ−plane, as shown in figure E.1.

In theZ−plane, the complex potential for this flow is given by

w(Z) =
1

2
Z2,

=
1

2

(
(2ξ)

1
2 + iε3N

)2

,

and hence the velocity field is given by

u− iv =
dw

dz
=
dw

dZ

dZ

dz
=

Z

Z + iS
1
2

.
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(a)

ξ=0

N=0

(b)

N

ξ

Figure E.1: Figure showing the symmetric flow around a parabolic body (a) in the
z−plane, and (b) in theZ−plane.

The unsteady, inviscid slip velocity on the body (N = 0) is then given by

Ud(ξ) =

∣∣∣∣
dw

dz

∣∣∣∣ =

∣∣∣∣∣
(2ξ)

1
2

(2ξ)
1
2 + iS

1
2

∣∣∣∣∣ =
(2ξ)

1
2

(2ξ + S)
1
2

, (E.1)

which is the same as for the steady component,Uf , as we noted in§5.1. This form of

the slip velocity is the symmetric part, which represents flow alongξ = 0 and around the

body as shown in figure E.1(a). We now need to consider the antisymmetric flow which

moves parallel to the plate from the bottom surface to the topsurface as shown in figure

E.2(a).

(a)

N=0

ξ=0

(b)

N

ξ

Figure E.2: Figure showing the anti-symmetric flow around a parabolic body (a) in the
z−plane, and (b) in theZ−plane.

The complex potential for the anti-symmetric flow in theZ−plane is given by

w(Z) = Z,
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which leads to an antisymmetric unsteady slip velocity of

Uanti
d (ξ) =

1

(2ξ + S)
1
2

. (E.2)

For low Mach numbers, the acoustic wavelength2πc/ω, wherec is the speed of sound,

is long compared to the hydrodynamic length scaleU∞/ω. Thus, outside the boundary-

layer, the flow can be assumed to be inviscid and irrotational, so the complex potential

theory above shows that the local flow has a slip velocity of the form

Ud(ξ) = κs(θ)
(2ξ)

1
2

(2ξ + S)
1
2

+ κa(θ)
1

(2ξ + S)
1
2

. (E.3)

The coefficientsκs andκa multiplying these eigensolutions are independent of the Strouhal

number, and only depend onθ. Substituting the form of (E.3) into (2.37) and using (5.6)

gives

F (φ2) = κs

(
i(2ξ + S) − 2S

2ξ + S

)
+

κa

(2ξ)
1
2

(
i(2ξ + S) +

2ξ − S

2ξ + S

)
, (E.4)

whereF (φ2) is the LUBLE operator defined by

F (φ2) ≡ φ2NNN + φ2NN (φ1 + 2ξφ1ξ) + φ2N

(
i(2ξ + S) − 2S

2ξ + S
φ1N − 2ξφ1Nξ

)

+ φ2φ1NN + 2ξ (φ1NNφ2ξ − φ1Nφ2Nξ) . (E.5)

Hence if we writeφ2 = κsφs +κaφa, then it follows that the receptivity coefficient on the

upper body of the surface is given by

C1(S, θ) = κs(θ)Cs(S) + κa(θ)Ca(S), (E.6)

where the solutions forCs andCa are found by solving

F (φs) =

(
i(2ξ + S) − 2S

2ξ + S

)
, (E.7)

F (φa) =
1

(2ξ)
1
2

(
i(2ξ + S) +

2ξ − S

2ξ + S

)
, (E.8)

respectively. The corresponding receptivity coefficient for the lower surface can be found

by replacingθ by−θ.

The symmetric and antisymmetric flow coefficients,κs andκa, are found by asymp-

totically matching the local velocity field near the nose, given by (E.3), to a global velocity
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field given by complex potential theory. The solution of these two coefficients depends

upon the reduced acoustic frequencyk = ωb/c, where againc is the speed of sound in

the undisturbed fluid. Sedov (1965) describes how to calculate the velocity field about a

thin wing, including the effects of compressibility, but ingeneral, no simple form of the

inviscid slip velocity can be obtained. We consider two cases which do lead to simple

slip velocities. The first being whenk � 1 which is the case of very small Mach num-

bers, when the acoustic wavelength is long compared to both the hydrodynamic length

scaleU∞/ω and the length of the airfoil chord. This leads to the flow being analyzed

using classical unsteady airfoil theory for incompressible flow. The second case is where

k � 1, which is when the acoustic wavelength is long compared to the hydrodynamic

length scale, but shorter than the airfoil itself, and this case is analysed using acoustic

diffraction theory.

E.1 Small Mach numbers (k � 1)

We assume that the airfoil semi-chord is the relevant lengthscale for this problem, and

since this is the relevant length scale for unsteady aerodynamic interaction, we can ignore

the thickness of the airfoil, except in the region of the nose, and hence it reduces to a

zero-thickness flat plate. The complex potential for this flow consists of two parts, a non-

circulatory part, and a part which is due to the circulation induced by vorticity shed from

the sharp trailing edge. The shed vorticity gets convected downstream from the body, so

we assume it takes the formγ(x, t) = γ̂ei(ax−t), wherea = ωb/U∞ is the aerodynamic

reduced frequency.

The flat plate is mapped to a circle in theZ−plane by the conformal mapping

z − 1 =
1

2

(
Z +

1

Z

)
,

which has an inverse mapping of

Z = z − 1 + (z(z − 2))
1
2 .
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The non-dimensional complex potential,w is then written as

w(Z) =
e−it

2

(
e−iθZ +

eiθ

Z

)
− iγ̂e−it

2π

∫ ∞

2

eiax0 ln

(
Z − Z0

Z − 1/Z0

)
dx0, (E.9)

where the second term is given by Milne-Thomson’s circle theorem, excluding the term

atZ = 0, which is used to eliminate any circulation induced by usingthis theorem (Ache-

son, 1990). We can do this because we are going to fix the value of γ̂ by using the unsteady

Kutta condition at the trailing edge. The unsteady Kutta condition states that the velocity

is finite at the trailing edge of the flat plate (Z = 1), and this is achieved if

γ̂ =
2π sin θ

∫∞
2
eiax0

(
x0

x0−2

) 1
2
dx0

. (E.10)

We wish to match this with the local solution given in (E.3), so we require the smallx

expansion of the velocity evaluated on the airfoil’s surface, wherex is the variable along

the body without any geometric effects. Doing this we find

u(x, 0±) ∼
(
±sin θ√

2
(1 + J(a))x−

1
2 + cos θ +O(x

1
2 )

)
e−it as x −→ 0, (E.11)

whereJ(a) is an effect of the vorticity shed from the trailing edge and is given by

J(a) =

∫∞
2
eiax0

(
x0−2

x0

) 1
2
dx0

∫∞
2
eiax0

(
x0

x0−2

) 1
2
dx0

= O(a−1) as a −→ ∞. (E.12)

The area we are interested in, is that of high reduced frequencies, so the effect of the

shed vortices in the vicinity of the leading edge is then muchsmaller than the contribution

of the non-circulatory part, by the factor ofO(a−1). Hence matching (E.11) with (E.3) as

ξ −→ ∞ gives, atO(x−
1
2 ) andO(1),

sin θ√
2

=
κa√
2a
,

cos θ = κs,

hence we see that

κs = cos θ, κa = a
1
2 sin θ. (E.13)

We see from this, that close to the nose, except whenθ is near0 or π, the slip velocity is

dominated by the antisymmetric part of the flow, and in fact the maximum flow speed of
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(b/rn)
1
2 is reached at the nose of the body. Also in thek � 1 limit, we note that the flow

near the nose, and hence the receptivity coefficient, is the same if the body has a rounded

trailing edge as well as a sharp trailing edge.

E.2 Use of acoustic diffraction theory (k � 1)

In this case, the acoustic wavelength is short compared to the length of the airfoil, and

the interaction can be analysed by taking the airfoil to be a semi-infinite flat plate. Sim-

ilar to the above case, on the scale of the acoustic wavelength, the airfoil appears as a

zero-thickness flat plate, so the problem reduces to the classical Sommerfeld diffraction

problem (Noble, 1958). The velocity potential for this unsteady flow is given by

φ(x, y) =

(
− i

k
eik(x cos θ+y sin θ) − sin

(
θ

2

)
sgn(y)

π(2k)
1

2

∫
∞

−∞

exp(−(λ2 − k2)
1

2 |y| − iλx)

(λ+ k cos θ)(λ+ k)
1

2

dλ

)
e−it,

(E.14)

where the functionsgn(y) is the sign function defined as

sgn(y) =





−1 for y < 0,

0 for y = 0,

1 for y > 0.

Differentiating (E.14) with respect tox, leads to a slip velocity on the body (y = 0) of

u(x, 0±) =

(
cos θeikx cos θ(1 ∓ erfΦ) ± sin

(
θ

2

) √
2eiπ/4

(πk)
1
2

x−
1
2

)
e−it, (E.15)

whereΦ = eiπ/4(2kx)
1
2 sin

(
θ
2

)
, anderf is the error function, and is defined as

erf(z) =
2√
π

∫ z

0

e−t2dt.

As we letx −→ 0,

u(x, 0±) ∼
(
± sin

(
θ

2

) √
2eiπ/4

(πk)
1
2

x−
1
2 + cos θ +O(x

1
2 )

)
e−it. (E.16)

Thus matching (E.16) with (E.3) asξ −→ ∞, we find

κs = cos θ, κa =
2eiπ/4

(πM∞)
1
2

sin

(
θ

2

)
, (E.17)

whereM∞ = U∞/c is the Mach number of the mean flow, which we have assumed to be

small. We again see that the antisymmetric component dominates the flow, except near
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θ = 0, however this time the slip velocity has a maximum value of2eiπ/4(c/πωrn) sin
(

θ
2

)

at the leading edge, which is independent of the semi-chord of the airfoil, b. We also note

that for the casek � 1, both the symmetric and anti-symmetric components were in

phase, but in this case, the antisymmetric component lags the symmetric component by

π/4 because of the effect of compressibility.
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Appendix F

Rankine body formulation

The Rankine body is formed by considering a line source in a uniform flow, so we can

write the dimensional complex potential,w∗ as

w∗ = U∞z
∗ +

K

2π
ln

(
z∗ − K

2πU∞

)
, (F.1)

whereK > 0 is the strength of the source, andz∗ = x∗c + iy∗c , where the subscriptc

denotes that these are the usual Cartesian coordinates. In (F.1) we have located the source

atK/2πU∞, so that the leading edge occurs atz∗ = 0. The following theory also holds for

the source at any point on thez∗ axis. Introducing the same non-dimensional quantities

as we did for the formulation of the governing equations in chapter 2, (F.1) becomes

w = z + A ln(z − A) + A ln

(
U∞

ω

)
, (F.2)

wherew∗ = U2
∞w/ω, and

A =
Kω

2πU∞
. (F.3)

We note that the complex potentialw = φ + iψ, whereφ is the velocity potential, andψ

is the stream function. Equating the real and imaginary parts of (F.2) leads to

φ = xc + A ln(|z − A|) + A ln

(
U∞

ω

)
, (F.4)

ψ = yc + A arg(z − A). (F.5)

We can also work out the velocity field by differentiating (F.2) with respect toz to give

u− iv = 1 +
A

z − A
. (F.6)
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Equation (F.6) can be solved to show that the stagnation point of this flow occurs atz = 0.

The streamlines for the flow are given from (F.5) asψ = ci, whereci are constants, and the

argument ofz is taken to lie in the rangearg(z) ∈ (−π, π]. The streamline which passes

through the stagnation point will be replaced by a solid body, and the other streamlines

shall then represent the flow around that body. At the stagnation point, (F.5) is evaluated

to giveψ = Aπ, hence the equation of the body is then given by

yc + A arg(z − A) = Aπ. (F.7)

We note from (F.6) that the flow velocity has a singularity at the pointz = A. This

however is of no concern to us, as it lies inside the streamline, which we are replacing by

an impermeable surface, and hence the singularity lies inside the body. Outside the body,

the velocity field is finite. The body is symmetric, so we need only concern ourselves with

the derivation of the equation for the upper surface. From (F.7) we see that the equation

for the body can be written as

yc + A tan−1

(
yc

xc − A

)
= Aπ, (F.8)

wheretan−1 is defined so thattan−1(p/q) ∈ [0, π/2] for p, q ≥ 0. We can then rearrange

this to give the equation of the upper surface of the body as

xc = A− yc cot
(yc

A

)
. (F.9)

We note that the functionyc cot(yc/A) has poles atyc = nAπ, wheren = 1, 2, 3, ..., and

it has a periodic behavior foryc > Aπ. Thus to make the equation of the upper surface of

the body single valued, we restrictyc ∈ [0, Aπ). We note from (F.8) that far downstream,

xc −→ ∞, yc −→ Aπ, so the asymptotic thickness of the body asxc −→ ∞ is 2Aπ.

To find the form of the slip velocity on the surface of the Rankine body, we substitute
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(F.9) into (F.6). Hence we find that

Uf = |u− iv|,

=

∣∣∣∣
xc + iyc

(xc − A) + iyc

∣∣∣∣ ,

=

(
x2

c + y2
c

(xc − A)2 + y2
c

) 1
2

,

=

(
1 +

A2

y2
c

sin2
(yc

A

)
− A

yc

sin

(
2yc

A

)) 1
2

, (F.10)

and we note that the slip velocity is parameterised by the parameteryc. In the formulation

of the main governing equations, we introduced the variableξ in (2.33) as a variable along

the surface of the body. We definedξ as the integral of the slip velocity along the body

from the leading edge, to a pointx, wherex is also measured along to body. In this case,

the slip velocity is only known in terms of the Cartesian parameteryc, hence by a change

of variables, we can define

ξ =

∫ yc

0

Uf (y
′
c)
dx

dyc

(y′c)dy
′
c, (F.11)

where

dx

dyc

=

(
1 +

(
dxc

dyc

)2
) 1

2

=

(
1 +

(
− cot

(yc

A

)
+
yc

A
cosec2

(yc

A

))2
) 1

2

. (F.12)

From these definitions, we can then see that the functionsβ(ξ) andΩ(ξ) defined in (2.36)

and (2.38) are also functions ofyc.

F.1 Introduction of scaled variables

As in chapter 5, we can introduce scaled variables so that we remove the dependence on

A from the equation of the body and the slip velocity. Here we define the scaled variables

ẑ = z/A andŵ = w/A. Thus introducing these and following the analysis throughfrom

the above section, we find that the equation of the body’s upper surface is given by

x̂c = 1 − ŷc cot(ŷc − ĉi), (F.13)
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whereĉi is a constant which corresponds to the streamlines of the flowand the streamline

for which ĉi = π corresponds to the surface of the body. Under these new variables, the

components of velocity become

û− iv̂ =
dŵ

dẑ
=

1

A

dz

dẑ

dw

dz
= u− iv,

= 1 +
1

ẑ − 1
. (F.14)

The streamlines for flow past a Rankine body in these scaled variables is shown in figure

F.1. We note that the streamlines external to the body are given by ĉi > π in the upper

half plane, and̂ci < −π in the lower half plane.

-3

-2

-1

 0

 1

 2

 3

-4 -2  0  2  4  6

x̂ c
ŷc

Figure F.1: Figure showing the streamlines around a Rankine body in the(x̂c, ŷc) plane.
Note that the streamlinêci = π denotes the surface of the Rankine body.

Under this change of variables, the slip velocityUf anddx/dyc become

Uf (ŷc) =

(
1 +

sin2(ŷc)

ŷ2
c

− sin(2ŷc)

ŷc

) 1
2

, (F.15)

dx

dyc

(ŷc) =
(
1 +

(
− cot(ŷc) + ŷccosec2(ŷc)

)2) 1
2
. (F.16)
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Thus we can actually remove the dependence onA from the pressure gradientβ(ξ) as we

did for the parabolic body. This is achieved by introducing the variablêξ = ξ/A, where

ξ̂ =

∫ ŷc

0

Uf (ŷc)
dx

dyc

(ŷc)dŷc, (F.17)

then we see that

β(ξ) =
2ξ

Uf

dUf

dξ
=

2Aξ̂

Uf

dξ̂

dξ

dUf

dξ̂
= β(ξ̂). (F.18)

However, we can go further than this, by writing

dUf

dξ̂
=

1

Uf

dŷc

dx

dUf

dŷc

,

then we see that

β(ŷc) =
2ξ̂

U3
f

dŷc

dx

(
sin(2ŷc)

ŷ2
c

− sin2(ŷc)

ŷ3
c

− cos(2ŷc)

ŷc

)
. (F.19)
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