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Abstract

We consider the interaction of a uniformly pulsating frélam with the leading edge
of a body, and consider its effect on transition. The freeash is assumed to be incom-
pressible, high Reynolds number flow parallel to the chordhefhody, with a small,
unsteady, perturbation of a single harmonic frequency. Y&sgnt a method which cal-
culates Tollmien-Schlichting (T-S) wave amplitudes dotresm of the leading edge, by
a combination of an asymptotic receptivity approach in #eding edge region and a
numerical method which marches through the Orr-Sommertgiibn. The asymptotic
receptivity analysis produces a three deck eigenmode wimgats far downstream limit-
ing form, produces an upstream initial condition for our ruwital Parabolized Stability
Equation (PSE).

Downstream T-S wave amplitudes are calculated for the feepland good com-
parisons are found with the Orr-Sommerfeld asymptoticslae in this region. The
importance of theD(Re~2) term of the asymptotics is discussed, and, due to the com-
plexity in calculating this term, we show the importance afmerical methods in the
Orr-Sommerfeld region to give accurate results.

We also discuss the initial transients present for certanameter ranges, and show
that their presence appears to be due to the existence dadrhilgh modes in the initial
upstream boundary condition.

Extensions of the receptivity/PSE method to the parabotathe Rankine body are
considered, and a drop in T-S wave amplitudes at lower branchserved for both bod-
ies, as the nose radius increases. The only exception toréhid occurs for the Rankine
body at very large Reynolds numbers, which are not accedsilgieperiments, where a
double maximum of the T-S wave amplitude at lower branch geoked.

The extension of the receptivity/PSE method to experimignzalistic bodies is also
considered, by using slender body theory to model the ii/idow around a modified

super ellipse to compare with numerical studies.
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Chapter 1

Introduction

The solutions to the Navier-Stokes equations, are in gési@@oth or laminar, up to some
critical value of the Reynolds numbéekg,., above which the flow becomes unstable, and
the flow is then irregular or turbulent after this value. Tigability occurs in the fluid due
to the growth of initially small perturbations of the meanfland the resulting turbulent
flow leads to strong mixing of the fluid. Solutions to problesugh as shear layers and
boundary-layers generally satisfy the above rule, howthestability criterion of these
flows also depends upon other features of the flow such astyedncy or wavenumber of
the perturbation. The change from laminar flow to turbuleswfis know as ‘transition’,
and is of great importance in the subject of fluid dynamics.

The process of transition was first noted by Reynolds (188B{ @onducted experi-
ments on liquid flow down a glass pipe. Reynolds set up the @rpets so that water was
drawn through the tube out of a large glass tank, in whichube tvas immersed, and it
was conducted so that a streak or streaks of coloured watmeedrthe tube with the clear
water. He also fitted a funnel at the entrance to the pipe ddhbavater entered with the

smallest possible disturbance. Reynolds noted three msuttsdrom his experiments:

(i) When the fluid velocity was sufficiently small, the stredkoloured fluid extended
right the way along the pipe.
(i) If the water in the tank had not quite come to rest, thenléov velocities, the

coloured streak would move about in the tube, but would doigmowt any regularity.



(iii) As the velocity of the fluid down the tube was increasedsimall increments,
at some point far down the tube, the coloured streak wouldlesuigt mix up with the
surrounding water, and fill the whole pipe downstream of gust with coloured dye.
Once this had occurred, if the velocity of the fluid was inseghfurther, then the point at
which the mixing occurred would move towards the inlet pahthe pipe, however the
mixing point never reached the inlet for any velocitiesdri®/hen the tube was lit with

an electric spark, the region of mixed water was seen to contattices and eddies.

Reynolds went on to show experimentally that the pipe flow ksewn beyond a

critical value of the dimensionless number, defined by

d
Re:U—,

v

whereU is the velocity down the pipé] is the diameter of the pipe, ands the kinematic
viscosity of water. This dimensionless number is the ‘Regaalumber’, as mentioned
earlier.

One area of fluid dynamics where the understanding of tiansis very important
is boundary-layer theory. For example a boundary-layeonsiéd next to a rigid imper-
meable boundary when a large Reynolds number flow acts darmatlee boundary. The
boundary-layer is defined by where, the velocity of the flgideduced from the tangen-
tial slip velocity of the inviscid free-stream, to zero aethoundary. The flow within
the boundary-layer can also undergo transition. Therevewddrms of boundary-layer
transition, the first is when the mean flow contains small eady disturbances which
grow within the boundary-layer, until transition occurshelsecond is when the distur-
bances are so large, that nonlinear interactions becomeriamt, and the flow breaks
down faster. This is known as bypass. The transition poirat boundary-layer can be
detected by a sudden growth in the boundary-layer, and thig & strongly dependent
on the unsteady nature of the free-stream disturbanceser @btors which affect the
position of transition include the addition of an externedgsure gradient, the surface of
the body, i.e. surface roughness and curvature, and the ahgttack of the body to the

free-stream (Reshotko, 1976). The importance of the tiangioint usually depends on
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the type of problem being solved. For example, sometimdyg gansition is required, as
this delays boundary-layer separation, and reduces tigeotira body, such as a golf ball.
Other times it is desirable to delay transition, so that teanflow occurs along the whole
length of the body, as is desirable for an airfoil.

For the first kind of boundary-layer transition, where th&talibance in the free-stream
is small, the process of transition can be split into thrages of theory. The first stage is
the development of instability waves by a transfer of enémgy the external disturbance,
known asreceptivity (Morkovin, 1969). The second stage is related to the sloealin
growth of the instability wave, known asability theory. Mathematically this stage is an
eigenvalue problem, and the solution to this problem arevkas Tollmien-Schlichting
waves (T-S waves). Only one of these waves grows as we movasti@am, the rest
decay, and it is the one growing wave which is important inftawy-layer transition,
because it is this wave which eventually leads to turbulefi¢e third and final stage is
the nonlinear breakdown of these instability waves. These@nd third stages will be
discussed in more detail later, but for now we concentrateatiantion on the first stage,

receptivity.

1.1 Receptivity theory

Here we consider only receptivity of the first kind, where ¢xéernal free-stream distur-
bance is assumed to be small. In this region of the flow, théaemaatical problem is an
initial value problem (IVP), and hence any numerical solntiequires an initial condition

to march though this region. There are two types of recdptivi

(i) Forced receptivity - is when the disturbance is intragliitocally into the boundary-
layer, by means of a vibrating ribbon, wall suction/blowimgoy heating the boundary.
(if) Natural receptivity - is when the disturbance sourdecated far from the boundary-

layer, such as acoustic waves within the free-stream.

For the case of forced receptivity, the wavelength of theiaed disturbance is matched
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to that of the T-S wave, so that the T-S wave can be excited oiratedy, and then the prob-
lem can be considered as a stability problem. In the natecaptivity problem however,
the external disturbance usually has a much longer waviiiehgn the T-S wave, hence a
wavelength shortening mechanism is required so that tlegreadtdisturbance can transfer
energy and excite the shorter wavelength T-S wave.

The wavelength shortening process of natural receptigityften associated with ar-
eas where the non-parallel effects of the mean base flow @@iant. These exist where
there are rapid changes in the streamwise variation of thadary-layer, or where there
are rapid changes in the surface boundary conditions, whrictluce diffracted distur-
bances. Rapid variations in the mean flow occur at a leading,edgere the boundary-
layer is thin and grows rapidly (Goldstein, 1983 and Hamorednd Kerschen, 1996),
or at a point further downstream, where the boundary-layéorced to make a sudden
adjustment due to the presence of a surface roughness ¢l@@wdstein and Hultgren,
1989). Other mechanisms which can produce rapid streanolesgges to the boundary-
layer needed for wavelength conversion are, any discatigsun surface curvature and
the angle the body makes to the mean flow, which produces ancflew wall shear,
where the boundary-layer is close to separation. All of theva mechanisms invali-
date the assumption that the boundary-layer is paralldhéostirface of the body, and
hence the equation governing stability calculations beximvalid. In places where the
boundary-layer is thin and rapidly growing, the unsteadyrutary-layer equation be-
comes the correct approximation to the Navier-Stokes emusbver the whole region.
In areas of sudden changes to the boundary’s surface or Apundnditions, the flow
is governed by a triple-deck solution, where, in a smalloegientered on the variation,
the unsteady boundary-layer equation is the correct appetion to the Navier-Stokes
equations in the lower deck.

Overall reviews of the receptivity topic have been provibdgdReshotko (1976), Gold-
stein and Hultgren (1989) and Saet al. (2002). Nishioka and Morkovin (1986) re-
viewed the process of boundary-layer receptivity to urtstgaessure gradients includ-

ing Soviet experiments and views on receptivity. Kachari®84) reviewed the physical
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mechanisms of laminar boundary-layer transition.
The main receptivity mechanism of interest to us in this wierthat of leading edge
receptivity. However, a brief overview of two of the otherchanisms are given before

we concentrate on leading edge receptivity.

1.1.1 Streamwise variations in surface geometry

Goldstein (1985), Goldstein and Hultgren (1987) and Bodetvil. (1989) showed that
small streamwise variations in the surface geometry famdtngam of the leading edge
are mechanisms for receptivity. Goldstein (1985) congiddehanges in the surface slope,
and introduced a turning angle 6f(Re~1), which is the downward angle the surface
makes with the horizontal part of the surface, at the poiatrath the curvature changes.
Goldstein and Hultgren (1987) considered a discontinuitgurvature of the surface,
over a vertical height oP(Re51), where the Reynolds number, which is assumed to be
large, is defined in terms df which is the distance between the leading edge and the
discontinuity. Both these methods were assumed to act ouezanswise length scale of
O(Re—%l), which is of the same order of magnitude as the T-S wave'’s iwagéh. The
disturbance wave was taken to be an acoustic wave with freyuaf O(Rei U /1), which
corresponds to the T-S wave frequency at the lower brandnaistability point (the point
at which the T-S wave starts to grow). The flow in the vicinifytlee surface variations
has a triple-deck structure, as in Smith (1979), where thimdeck is governed by
the unsteady boundary-layer equation. The influence ofdahation in surface geometry
acts so as to ‘scatter’ the long wavelength acoustic waveglie shorter wavelength T-S
waves which are of similar magnitude to the initial acoustave. The fact that these
T-S waves occur closer to the neutral stability point medias they have less time to
decay (than T-S waves generated at the leading edge) bémyestart to grow. Hence
they are important to the overall receptivity problem whembined with the leading
edge problem. Goldstein and Hultgren (1987) define the cogielfffect as a measure of
the size of the resulting T-S wave. Fo6a 1 aspect ratio ellipse (ratio of the major to

the minor axis) stuck onto a flat plate, considered in the exymnts of Shapiro (1977)
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and Leehey and Shapiro (1980), Goldstein and Hultgren fabatdthis coupling effect
due to the discontinuity in curvature is 6f(Re~s0) whereo is the thickness ratio of
the ellipse § = é for the Shapiro body). In comparison to this, the couplingfficient
due to the leading edge receptivity is@f Re7), wherer = —0.6921. Hence the weak
static pressure gradients set up by the small streamwidedliens in surface geometry,
produce a large coupling effect at lower branch, and thisfiadt larger than the effect due
to the leading edge, when the respective damping factoesweéaken into consideration.
The asymptotic analysis of this localized receptivity cggis also supplemented by a
numerical ‘finite-Reynolds-number-approach’ (Choudhad 8treett, 1992 and Crouch,

1992).

1.1.2 Regions of marginal separation

Goldsteinet al. (1992) considered a relatively thin two-dimensional botlgraangle of
attack to the free-stream. The angle of attack was assumbd tbose to the critical
angle where boundary-layer separation occurs along theruppface of the body, so
that the minimum of the non-dimensional wall shear i@QRe‘%), where the Reynolds
number is based on the distanéefrom the leading edge to the point of minimum wall
shear. The flow has a triple-deck structure on a length sdai&(Be 1), centered on
the minimum wall shear, but the individual layer thicknessaee different from traditional
triple-deck theory. Stewartsat al. (1982) named the flow on this length scale, ‘marginal
separation’, where the wall shear is almost zero but imnelgiaecovers to arD(1)
value downstream. Fully unsteady, triple-deck, inteactccurs when the frequency
of the disturbance is aP(Re7U/1). Initially the disturbance amplitude is exponentially
small compared with the free-stream amplitude, but it fgpglows in the triple-deck
region. However, the solution in the triple-deck region slaet match directly onto the
T-S wave, and there is a region©f Re~111), where the disturbance’s wavelength grows
with x, wherex is the coordinate measured along the body from the leadigg.denally,
there is a streamwise outer region®fl), where the disturbance evolves into eigenmodes

similar to the Lam-Rott eigenmodes, which will be discussednore detail in§1.1.3.
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These eigenmodes have a wavelength which decaysﬁﬁewhich is the required decay
rate to match onto the T-S waves in the stability region.

Experiments have shown that the transition Reynolds nunsbstrongly dependent
on the angle of attack of the body. The angle of attack hds Bfffect on the pressure
gradients at the lower branch point, however it makes steepspre gradients at the
leading edge (Polykov, 1973a, Polykov, 1973b and Vorob'¥ewal, 1976). Goldstein

et al. (1992) suggest that this is because marginal separationceasred.

1.1.3 Leading-edge receptivity

As was mentioned earlier, we primarily concentrate on tleepgvity occurring at the
leading-edge for this work, where the rapidly growing boanydlayer produces the rele-
vant change in energy from the unsteady free-stream to thr¢ whvelength T-S waves.
It was the pioneering theoretical work of Goldstein (1983)iak first discovered the
physical mechanism behind the wavelength shortening droeewhich leads to recep-
tivity at the leading edge. Goldstein considered the imtéwa of small disturbances in
the free-stream acting on the boundary-layer on an infintteh, semi-infinite flat plate.
The mean flow was considered to be two-dimensional, incossfiske, and with a large
Reynolds numberRe = U2 /vw, whereU,, is the free-stream velocity, and is the
frequency of the free-stream. The free-stream disturbanassumed to be small com-
pared to the free-stream, and to have frequencyThis means that the unsteady flow
can be considered as a linear perturbation of the freersiredh the a single harmonic
frequency.

Close to the nose of the plate, the unsteady boundary-layeriglgoverned by the
linearized unsteady boundary-layer equation (LUBLE). Tnablem was first studied by
Lighthill (1954), who derived solutions to the LUBLE both sk to, and far from the
leading-edge. He then went on to connect these two solubgmaeans of a Krman-
Pohlhausen method. Lam and Rott (1960) and Ackerberg anlipBI{il972) re-derived
Lighthill’s results, and demonstrated that the far dowaestn form of the solution devel-

ops a two layer structure, where the inner wall layer is a &dhear-wave type of flow,



1.1 Receptivity theory 8

to lowest order, and the upper layer is a modified Blasius molut.am and Rott (1960)
point out from their analytical work that the Stokes-typ&usion is not complete, as it is
uniquely determined independently of the upstream camditivhich is imposed for the
solution of a parabolic partial differential equation. $iead Lam and Rott to conclude
that the far downstream form of the LUBLE must consist of a 8sstype solution, and an
infinite sum of asymptotic eigenmodes. Lam and Rott (1960)twerto construct such a
family of eigenmodes, which decay exponentially fast as \wgerdown the plate. Acker-
berg and Phillips (1972) obtained equivalent expressionthese eigenmodes by the use
of separation of variables and matched asymptotic expassi®@hese Lam-Rott eigen-
modes are inversely ordered, with the first eigenmode hahiagreatest amplitude, and
the slowest decay rate. Goldstein (1983) found that these Ratt eigenmodes have a
wavelength proportional to—z, wherez = wz* /Uy, is the dimensionless streamwise dis-
tance from the leading-edge non-dimensionalised witheetsjp the aerodynamic length
scalelU,, /w. This wavelength has the correct shortening mechanisniregtjior them to
generate the short wavelength T-S waves. Goldstein, howsvewed that the Lam-Rott
eigenmodes still satisfy the LUBLE when multiplied b¥, wherer is a constant, which
is determined by a solvability condition at the next ordethaf asymptotics.

Further downstream, the LUBLE becomes an invalid approxonab the Navier-
Stokes equations, because the boundary-layer, which g'rbws;%, allows the eigen-
modes to keep oscillating more and more rapidly, until thglewted streamwise vari-
ations become important, and the LUBLE solution breaks dowhe appropriate ap-
proximation to the Navier-Stokes equations in this reg®the Orr-Sommerfeld equa-
tion, and Goldstein (1983) showed that there exists a magctggion between the two
regimes, where the Lam-Rott eigenmodes match, in the matasydptotic expansion
sense (Van Dyke, 1964b), to the T-S waves of the Orr-Somdezfuation. Each Lam-
Rott eigenmode matches precisely to one T-S wave, with thedbarder Lam-Rott eigen-
mode matching to the T-S wave which exhibits spatial grovaWwristream of the lower
branch neutral stability point. All the other T-S waves éxhexponential decay all the

way along the plate.
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Figure 1.1: An illustration of the boundary-layer struetdor a general body with di-
mensional nose radius at zero angle of attack. The three decks in the Orr-Somnaerfel
region are 1- the viscous wall layer; 2- the main inviscidelgy3- the outer irrotational
layer.

These results are also valid for finite thickness bodies revtiee nose radius of cur-
vature is ofO(U/w) or smaller, as shown in figure 1.1. Nose radii larger than this
invalidate the small curvature condition stipulated inplea 2. In a region of length
O(Re‘%) near the stagnation point at the nose of the body, the fluidomdg governed
by the full Navier-Stokes equations. Further downstreamaoO(1) length scale, the
motion is governed by the LUBLE, and the solution exhibits a thkeck structure. Fur-
ther downstream still, on a length scale@fRe3 ), the LUBLE solution brakes down,
and the governing equation is then the Orr-Sommerfeld emquathe solution to the Orr-

Sommerfeld equation has a triple-deck structure, whichsis the correct behaviour for
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the solution at the lower branch point. The triple-deck&tite consists of a viscous wall
layer, a main inviscid layer, and a irrotational outer layer

Lam and Rott (1993) re-derived their asymptotic eigenmodéise LUBLE, with the
missingz” term included, found by Goldstein (1983). Lam and Rott foumak twith
the inclusion of this extra multiplication factor, theiniter’ eigensolution was now valid
for arbitrary pressure gradients, and their ‘inner’ eiggaton was also valid without
requiring that the pressure gradient of the basic steady lflewero. Brown and Stew-
artson (1973) showed that the Lam and Rott (1960) eigenmadesda the only as-
ymptotic eigenmodes which satisfy the LUBLE. The Brown-Steégan eigenmodes in
contrast to the Lam-Rott modes are correctly ordered, intttatamplitude of the fist
eigenmode is the smallest, and it decays the slowest. Batlogeigenmodes are valid
solutions to the LUBLE, and both sets are visible in the nuocasolution to the LUBLE
(Hammerton, 1999), however they have different propertidse real part of the mode
shape of the Lam-Rott eigenmodes have their maxima closedlhenhnereas the Brown-
Stewartson eigenmodes have their maxima close to the adderad the boundary-layer.
It was also pointed out by Goldstein (1983), that the Browewattson eigenmodes have
a much stricter criterion for their validation, and in face @nly valid fory/In(z/3) > 1.
The Lam-Rott eigenmodes on the other hand have a much wedldatian criterion of
x > 1. Although we acknowledge the existence of the Brown-Steamareigenmodes,
we concentrate our attention on the Lam-Rott modes becaegbdve the required expo-
nential decay, and wavelength shortening to transfer grierthe T-S waves. It has been
speculated that the Brown-Stewartson eigenmodes may bmalbiea by re-expanding,
for large z, an appropriate sum of the Lam-Rott eigenmodes (Goldsteml. 1983),
however this idea has not yet been validated.

By showing that the Lam-Rott eigenmodes match to the T-S w&ealslstein (1983)
proved that the information from the leading edge is onlpdraitted downstream by the
unique constants multiplying each eigenmode. Moreovet,iashefirst of these eigen-
modes which matches to the spatially growing T-S wave, werast interested in this

coefficient. We call this coefficient), the ‘receptivity coefficient’, and it is uniquely
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determined by the form of the free-stream. For the semiitefitat plate, Goldsteiet al.
(1983) found the receptivity coefficient to li§ = —0.45 + 0.855¢ for acoustic distur-
bances, in two ways. Firstly a curve-fitting technique wasdudentical to the method of
Ackerberg and Phillips (1972), where the numerical and ggtit solutions for the dis-
placement thickness were assumed to agree at certainlpoteskpoints. Secondly it was
determined by assuming that the solution to the unsteadgdaoy-layer equation is an
analytic function ofr, when extended into the complex plane (Lam and Rott, 196Q)s Th
the numerical solution to the unsteady boundary-layer@ouaan be extended into a re-
gion where the lowest order eigenmode is dominant, and theneiceptivity coefficient
can be easily determined by comparison with the asymptotio bf the eigenmode.

In general, airfoils used for subsonic flow have finite thieks, and so cannot be
modeled as a semi-infinite flat plate. Hammerton and Kers¢h@96) were first to treat
analytically the receptivity on a more general body. Thegsidered a parabola at zero
angle of attack to the free-stream, with an acoustic distoch incident at an anghke
to the chord of the airfoil. The leading edge curvature of lhbey enters the problem
through the Strouhal numbe$, = wr, /U,,, where the dimensional nose radiusris,
non-dimensionalised with respect to the aerodynamic kesgalelU,,/w. Hammerton
and Kerschen consider the cage= O(1), and¢ < O(Re3), where¢ is the coordinate
along the body. These limits were such that the flow is gowkhyethe LUBLE, hence
the flow in the vicinity of the leading edge could be treatelde parabolic nose produces
everywhere a favourable pressure gradient, which des@aseotonically from its max-
imum value at the stagnation point, and approaches zermfanstream. The resulting
eigenmodes of the LUBLE, in their far downstream form, arestéaime as the Lam-Rott
eigenmodes, but they are modified to include the effect ofrtban pressure gradient. As
the nose radius increases, the strong favourable pressadeigt near the nose, extends
over a larger number of disturbance wavelengths and actstabitizing influence on the
solution. Thus this produces a rapid decrease in the valtreeahodulus of the receptiv-
ity coefficient,Cy, asS increases, and in fact the modulus of the receptivity caefitc

is approximatelyl2% of the flat plate value whef = 0.3. Hammerton and Kerschen
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(1996) go on to suggest that this rapid decrease in the medilthe receptivity coef-
ficient should be valid for other streamlined bodies. Forgheabola, Hammerton and
Kerschen also observed a small rise in the receptivity aeffi for smallS, before the
monatonic decrease &sincreases. When the angle of incidence of the acoustic wave
is considered, the receptivity coefficient can be writtethie form of a symmetric com-
ponent and an antisymmetric component, both of which areraéted separately. Two
cases for the incident angle were studiedne where the acoustic wavelength is long
compared with both the hydrodynamical wavelendth,/w, and the airfoil chord, and
the second where the acoustic wavelength is long comparen toydrodynamic wave-
length, but short compared to the length of the chord. Fofitsiecase, the absolute value
of the symmetric receptivity coefficient;,, as a function of), increases to a value @8

for S = 0 and3for S = 0.2, both of which occur & ~ +7 /2, before decreasing again to
approximately thé = 0 values at = 7. For the second case however, the absolute value
of the symmetric receptivity coefficient increase¢tofor S = 0 and to4 for S = 0.2,
which occur at approximately = 4.

The curious behaviour of the receptivity coefficient ingiag slightly before decreas-
ing was further studied by Hammerton and Kerschen (1997¢revthey analysed the
limit S — 0 for the parabola considered above. It was shown that the gyrimpart
of the receptivity coefficient’;, grows like .S, hence proving the increase in receptivity
coefficient from the flat plate value, and the antisymmetimponent(,, decreases like
Sz, hence giving a very rapid decrease in value compared todhglfite value. Also
asS — 0, it was noted that the antisymmetric receptivity coeffitisnapproximately
five time the value of the symmetric receptivity coefficieamid hence the antisymmetric
component proves much more important in evaluating theptedty coefficient than the
symmetric component.

Hammerton and Kerschen (2005) extended their previous wmodonsider a cam-
bered parabolic airfoil at a non-zero angle of attack to the-Etream. In this case there
is a favourable pressure gradient at the stagnation pahbdwied by an even stronger

favourable pressure gradient as the flow travels aroundethdiig edge. The pressure
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gradient on the upper surface then becomes adverse anduhdarg-layer either sepa-
rates, or reaches a point of minimum wall shear followed bglatively slow recovery
downstream. The boundary-layer is assumed to be attachele svall stress is every-
where positive and finite, and the airfoil is assumed not tod& the critical angle of
attack where marginal separation occurs. Modest amourgsroftlynamic loading in the
leading edge region causes a decrease in the receptivitijcea® for the flow over the
upper surface of the airfoil and an increase for the flow utidedower surface. In fact,
on the upper surface, the absolute value of the symmetmptiedy coefficient decreases
from its value when the aerodynamic loading parameiggquals zero until approxi-
matelyu =~ 0.7 where it increases again, and the absolute value of theyamtigtric co-
efficient decays ta ~ 0.4 before increasing again. Conversely, on the lower surfhaee, t
symmetric and antisymmetric receptivity coefficients @ase to a maximum at ~ 0.4
before decaying again. The lower surface receptivity ies§linterest however, because
the pressure gradient is typically favourable and the biktyawaves have smaller growth
rates. The effect of the aerodynamic loading is more procedifor higher Strouhal num-
bers where the region of receptivity is concentrated closéne stagnation point. Also
the introduction of the aerodynamic loading moves the stgn point towards the lower
surface, which increases the favourable pressure gradéwnieen the stagnation point
and the leading edge.

The finite thickness airfoil theory was extended further bghdls (2001), she ex-
tended the theory to general bodies for which the invis¢halocity tends to a constant
far downstream, and the curvature is assumed to be smallbdtieis at a zero angle
of attack, and the disturbance is considered to act patalléie body. The unsteady
flow, on a length scale along the body 6f= O(1), is again governed by the LUBLE,
and as¢ — oo it has a Stokes-like solution which is determined locallg.(iit is in-
dependent of the upstream disturbance), and a sum of eigiEsnwhich are modified
versions of the Lam-Rott eigenmodes, to take into accountrtb@n pressure gradient.
The propagation of information from the leading edge ocamiy through the coeffi-

cient multiplying the lowest order eigenmode, and Nich@B8Q{1) calculated this value
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for different geometries. Only acoustic waves flowing patdb the free-stream were
considered, however this work is valid for other free-stmegdisturbances, such as con-
vected gusts (Buckingham, 2004), as the resulting diffexemty occurs in the value of
the receptivity coefficient. Solutions are also valid agjlas the minimum wall shear is
greater tharO(Re*%), so marginal separation doesn’t occur, and as long as afgcsur
variation acts with a streamwise length of variation gretitanO(Re~s1), wherel is the
distance from the leading edge to the centre of the variatdohols (2001) considered
a Rankine body whose nose radius of curvature is proportiondl She found that the
receptivity coefficient decreases rapidly from the flat@hslue asA increases, then ex-
hibits a local rise centered ot = 0.035, followed by a further gradual decline. This was
then extended to consider bodies which are equivalent tonaffloned by a source and
a sink in a uniform flow, which are parameterized by two paranse Nichols showed
that two bodies which have the same thickness but subtlgréift body shapes, can have
pressure gradients which are very similar close to the nodelawnstream, but very dif-
ferent in the region of the minimum pressure gradient. Theasink formulation leads
to two different types of bodies. For monotonically incriegsbodies, there was a fall
in the receptivity coefficient with increasing thicknesssa radius. Hence the receptivity
depends not only on the minimum of the pressure gradienglbaton its location and the
variation of the pressure gradient in the region of the murm However, bulbous bod-
ies, without boundary-layer separation, observed a raichfthe receptivity coefficient,
followed by a rapid increase. Hence when a change of wallestmurs in the leading
edge region, it acts as another source of receptivity, arhsdo be treated as such.

The analytic receptivity analysis on its own is very diffictd compare with exper-
imental analysis, as the experiments generally calcukteptivity by calculating the
magnitude of the growing T-S wave at some point downstreatmedieading edge. Math-
ematically, this region is on a length scale@Q‘Re%), and so the LUBLE is no longer
the governing equation, and the correct approximation eéd\thvier-Stokes equations is
now the Orr-Sommerfeld equation. Goldstein (1983) derivedasymptotic solution in

this Orr-Sommerfeld region for the case of a semi-infiniteglate, hence T-S wave am-
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plitudes downstream are available. However a semi-infitateplate is not a physically
reasonable body to preform experiments on, and extendinds@m’s asymptotics to
general finite thickness bodies is not simple. Hence theptatty analysis has to be
used in conjunction with stability analysis to produce fesswhich are comparable with

experiments and full Navier-Stokes numerical schemes.

1.2 Stability theory

Stability theory accounts for the linear growth of the T-Srejaafter it has been excited
in the receptivity region. For the case of the airfoil prabgewe have considered so far,
this occurs on a streamwise length scaleXgfzes). The correct approximation to the
Navier-Stokes equations in this region is the Orr-Somnhéréguation. This equation
was first derived when considering the flow between two soltlsyand the derivation
of the Orr-Sommerfeld equation can be found in Appendix Ae Tir-Sommerfeld equa-
tion is solved as an eigenvalue problem, with the first adewgalution for Poiseuille flow
offered by Orszag (1971). Chebyshev polynomials (Appendiw& used to approxi-
mate the mode shape across the fluid domain, and an eigeralghuéhm was used to
find the linear temporal eigenvalues. The more complex praldf solving for the non-
linear spatial eigenvalues was addressed by Bridges andsteise(1986) and Bridges
and Morris (1984) who extended the Chebyshev polynomialnigcie to simplify the
non-linear eigenvalue problem to a linear one, and provattke results were consistent
with those of Orszag (1971).

If it is assumed that the boundary-layer is parallel to thdase of the body, then
the Orr-Sommerfeld equation, derived in Appendix A, is tloerect approximation to
the Navier-Stokes equations. An example of the spatiahemjaes,a = «, + i«;, for
parallel Blasius flow can be seen in figure 1.2. The eigenvdbs®do the pointy, = 0.3
is the most unstable eigenvalue, and it corresponds to tBew&ve which eventually
grows downstream. For small Reynolds numbers, this eigeevas very close to the
continuous spectrum of eigenvaluesxat= 0.12, but as the Reynolds number increases,

this eigenvalue moves away from the continuous spectruth¢kser to the liney; = 0.
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Whena; > 0 the corresponding T-S wave is decaying, and whgs 0 it is growing, and

at the point wheny; = 0, the T-S wave neither grows or decays, it is said to be ndytral
stable, and the corresponding value of the Reynolds numbikisapoint is known as
the critical Reynolds number. The main drawback to the parfilw theory is that the
boundary-layer over an airfoil's surface is not strictlyrgdéel, and so extra terms are

needed to give more accurate comparisons with experimantedull numerical results.
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Figure 1.2: Spatial eigenvalues = «,. + i«;, for Blasius flow, for the case = 0.12 and
Re =519.4

Gaster (1974) attempted to resolve this problem by leavisgeamwise dependent
function, rather than a constant, multiplying the normaldecolution, and forming a
solution in powers oRe 2. The resulting equations were solved with an iterative sehe
and showed that this method was valid in the large Reynolddrufimit.

Itoh (1974a) developed a different numerical method fowiagl the parallel Orr-

Sommerfeld equation, based on power series, and this mptoedied good agreement
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for the critical Reynolds numbers for both Poiseuille and Bigfiow. I1toh then extended
this method to take into account the thickening of the bountiyer downstream, and the
normal component of velocity that this produces (ltoh, 1974 he solution was sought
by expanding the stream function as a Fourier series wittothission of components
higher than the3*® order. Itoh (1974b) found fairly good agreement with theuhessof
Klebanoffet al. (1962) when the initial amplitude of the disturbance is tie¢dy small.
However for large initial amplitudes this is not the case] tre difference is attributed to
the fact that the experimental disturbance is three-dimea§ whereas the disturbance
is assumed to be two-dimensional.

Saric and Nayfeh (1975) devised another method of forrmgathe non-parallel
boundary-layer flow, which accounts for the non-paralldidae@our in a different manner
to Itoh (1974b). The method is a multiple scales method, dasethe work of Nayfeh
(1973), where the flow is split into a base flow, and a smallysbétion, of frequency.
The base flow is assumed to be a slowly varying function of treamwise variable;,
hencer; = ex is introduced as a slow streamwise variable, where 1. The resulting
analysis produces two equations, one)gl) and the other af(¢), both of which are
solved iteratively, and the results provide a neutral cwhigh is in good agreement with
the experiments of Schubauer and Skramstad (1947) andeRak$1970). This method
is very similar to that of Bridges and Morris (1984), who useuanerical method similar
to their nonlinear spatial eigenvalue solver and they altaio results in good agreement
with the experiments. Saric and Nayfeh (1977) later extdnidis method to incorporate
boundary-layer flows with pressure gradients and surfac&osu

The triple-deck structure of the Orr-Sommerfeld solutibtha lower branch neutral
stability point, on a flat plate was analytically derived byigh (1979), and Goldstein
(1983) showed that the solution in the Orr-Sommerfeld nreg@s the triple-deck structure
throughout the entire region. Goldstein derived the aspiigpform of the wavenumber
and mode shape in this region, which proved that the caloulaf T-S wave amplitudes at
lower branch is possible. Up to now, all the eigenvalue megHor numerically solving

the Orr-Sommerfeld equation, have been correct only up tarhitrary multiplicative
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constant, and in fact contain no information from the legdage. Goldstein showed
that the asymptotic T-S wave solutions matched, in the negtc@symptotic sense, to
the large downstream form of the Lam-Rott eigenmodes of thBILEJ This suggests
that information from the leading edge can be passed dogarstto the T-S waves via
these asymptotics. However, it is not yet apparent if thengsgtic solution in the Orr-
Sommerfeld region is actually correct to ordeez, and hence the accuracy of these
asymptotics is not fully known. Also any attempt to extenel éimalysis to bodies such as
the parabola have been difficult due to the fact that the agytrop toO(Re*%) on a flat
plate are complex enough, without the introduction of a mere pressure gradient.

Itoh (1986) extends Goldstein’s theory in the Orr-Sommidrfegion to numerical
evaluations of the eigenmodes for a wider range of Reynoldsbeus. Itoh derives a
parabolic partial differential equation governing smaditdrbances with fixed frequency
from an expansion procedure essentially similar to the bagrlayer approximation.
The PDE was shown to be valid for both the upstream regionavtherunsteady boundary-
layer equation is approximately applicable, to the far detwgam region, where the Orr-
Sommerfeld equation based on the parallel flow approximasi@applicable. If the value
of the Reynolds number and the frequency of the disturbarealaove a certain value,
then the PDE is decomposed into a set of ordinary differeatjaations.

The method behind the derivation of the parabolic PDE of (t#86) was extended
by Bertolottiet al. (1992) who used the assumptions that the mean flow is govesneg:
boundary-layer approximation, and moreover, the secongatises of the disturbance
wavenumber and mode shape with respect to the streamwesgtidir are sufficiently
small, and thus can be neglected. The resulting Parabdlitadaility Equation (PSE) de-
scribes the evolution of linear or non-linear, two- or thodemensional disturbances in
flows with slowly changing streamwise properties such aspamallelism. The PSE is
solved with an upstream boundary condition, usually givetobal theory. The solution
is then found by marching downstream, along with the fixing eformalization condi-
tion, solving for the disturbance wavenumber and mode shagesimilar fashion to the

multiple scales method. The linear form of the PSE is idahtic the partial differen-
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tial equation derived by Itoh (1986), however the advantaigthe PSE over the other
multiple scales methods is, that it is relatively easy tdude weakly non-linear effects,
which prove to be important when the disturbances approppknbranch. The PSE can
reproduce the results of Saric and Nayfeh (1977), but thiysissshows that their defin-
itions of growth rates are not based on relevant physicahtifiess, hence should not be
compared with the existing experimental measurements.

Bertolottiet al. (1992) derive their PSE equation in terms of a stream fungctdnich
gives rise to some numerical stability problems, but not asyras the primitive variables
approach adopted by Herbert (1993) (Anderssbal, 1998). Herbert (1993) derives a
three-dimensional version of the PSE in terms of the pnmiariablegu, v, w, p), where
u,v andw are the velocity components in they and z directions, respectively, and
is the pressure. When marching downstream with a streamvepesize less then some
given amount, this form of the PSE experiences numericahlmgies which increase
until numerical divergence occurs. Herbert (1993) disessses for the PSE other than
non-parallel boundary-layer calculations. The incomgit#e version can model vortices
in Blasius flow, receptivity to Hiemenz flow, and nonlinearti@gs whereas the compress-
ible version of the PSE can model high Mach number flows. Tmearical instability for
the primitive variable form of the PSE is due to the equatiogisg ill-posed, due to the
pressure gradient term. Li and Malik (1994) and Li and MaliRg6) offer a solution to
this problem, by giving the minimum streamwise step sizenfoich the PSE is ill-posed.
They suggest either marching with a step size bigger thamtimimum, or equivalently
set the pressure gradient to zero, which removes some ofllipiciy from the PSE,
hence makes the minimum step size smaller. However thismmteemove all of the el-
lipticity, and hence the PSE is still ill-posed. The mathé&oz nature of the branch cuts
and eigenvalues of the PSE in the complex plane are discbgdadhnd Malik (1997).

A stabilization procedure for the primitive variable fornh the PSE is offered by
Anderssonret al. (1998). They suggest the addition of a term of the same madmit
as the neglected truncation error to the first order backvaiér scheme. With this

added term, multiplied by an arbitrary real numbethe PSE step size restriction can
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be changed by a suitable value for Anderssoret al. (1998) comment that the stream
function formulation of the PSE has a less severe step sstdgate®on. This was first
noted by Li and Malik (1996), who suggests that this step mzériction can be relaxed
if the streamwise derivative of the wavenumber is set to.zéfbis doesn't affect the
overall wavenumber result, as long as we are not near a regiere the wavenumber is
changing reasonable quickly, for example close to the fepeilge. Herbert (1997) offers
an extensive review of the PSE and its applications.

An alternative approach to solving the stability problenswansidered by Hill (1995),
who used adjoint methods to solve the Orr-Sommerfeld probl&alwen and Grosch
(1981) developed a theory of temporal and spatial eigemifumexpansions for the so-
lution of the Orr-Sommerfeld equation. The linear Naviéokes equations are not self-
adjoint, hence a bi-orthogonal eigenfunction set is regl{Schensted, 1960). For every
eigensolution to the Orr-Sommerfeld equation, there sxast adjoint which has equal
and opposite frequency and wavenumber, and also the adjgernsolution can be used
to filter a general disturbance field to identify the ampléwd the corresponding eigen-
solution. The adjoint solution defines the sensitivity ohasen disturbance to the modi-
fication of the base flow or boundary conditions, and Hill (3pfund that the unsteady
forcing in the vicinity of the critical layer will induce thiargest response of the T-S wave.
Other parallel work on the adjoint methods has been studyedhigulev and Fedorov
(1987) and Nayfeh and Ashour (1994).

Herbert (1997) first proposed the use of the Adjoint ParabkdliStability Equation
(APSE), and it was first formulated by Collis and Dobrinskyq2® The adjoint methods
show that for 2-D disturbances in 2-D boundary-layers, threparallel effects are almost
negligible over a wide range of frequencies, while advergssure gradients increase
receptivity and favourable pressure gradients reduceptedg. Adjoint methods also
show that 3-D obligue modes have greater receptivity th@nhwaves, which are both
in contrast to well known effects of pressure gradients dd ifstability growth rates
(Dobrinsky and Collis, 2000). All the work on adjoint methpégcept for Luchini and
Bottaro (1998) and Hill (1997), rely on the expansion of thenbgeneous solution to
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the locally parallel flow into a bi-orthogonal set of eigemétions. Luchini and Bottaro
(1998) solved the receptivity problem ofi@ler vortices using the adjoint of the linearized
boundary-layer equations. The advantage of this methduhisittnaturally includes the
non-parallel effects within the receptivity predictionkish are important for streamwise
orientated disturbances. Hill (1997) extends the adjaanaltel theory approach to utilize
the PSE and presents results based on the APSE along withadsons for forced PSE
and direct numerical solutions (DNS) results of Crouch (399%e numerical solution
to the APSE is solved by marching upstream, and used to pr@vitirect measure of the
receptivity (e.g. to a suction strip at a certain location).

The method of adjoint solutions was extended by Gianne®®22, who marches re-
ceptivity results given by the numerical solution to the LUBIdownstream via an adjoint
multiple scales approach. This approach is similar to tipeaaxch taken in this thesis, ex-
cept we use the asymptotic form of the result in the leadirggedgion, and we use the
PSE to march the solution through the Orr-Sommerfeld re@iomner and Hammerton,
2006). The bi-orthogonality properties on the adjoint epers are used to extract the
receptivity coefficient, before the Orr-Sommerfeld modesraarched downstream. This
method is used for an acoustic wave impinging on an incorsjiiesflat plate boundary-
layer. For moderate values of the non-dimensional frequéhe- wr /U2, no matching
region between the leading edge region and the Orr-Somldeggion exists, however
for low frequencies there is a well defined matching region.

Although receptivity and stability problems are in genexi/ed separately, they have
been solved simultaneously in direct numerical schemesamgpared with experiments.
Haddad and Corke (1998) compute full numerical solution$iéofiow over a parabolic
body, where the mean flow is perturbed by a small acoustianthahce. The flow around
the parabolic edge is linearised with respect to the smallistec perturbation, and then
the base flow and the perturbation flow are solved separal@yseparate out the T-S
wave behaviour from the perturbation flow, the unsteady &tdlow is solved sepa-
rately, subtracted from the total perturbation flow, andrgmaining disturbance is as-

sumed to be the T-S wave. The T-S wave amplitude is extracell to the leading
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edge, where Haddad and Corke (1998) define the leading edggtikety coefficient as
K = |(urg)Lr|/|uL|, which is the ratio of the maximum T-S amplitude at the legdin
edge to the amplitude of the free-stream disturbance. Nhged a different definition

to the receptivity coefficient(;, defined earlier as the coefficient of the lowest order
Lam-Rott eigenmode.

In the limiting case of the semi-infinite flat plate, Haddadl &orke found good
agreement between their results and those of Murdock (19@® numerically mod-
eled the flow using a parabolized form of the unsteady N&Stekes equations. They
found agreement with the streamwise wavelengths of the Ba&svand the locations of
the lower and upper branch neutral stability points of thetra stability curve. Other
results show an increase in leading-edge receptivity wattr@hsing nose radius, with the
maximum occurring for the infinitely thin flat plate, and agriease in receptivity with an
increase in the angle of attack. This work was extended hyrleand Corke (2001) who
considered more frequencies than Haddad and Corke, and aenoristurbance inci-
dent angle. They found results which agree qualitativelhwiammerton and Kerschen
(1996), including the occurrence of maximum receptivityaatincident angle of0° to
the horizontal, and an asymmetrical variation in receptivi

Erturk et al. (2004) and Haddaét al. (2005) went on to consider parabolic bodies
at an angle of attack, where the aerodynamic loading wasased until separation oc-
curred, followed downstream by reattachment. The separabint was shown to move
downstream with increasing angle of attack, and the saparabne increased in size as
the nose radius increased. This demonstrates the impertdraerodynamic loading and
flow separation on acoustic receptivity.

Finite thickness bodies have also been considered, wheredding edge is elliptic
in shape. These bodies have a pressure gradient on their symf@ce which starts off
favourable, but quickly becomes adverse, before decagiragto far downstream. Nu-
merical studies of these bodies have been conducted by &ead(1990), Linet al.
(1992), Fuciarellet al. (1998), Wanderley and Corke (2001) and a summary of the early

numerical work can be found in Reed (1994). The experimenteese bodies have been
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carried out by Saric and Rasmussen (1992), Satrigl. (1994), Saricet al. (1995) and
Saric and White (1998). Reedd al. (1990) computed full solutions of the Navier-Stokes
equations for a finite thickness flat plate with half an e#igsined onto the front. Two
different aspect ratios (ratio of major to minor axis) of &were studied at two differ-
ent frequencies, and the measure of receptivity was chodemthe maximum of the ratio
of the T-S wave amplitude with the amplitude of the freeatne The smaller aspect ratio
produced the highest receptivity, which occurred betwéerjunction of the ellipse and
the flat plate and the neutral stability point. The body wipect ratio of 3, had a sharp
minimum in pressure gradient with a fast recovery, wherbasbdy with aspect ratio 9
had a smaller minimum and slower recovery. kiral. (1992) considered full numerical
solutions to the Navier-Stokes equations in the same wagpmthey used a finite thick-
ness flat plate with an elliptical edge where the discontynini curvature at the join has
been mathematically removed. This body is known as a ModBiger Ellipse (MSE).
Similarly to Reedet al. (1990), the smaller aspect ratio produced the larger rextgpt
where the receptivity is the same ratio used by Reiedl. Lin et al. (1992) compared
the body with a discontinuity in curvature in Reetlal. with the MSE and found that
the MSE gave lower receptivity at the junction. Hence a disoaity in curvature en-
hances the receptivity. However the MSE was found to be &pte downstream of the
junction, and this was attributed to the steeper adversgspre gradient at the junction.
Hence rapid changes in adverse pressure gradients are agantpas discontinuities in
curvature to the receptivity of bodies.

Fuciarelliet al. (1998) extended the DNS work by Let al. (1992), and calculated
T-S wave amplitudes at the lower branch neutral stabilityfim compare with the ex-
periments of Sariet al. (1995). In the experiments of Samt al. (1995) and Saric and
White (1998), T-S wave amplitudes at lower branch were catedl by first finding their
amplitude at upper branch, and then extracting back thisnmdition using linear stability
theory. Wanderley and Corke (2001) use the same method astiadd Corke (1998),
where the flow is linearised and then the base and perturbitews are solved sepa-

rately, to model flow over a MSE. Again the largest aspecoislt5E of40 : 1 produced
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the largest amount of receptivity at branch | when compaoeal20 : 1 MSE. Wander-
ley and Corke also found good agreement with the experimér8aricet al. (1995) for
the surface pressure coefficient, wall normal eigenfunctibthe streamwise perturba-
tion velocity, and the locations of the upper branch newtalbility point, as well as the
receptivity value at lower branch given by Saric and White9@)9and Fuciarellet al.
(1998).

The aim of this thesis is to use the existing asymptotic héam the leading edge
region (Goldstein, 1983, Hammerton and Kerschen, 1996hd\s¢ 2001), for acoustic
waves, and extend it downstream through the Orr-Sommaeamgidn to the lower branch
neutral stability point, we will then be able to compare atoples with existing studies,
both numerical (Haddad and Corke, 1998, Wanderley and Codkd,)2nd experimental
(Saric and White, 1998). To do this, we hope to incorporateusge of the PSE, and
extend the derivation of this equation to include body geoynas Nichols (2001) did
for the leading edge problem. The primary reason for wantimgompare with these
experiments is to try and help with the understanding befi&dwave propagation, and
the mechanisms behind transition. The main topics in thikwoe outlined in the next

section.

1.3 OQutline for thesis

In chapter 2, we derive the LUBLE in the leading edge regiom produce the large
downstream asymptotic form of the Lam-Rott eigenmodes ferctse of a body with a
rounded leading edge where the inviscid slip velocity tendsconstant far downstream.
This asymptotic form can then be used as an initial upstreanmdary condition, for
the numerical solution to the PSE (Bertolati al, 1992), which we extend to bodies,
as discussed above. We compare the different variablesindsath the leading edge
region and the Orr-Sommerfeld region, and derive a reldigtween the two. In chapter
3 we give the numerical algorithms for solving the Orr-Somfeld equation for both the
temporal and spatial eigenvalues. The algorithm is alsergfer the numerical solution

of the PSE.
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Chapter 4 deals with the special case of an infinitely thin,isefimite flat plate,
for which Goldstein (1983) has derived asymptotic solwifor both the wavenumber
and mode shape in the Orr-Sommerfeld region. We look extelysat the derivation of
these asymptotic expansions, including the very compi'd:@t(Re‘%) term, which, be-
cause of its complexity, makes it very difficult to extend #symptotic analysis to more
general bodies with non-zero nose radii. Using the existiggmptotics, we demon-
strate the existence of an overlap region between the Igastige region and the Orr-
Sommerfeld region, where both sets of equations are valecavhpare the results in the
Orr-Sommerfeld region for the PSE, with Goldstein’s asyatips, and show that these
are consistent in the large Reynolds number limit. We disthesémitations of the PSE,
and suggest an appropriate means to overcome amplitudéatalas for slightly smaller
values of the Reynolds number, where the PSE cannot be uditisgtht back in the match-
ing region. We discuss the problem of initial transientsesgpmg in the PSE calculations
from the initial condition, and suggest a mechanism behedar tappearance. We com-
pare our PSE results with those of Haddad and Corke (1998gilntit as the parabola’s
nose radius goes to zero, in an attempt to relate the differenerical schemes.

In chapters 5 and 6 we extend our PSE calculations to finitkileiss bodies with
non-zero nose radii. Chapter 5 deals with the parabola, wierealculate T-S wave
amplitudes at lower branch for a range of values of Reynoldstaus, and Strouhal num-
ber. Chapter 6 compares similar calculations for the Rankaaky,bwhich can be defined
in terms of one dimensionless parameter, related to the raabes. We finish off by
extending our analysis to the Modified Super Ellipse (MSY ase slender body the-
ory to model the influence of the geometry of this body, as aeorgsite to using the

receptivity/PSE method.
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Chapter 2

Formulation

In this chapter, we consider the two-dimensional flow oveodybwith nose radius,, as
shown in figure 2.1. The free-stream velocity is assumedve haagnitudel/,,, and act
parallel to the horizontat* —axis. Itis also assumed to have a high Reynolds number, and
a small perturbation of a single frequency acting paratighe free-stream. Figure 2.1
shows the structure of the two regions discussed in chapt&iti some overlap region
occurring where the equations in both the leading edge ands@nmerfeld region are
valid. We shall use the existence of this overlap region tocim#he solutions from the
leading edge region, downstream via the Parabolized 8yabduation (PSE).

To be able to use the PSE as a way of determining the downspregragation infor-
mation, we must first derive the asymptotic form of the dis&nce in the leading edge
receptivity region to use as our upstream boundary comdftiothe PSE. We derive the
governing equation in this region, which is known as thednmed unsteady boundary-
layer equation (LUBLE), and seek largeasymptotic solutions of this equation, where
is the coordinate in the streamwise direction along the bdidyas first pointed out by
Lam and Rott (1960) that the solutions to this equation ctsmeisa Stokes flow part, and
a linear combination of unsteady eigenmodes. It was showtd&ein, 1983) that it's the
first of these eigenmodes which matches onto the TollmidiiSting (T-S) wave in the
Orr-Sommerfeld region, which eventually grows downstreditie lower branch neutral
stability point, and hence is of interest to us.

This method was first conducted on a semi-infinite flat plat¢ wWas later extended
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Figure 2.1: Anillustration of the region structure on a bedth a nose radius;,, at zero
angle of attack to the free-streai,..

by Hammerton and Kerschen (1996) and Nichols (2001) to a mgereral family of
eigenmodes, which are valid on bodies which have curvedrigastiges.

We shall extend the PSE derived by Bertol@tial. (1992) to incorporate bodies
with curvature, and hence, as in the LUBLE region, we shalivdethe PSE from the
Navier-Stokes equations using the coordindtesV), where¢ is a coordinate along the
body, and/N is a coordinate normal to the surface of the body, to be defliaied In
later chapters, we shall use the PSE to march the asymptotit é¢f the leading edge

eigenmodes downstream from the leading edge.
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2.1 Leading edge region

2.1.1 Derivation of the steady and unsteady flow equations

The two dimensional Navier-Stokes equations modeling nmm@ssible flow beside a

plane wall aty* = 0, in dimensional form, are given by

ou* ou* ou* 1 op* OPur O*u*
. Q2 A 2.1
ot* o Ox* v oy p Ox* v (895*2 * 83/*2) ’ (1)
ov* ov* ov* 1 dp* v
* * = — 2.2
o o T By poy (8:6*2 " ay*2> | @2)
ou*  ov*
= 2.3

wherez* is measured along the wall, apd is measured normal to the wall. The com-
ponents of velocity«*, v*) are in the directions ofz*, y*) respectively. The pressure is
denoted byp*, density byp and the kinematic viscosity by. The boundary conditions

for this flow are

u=v"=0 on Yy =0, (2.4)

u — Ux as Yy — 00, (2.5)

wherelU, is the velocity of the undisturbed free-stream.

We consider the problem for which the free-streldmis not completely undisturbed,
but has a small free-stream forcing component of frequendyence we introduce non-
dimensional variables based on the velocity scélg, length scalel/.,/w, and time

scalew™1, into (2.1) to (2.3), which leads to

@ + ﬂ@ + @@ — _@ + i _3211 + _3211 (2 6)
o ox 0y  0r Re\oxz 0y2)’ '
0v v OV op 1 (0% 0O*
Wogdly e - 2, - (2, 9°Y 2.7
ot "oz Vo 27 Re <8a‘:2 +8372)’ 2.7)
ou  0v
— — pr— 2-
oz oy 0 (2.8)

where the bar denotes a dimensionless quantity,/&ni$ the Reynolds number defined
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Re (2.9)

The non-dimensional boundary conditions for this probleewia= v = 0 ony = 0, and
u — 1l asy — oo.

In this work we are only interested in large Reynolds numbevdloln this case a
boundary-layer is formed adjacent to the wall, of thicknéss O(Re~z) (Acheson,

1990, p268). Hence we introduce boundary-layer varialdaked on this thickness as

x =1, y:Reégj, =1, v=Rev, t=1, p=p. (2.10)

Substituting these into the non-dimensional Navier-S$adguations gives the following

boundary-layer equations at leading order

ou ou  Ou  Op Ou
dp
= —— 2.12
ou Ov
— 4+ — = 0. 2.1
e + 3y 0 (2.13)

Outside the boundary-layer, viscous effects are negigéohd hence the flow is gov-
erned by inviscid theory. The inviscid solution cannotsgtthe no-slip condition at the
boundary, hence we obtain a tangential slip velodity,z, ¢), even though the normal
component of velocity at the boundary is zero. Matching therlary-layer flow to the

inviscid flow gives the outer boundary condition as
u— Us(z,t), v—0 as y— oo. (2.14)

From (2.12), we note thap, = p(z,t), hence the pressure is constant throughout the

boundary-layer. Therefore applying (2.11) at the edge @bibundary-layer gives

ap oU, U,

and the non-dimensional boundary-layer equations become

u, Ou, Ou _ U, . 0U O
ot Yor ey T ot P or o2
— 0, (2.17)

(2.16)

ou , o0
or 0Oy
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with the boundary conditions for a rigid and impermeablag&ty = 0, « = v = 0, and
u — Us(z,t) asy — oo.

The equations above have been derived in the case of a flat ptatever these same
equations hold, to leading order, for flows past curved bated, as long as the curvature
of the boundaryx, is such thakU,.d/w and (U2,6/w?)(dr/0x*) are small (Rosenhead,
1963). The coordinatesandy are now defined as being along the boundary and normal
to the boundary, respectively. For the curved boundapy,/0y* is no longer zero, but
equalskpu*?, to balance the centrifugal force. However (2.15) stilldsplas the total
change in pressure across the boundary-laygt,= O(kpU?2 ), is still negligible when
k0 is small.

With our new definition of(x,y), we solve (2.16) by noting that from (2.17) there

exists a stream functiom; = Rezwy* /UZ, with the properties

_ oy _ oy
u—a—y and v = o (2.18)

Thus (2.16) becomes

%y o O 0o _9U. U, O

- S ; -, 2.19
oyot T Oy oyor 0z 02 ot or oy (2.19)
with the boundary conditions
_o _ 9 _ _
) = o Jy =0 on y=0, (2.20)
g_¢ — Ug(z,t) as y— oc. (2.21)
Y

For this work it is assumed that the external disturbancenalcompared to the free-
stream, and is of a single dimensional frequency,Therefore we assume that the slip
velocity can be written as a steady base part and a lineaurpation due to the external
disturbance,

Us(z,t) = Us(x) + eUg(z)e™, (2.22)

wheree < 1 is a small constant, ard,(x) andU,(x) areO(1). Here the functiot/;(x)
is the slip velocity due to the undisturbed free-stream, @tbe calculated by inviscid

theory.
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To simplify (2.19), it is assumed that the stream functidesathe following form
= h(x)p(x,N,t) where N = g(x)y, (2.23)

whereg(z), h(z) and¢(x, N, t) will be determined below.

On substituting this into (2.19), we get
2 d(ah 2 2 2
7o (g)(&é) +gh(a¢ ¢ aasaas)

ONOt dr \ON ON ONdz  ON2 0z
1 [oU oU, , P dh , 0?¢
g_h(at + Us ax)+g_aN3+g@¢aN2’ (2.24)
with the boundary conditions
9¢
99 Us(z, ) as N — oo. (2.26)

ON — gl@)h(x)
The functionsh(x) and g(z) are chosen in such a way as to satisfy the boundary
condition at the edge of the boundary-layer, and to simggfg4). Thus because of the

form of (2.22), we choose

g(x)h(z) = Ug(z), (2.27)

to simplify the boundary condition (2.26) to

g—j\i — 1+ egjg; e as N — oo.
We also choose
dh
= — 2.28

so that the last two terms in (2.24) both have the same caafficT his gives the equation a
form similar to that of the standard equation for steady lolauy-layer evolution. Solving

(2.27) and (2.28) leads to the arbitrary functions havirggftrm
o@) = Upx) (2 / Uf(x')dx') - (2.29)
0

. ;
h(z) = (2/ Uﬂm')dw’) : (2.30)
0
We assume that(x, N, t) takes the same linear form as the slip velocity, hence

(z, N,t) = ¢1(z, N) + epo(x, N)e ™, (2.31)
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where we shall labeb,(x, V) as the steady solution, ard(z, N) as the unsteady so-
lution. Substituting this into (2.24), along with the defions for g(z) and h(x), and

equating powers of, we find the steady evolution equation is

P1vNN + Pr1¢ivn = f1(2) (Qﬁzv - 1) + f2(x) (P1nPiNe — OINNP12) 5 (2.32)

where the subscripts and N represent differentiation with respect to the appropriate

variable. The functiong'1(z) and f2(z) are functions of the slip velocity, and are given

by
2f0x deﬂi/ de Qfom de%’l
UJ% de‘ ’ Uf ’

For (2.32) to be of the same form as the standard equatiohdaolution of a steady

Ji(z) = f2(x) =

boundary-layer,

Onvn + donn = B(E) (% — 1) + 26 (dndne — dnnee) ,

we introduce the further change of variables,

§:/0 Up(a")dz!, (2.33)

which on substitution into (2.29) and (2.30) leadgytg) = Uf(f)(2§)—% andh(§) =
(2¢)7.

Now with the new variable$¢, V), we gain two equations for the evolution of a
boundary-layer one for the steady part; and a second for the coefficient of the

time-dependent part. The steady flow equation is

PINNN + Q101NN = ﬂ(f) ( %N - 1) +2¢ (¢1N¢1N5 - ¢1NN¢15) ) (2.34)
with the boundary conditions

¢1:¢1N:O on NZO,

(2.35)
oy — 1 as N — 0.
The functions(¢) is the mean pressure gradient, and is given by
2¢ dU
sey = 29 (2.36)

Uy de
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The equation for the unsteady flow componendf ¢ in (2.31) is

GanNN + Gann (1 +26¢1e) + Pan (I2E) — 26(§)d1n — 2§P1ne) + PadinN

Us . 2¢ dU,

+28 (Pivndae — Pingane) = Fj (12(&) — B(E)) — %d—;a (2.37)

where the functio2(¢) is known, and is given by

_ 2%

and the corresponding boundary conditions are

$2 = pan =0 on N =0, (2.39)
Ua(z)

Gan U, (0) as N 00. (2.40)

Equation (2.37), is known as the linearised unsteady bayrdger equation (LU-
BLE), due tog, (&, N) being the linear correction term tq (&, N).

In deriving the equations for boundary-layer flow, the ordgamption we have made
is that the inviscid slip velocityl/;(x), and the boundary-layer flow excited by the free-
stream forcing can be written as a linear perturbation orstbady problem. Therefore
(2.34) and (2.37) hold for more general two-dimensionali&ds long as these assump-

tions still hold.

2.1.2 Asymptotic solutions ag — oo

In later chapters, we hope to utilise the solution to the LUBREd use it as an initial
upstream boundary condition to our PSE solver, which isdvr downstream of the
leading edge. Thus, we require the far downstream form oL WBLE solutions, so in
this section, we derive the largeasymptotic form of these solutions. The steady prob-
lem is completely determined through the mean pressuréggae( ), and the unsteady
problem is determined by (&), the steady solution, and the functioxi¢), all of which
are functions of the inviscid slip velocity,(z). Hence to form the asymptotic solutions
for these equations, we need only the asymptotic foriti,oh the larges limit.

We shall consider bodies for which it can be assumed thatliheelocity, U;, acts

parallel and symmetric to the body, and hence takes thewwilp form in the larger
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limit,
[0 Yy _
Up(z) = 1+;+P+O(x 3. (2.41)
This form of U; holds true for the bodies we discuss in later chapters. Tikiesgrom
(2.33)

E=z+aln(x) — % + O(x7?). (2.42)
However, we requiré/;(¢), and hence we need¢). If we take the approximation that

¢ = x + aln(z), and write that: = £ + &, whereé < ¢, then in the limitt — oo we

findé ~ —a In(&). From this we can write the asymptotic relationsh{g) as
r=¢—aln(é) +0(E™). (2.43)

Using this relation in the asymptotic form bf;(x) and expanding for largg, we find

Up(€) =1+ % + 2 22(5) T % O3 (¢)). (2.44)

From this we can now find the asymptotic forms/gf) and2(¢) as{( — oo from

(2.36) and (2.38),

5O ~ P a lnéf) + 540 m(E)) (2.45)
Q) ~ b€+ by + bs lnf) + 2—4 + 0(£72In%(¢)), (2.46)

where the coefficients; andb,; are given by

a, = —2a, ay=—4a? a3 =4(a®—7), (2.47)

by = 2, by=—4da, by=—4a® by =6a*—14y. (2.48)

To expandi3(£) and () to higher powers of !, we would need more terms in
the expansion ot/;(¢). However, Nichols (2001) shows that the asymptotic form for
the steady componeat (¢, N) up to O(£71), only depends upon,, and the unsteady
solution only depends upan, b; andb,. Thus to this required order, the expansions of

B(€) andQ(&) are sufficient.
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Asymptotic steady solution

From the analysis of Van Dyke (1964a) and Hammerton and Kers(1996) on a parabola,

the steady solution, (¢, V) is assumed to have the following form@s— oo,

D1(EN) ~ Bu(N) + 34(N) mf) " gbc(gN) L0 (e (2.49)

The logarithmic term is essential, as it ensures exporlatacay of the vorticity through
the boundary-layer (Stewartson, 1957). The correctian teith fractional power1.887
arises as the next eigenmode of an infinite sequence distlasse(Libby and Fox, 1963).

The boundary conditions apy, translate to

o = Qp = Gc = Pan = Qpn = Pen =0 on N =0,

QSLLN I 1a and ¢bN7¢cN — 0 as N — o0.

(2.50)

Substituting (2.49) and (2.45) into the steady equatioB4(2.and equating powers ©6f
gives us three differential equations for the three unknéwmetions¢,(N), ¢,(N) and

¢.(N). The order one term leads to

P + Patdy =0, (2.51)

where the prime denotes differentiation with respecvtowith the boundary conditions
(2.50), the solution to (2.51) is,(N) = f(IV) where f(N) denotes the Blasius solution
for flow past a flat plate, with zero pressure gradight{ = 0). At orderIn(¢)/¢&, the
equation forg,(N) is

b o +2f'd, — [ =0, (2.52)
which has the solutiog,(N) = C(Nf' — f) (Lighthill, 1954), whereC' is an arbitrary
constant. This constant will be determined later by a sdlitalcondition. At order1/¢,

the equation for.(V) is given by

G+ fOL+2f' 0. — [P = ar(f* = 1) +2Cff", (2.53)

wherea; is the leading coefficient from the asymptotic form of thegstge gradient given
in (2.45). The solution of (2.53) can be written@$N) = D(N f' — f) + E(N), where

D is a constant, and'(V) is a particular solution of (2.53). We assume without loss of
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generality thate”(0) = 0, and hence the constabtis unique. Asp,(N) = f(N), then
the asymptotic form of the steady solution, (2.49), can hesictered as a perturbation
about the Blasius solution. Libby and Fox (1963) considereth $lows, and sought a

solution of the form

G1(E N) ~ FIN) + ) du(é, N),

k=1
where¢, 11 < @1 for £ > 1. Libby and Fox found that the functions j, through

linearisation and separation of variables, are of the faimn = Si.(£)Tx(N), where

Sk(&) ~ 5—%'“ andT} (V) satisfies the eigenvalue problem
T + fTy + M ST+ (1 — ) f' T = 0,

with boundary condition§}(0) = 0 and7}(cc) = 0. They list the first ten eigenvalues
of this equation, the first of which i&; = 2 which is the only integer value among
the eigenvalues. From comparison with (2.53), we see tlahtimogeneous form of
this equation corresponds to the above equation wjth= 2. Therefore as the first
eigensolution isD(N ' — f)/&, we note that the constaft cannot be found using the
asymptotic analysis, and hence it has to be found numeyicktie next two eigenvalues
are\, = 3.774 and\; = 5.635, whose corresponding eigensolutions @r& —!-%8") and
O (£72818) respectively, correspond to higher order correction tdémas (¢, N).

The particular solutiort?( V') cannot be found analytically, hence it is found by nu-
merically solving

Li(E)=a(f —1)+2Cff", (2.54)
with the boundary conditions
E=FE=E"=0 on N =0,
where the linear operatdr, is given by
L\(E)=E" + fE"+2f'F' — f"E. (2.55)

The solvability condition foC' is found by applying adjoint linear operator theory at
the1/¢ order. For third-order linear operators,

dP(u,v)

vL(u) —uL(v) = N
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wherei(v) represents the homogeneous adjoint operatéftg. The general operators,

L, L and the functiorP(u, v) are given by

nmn

Lu) = u" +pu" + qu' + su,
L) = ="+ (pv)" = (qu) + sv,
" " ! ! / /
P(u,v) = vu’ +uw” —v'u' + pou’ — (pv)'u + quu.

For the linear operatak, (F), the solution to the corresponding adjoint operator proble

Li(v) =0,isv = f, hence

f(a(f?=1)+2Cff") = diN (fE"+Ef"— ['E'+ [°E'). (2.56)

Integrating this equation with respectibbetween zero and infinity and using the bound-

ary conditions ory(N) andE(N), gives the solvability condition that

/OO fa(f2=1)+2Cf"f)dN =0, (2.57)
0

Therefore rearranging this we find

C U7 - DdN
a2 [ f2frdN

~ 0.60115, (2.58)

and hence the general asymptotic form of the steady soltgragenerals(¢) is

In(§) , DINS' — f) + E(V)
§ §

The undetermined constaft is obtained numerically (Hammerton and Kerschen,

$1(€,N) ~ f+0.60115a, (N f'— f) +0 (£71%%7) . (2.59)

1996) by noting that we can rearrange (2.59) to give

£(Ppinn(€,0) — f(0)) N " D
SO 0601150 + . (2.60)

Hence by plotting;(£) againstl/In(¢), the constanD can be evaluated as the gradient

q(§) =

of the tangent tg (), in the limit1/1n(¢) — 0, whose intercept i8.60115a,. However
in the limit as1/In(¢§) — 0, the value ofp,y (&, 0) approaches that of”(0), and
hence to avoid humerical error in this calculation, it's mepnvenient to use(¢, N) =

o1(¢, N) — f(N). Substitutings, (€, N) = f(N) + ¢(&, N) into (2.34) gives

Oy +ddwn = B(6) (6 —1) +2¢ (dndwe — dwde) — £'6 = fonw
+ B (2 +20f) + 2 (fowe — ) (2.61)
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as the governing equation fé(g, N). The unknown constar® can now be determined

from the plot ofg(¢) againstl/ In(§), whereg(&) is given by

q&) = EONN(E0) 0.60115a; +

= 10y In(®) (2.62)

D
In(¢)
Asymptotic unsteady eigenmode

Ackerberg and Phillips (1972) conducted work on flow pastigpliate, and they showed
that a two-layer structure exists in the boundary-layerffam the leading edge. This
two-layer structure consists of a main layer of width= O(1), and an inner layer of
width N = 0(5—%). Within the boundary-layer, the unsteady solution is a dotipn

of a Stokes-layer solution, that is fully determined, andma ®f eigenmodes, which take
into account the initial conditions. These eigenmodes viesefound by Lam and Rott
(1960) for flow past a flat plate, and these authors later stitiaat these eigenmodes are
also valid for arbitrary pressure gradients (Lam and Ro83)9Goldstein (1983) showed
that it's these eigenmodes which provide the wavelengthtshimg process required for
the external disturbance to excite T-S waves. This was dsetraied by showing that
the unstable eigenmode from Orr-Sommerfeld theory matdhethe matched asymp-
totic sense, to the the first Lam-Rott eigenmode in a matcheggn which occurs on a
streamwise length scale of the orders. These eigenmodes were generalised by Ham-
merton and Kerschen (1996), for the case of a parabola, attitefuoy Nichols (2001)
who derived them for a general body for which the inviscig sklocity tends to a con-
stant far downstream.

There is another orthogonal set of eigenmodes, which atgiso$ to the LUBLE,
found by Brown and Stewartson (1973), these modes decay roovly than Lam-Rott
modes, and have been less widely studied. We shall justademtie Lam-Rott modes
in the present work, as they have been shown to match ontoniahle mode of the
Orr-Sommerfeld equation. It has, however, been conjegdttivat the Brown-Stewartson
modes are the Lam-Rott modes in the limitas— oo (Goldsteinet al, 1983), although

this will not be considered here.
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The unsteady solution, (£, N) is considered to have the form

$2(&, N) ~ dor(&,N) + Y Ciai(€, N), (2.63)

=1

wheregsr (€, N) denotes the Stokes-layer solution to the LUBLE, and &, V) are the
eigenmodes. The Stokes solutian, (£, V), is found by solving the LUBLE using the
boundary conditions (2.40). However the eigenmodes anedfdny solving the LUBLE
(2.37) with the forcing terms on the right hand side set equalero, and with homo-
geneous boundary conditions. Goldstein (1983) showedtthahe lowest order eigen-
mode,p- 1, which matches, in the matched asymptotic expansion sent®the growing
T-S wave, and this will be important when applying our iniganditions to the PSE. This
fact is important because we are interested in calculatiaginplitude of the T-S mode
which grows downstream of the neutral stability point, ais iassumed that this mode
eventually leads to turbulence in the boundary-layer antsequently boundary-layer
separation (Sariet al., 2002).

To simplify the algebra, and to be consistent with work dop@dbkerberg and Phillips
(1972) and Hammerton and Kerschen (1996), we introduce avaeableG (¢, N) to
replaceps (&, N) in the LUBLE. We define this variable as

G(E,N) = (26)2 (€, N), (2.64)

which on introduction to the LUBLE with the forcing terms sgual to zero gives

Gnn + (81 + 261¢) G + (18) + (1= 28(8))dan — 2 dve) G
+26 (innGe — inGne) = 0. (2.65)

As mentioned earlier, the Stokes solutieny-, can be found by numerically solv-
ing (2.65) with homogeneous boundary conditions at the,vimit with the condition
Opsr/ON — (25)—%, for fixed &, asN — oo. However we can also form the large
asymptotic form ofysr, which when evaluated at the outer edge of the boundary-laye
given by

1+i1 Bl 13051 3%U5 1  4051(1—)UP 1
£il 0Bl 130G 1 39U 1 AOSUL—DUR L oopy o6

¢sr(§,N) =N — 2 5% 2 ¢ 32 €2 64 &3 2048 £z

whereU] = f”(0) = 0.4696.... and 8 = limy_o(Nf" — f) ~ 1.217. This result

provides a good check for the full numerical solutionygf:.



2.1 Leading edge region 40

Solution in the inner and main layer

Close to the wall in the inner layer, a change of variable isiiregl, and Nichols (2001)

solved (2.65) in this layer, by changing to the inner vaeabl
(b 1\ 2 by
= (2¢) (( 2) + (2_bl> i) N, (2.67)
and by looking for a solution in the form
G(&, M) = "D f (e, M), (2.68)

wheref(¢, M) andT'(£) are expanded in powers Bf. The main deck solution needed

no variable change, but again the solution was written irfaha
G(&N) = ¢"®g(&. N), (2.69)

whereg(¢, N) is again expanded in powers 2f. The solution in these two decks can be

written, after matching, as

o ,f "(M-M Az(z)dM _3 _1
¢mieT @ (U7 o +0(§72)) N=0(2),
b = ( 0[5 Ai(z)d ( )> () (2.70)

e (204 F(N) + S+ 0(eh) N =0),

where
U, = £"(0)=0.469....., (2.71)
5= —pj+p; e, 2.72)
No= pyte T, (2.73)
889 — 16p? 3 8p} —27 27
3
\(20)F (bi\? (1 In(¢) 3bs
T; = - — -~ —0.6011 1.2023a; — D+ — | =
5(€) Uy 5 3 0.60115a; ¢ + 023a, + 2, E

+ 079387, (2.75)

Herep; are the solutions of the equation

Ai/<_pj) =0,
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whereAi’ is the derivative of the Airy function (Appendix B). The firssblutions forp;

are
o = 1.01879,
py = 3.24820,
py = 4.82010,
ps = 6.16331,
ps = T7.37281,

and it’s the first of these solutions which matches onto tlogvgrg T-S mode in the Orr-
Sommerfeld region, so will provide most interest to us iis thork (Abramowitz, 1964).
The solution (2.70) is valid within the boundary-layer, boes not take into account
the slow decay of the eigenmode &s— oo, however, we will see in the next section
that the PSE equation is valid fof € [0, oo). Thus to be able to use (2.70) as an upstream
boundary condition, we need to find the outer solution to ¢aeling edge problem, in the

outer inviscid region. This solution has not been calcualdefore in previous work.

Solution in the outer inviscid layer

To find the solution in the outer inviscid region, we first gek#o the non-dimensional
form of the Navier-Stokes equations (2.6) and (2.7). Irbtdantroducing the boundary-
layer variables and only taking the leading order terms,ng&ead consider all the terms.

We then introduce a stream function (2.18) as before, tothequations

Py op Py o  p Py 1 O

Oyt " Dyosdy  dx o 0x o | Reostay OO
L (P o YN p L P 10,
Re \ 0z0t 0Oy 0x2 0Oz dx0y Oy Redxdy? Re?0x3 "

We can then eliminate the pressure by takin@y (2.76)-0/0x (2.77), to give

O WOy WPy 9
oy?ot Jy 0xdy?  Ox dy® Oyt
L(a_w 03 B 93 _8_¢83w+2 oMY )+ 1 0%
Re \ Ox 0x?0y  0xz20t Oy 0x3 0x20y? Re? 0x*

(2.78)
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As before, we split the stream function, into a steady base flow part, and an un-

steady perturbation part. Hence we write

1/)(1‘7 Y, t) = ¢1<$,y) + 5¢2<x7y)e_it7

whered < 1, and;(z,y) andyq(z,y) areO(1). The leading order equation far,
after integration with respect t@ is given by equation (2.19), after changing variables
from (z,y) to (¢, N), with added correction terms 6f( Re™1).

TheO(6) equation is

Py Oy OPhy Py Oy O Py O P 0Ny

- oy? Oy 0xdy?  0x?0y Oy oxr 0y3 or 0y3 oyt
6 <2 0"y N %Py Oy O*hy Oty OPiy N Oy 0ty n Oy 01y )

0x20y? " ox? dy Ox3 dy 0x3 Ox 0x20y  Ox 0x20y

120"
ort’

+e

(2.79)

which is they derivative of (2.37) after the appropriate change of vaeisband with
added terms due to viscosity, affd= Re~*!, which is different to the value of intro-
duced earlier.

We now change to th@, V) variables defined in (2.33) and (2.23). To seek a solution

in the outer inviscid region, we introduce the scaled vaeisb
X =¢€€¢  M=¢€N, (2.80)

into (2.79), wheres andt are positive real numbers. We note that as we are outside the
boundary-layerN — oo, thereforey, ~ (25)%1\7 and we seek a solution faf, in the

form

M) where (&) = —X\;/(Ug¥(8)),

N

U = (26)

G, N) exp( 3

and

o mE) D 3h)\[2\", ...
5= (1 + 0.60115a1T + € m) (E) + O(E71887), (2.81)

which was motivated by the solution in the two lower deck3 Q2.
We find the only appropriate choice for the balancing of tewhsch givess andt¢

both positive, and gives a non-trivial balance at leadirdgagris fors + ¢ = 3. Goldstein
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(1983) discusses that the matching region between thenlgadige region, and the Orr-
Sommerfeld region occurs wheén= O(¢~2), hence we set = 2 andt¢ = 1. This then

gives the leading order equation f6{ X, M) as
U3 (Ut = €i(2X)8) (G + (2X)%2G) = O(e?). (2.82)

We seek an asymptotic form 6f(X, M) = Go(X, M) + eG1(X, M). Hence at leading
order

Gomm + (2X)*1*Go = 0, (2.83)

to which the bounded solution 46 — oo is

(2.84)

Go(X, M) = Agexp (ﬁ(l +i)XM) ,

3
Usvpj
as,

—Aj (1—1)
:u(X) = = : 3
U () vaugs(x)e;
At O(e) we have from (2.82)

@
<

=

+
tl\')
o
=
)

U?M(G1N1M+(2X)2M2G1) = ZU]%(2X)7

= 0 (2.85)

by using the solution fo€y. This gives us the bounded solution

Gy = Ay exp | ZY2LE DXM ) (2.86)
Us'vpj

The functions of X,4, and A,, are found by matching with the main deck given in

(2.70). The outer inviscid solution dd — 0 is given from (2.84) and (2.86) as

2X)2
¢outer ~ ( ) (AO + EAl)eTj (f)’
€
where
Ai(26)7
T. = s/

which in the largé limit is given by (2.75). The main deck solution 85— oo, given
by (2.70) is

RX)} |, Ui
€ )‘j ’

djmain ~ (672X)Tj eTj (&) <— +



2.2 Orr-Sommerfeld region 44

therefore
-2 Tj !
AO = (672X)Tj7 Al = (6 X>1 (@> )
(2X)2 Aj
and hence the solution far in the outer inviscid region is
1 ) - 1+2)EN
7 Usy(&)p;

Now we have the complete form for the shape of the eigenmoedetbe full N domain,
hence we can now use this as our initial condition to the P3iciwis derived in the next

section.

2.2 Orr-Sommerfeld region

As we move downstream from the leading edge, the rapid baoy+dger growth close to
the leading edge has diminished, and the boundary-laydrdwmsne almost parallel to the
surface of the body. Goldstein (1983) showed that this regizzurs wherf = O(e72),
wheree = Re~s = (vw/U2)"s. At leading order, this region is governed by the Orr-
Sommerfeld equation. However, the Orr-Sommerfeld eqnatimnly strictly valid for
parallel flows, and although this is a good first approxinmgtio general this equation
leads to unsatisfactory results when dealing with bountiygrs. It is also possible to use
a non-parallel formulation of the Orr-Sommerfeld equa(aric and Nayfeh, 1975), but
this method has its limitations, as we shall discuss latestelad, to incorporate the now
slow growth in the boundary-layer, we model the flow in thigioe numerically, using
the Parabolized Stability Equation, first introduced by Bleiti et al. (1992). Goldstein
(1983) solved the equations in this region asymptoticalhg we shall use this result to
compare with our numerics. We shall also discuss later tiewdty with extending the

asymptotic method to bodies with curvature.

2.2.1 Parabolized Stability Equation

We consider a body in a uniform streat,,, which has a small free-stream disturbance,

of frequencywy. The coordinates},, andy}; represent dimensional coordinates along
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the body, and normal to the body respectively, where thecsijths”® denotes that we are
in the PSE region.

We introduce non-dimensional quantities, based on theitglscalel/.,, and boundary-
layer thickness length scalg = 6(x) = (y:p(’;/Uoo)%, wherez; is a dimensional distance
from the leading edge, which we take to be the starting pdintioanalysis, and is the
kinematic viscosity. Based on these two quantities, we dejiime¢ime scale a§)/U...

The non-dimensional Navier-Stokes equations based og tit@sdimensional quan-

tities are
8up (9Up 8up Gpp 1 82uP aQZLP
—_— — — = ——t — | =+ — 2.88
oty T Pozs TP ays ozp Ry ( o Tap ) @89
al)p avp va 8pp 1 821)1: aQUp
— —_— —_— = ——t — | —= 4+ — 2.89
otr "oz oy oy R (ax; o ) @89
8UP a’l}p
— = = 2.90

whereR, is the Reynolds number based on the length sgalend is defined to be

. Uoo(SO . IS

Ry N

= 2, (2.91)

xq is the dimensionless distance from the leading eggés the pressure, and:p, vp)
is the velocity in thgzp, yp) direction. The subscripP on the variables, denote that we
are in the PSE regime. As in the leading edge region, the Régmaimber is assumed to
be large.

Eliminating the pressure by doing/dypr (2.88)-0/0xp (2.89), and introducing a
stream functionl p, such that

OVp O p

— =u —— = —vp,
dyp " B r

we find that the vorticity equation for the stream function is

8tp Ro ayp (9.1'13 B a$p 8yp

(a 1, 0Up 0 axppa)vz%zo. 2.92)

We also introduce the definition of the Reynolds number basethe length scale
§(zp)tobeR = (zpRy)2 = (Usa’h/v)2 = (xp/20)2 Ro.
We split the stream functio® »(zp, yp, tp) into a time dependent disturbance part,

Yp(zp,yp,tp), and the mean steady base floi; (zp, yp), under the assumption that
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Yp < Up. InsertingVp = U + 9p into (2.92), leads to the following equations 1&g

andyp,
ovp 0 oVg 0 ) 1,
- Up=-V'¥ 2.93
<ayp Odrp Oxp ﬁyp)v B ROV B ( )
0 1 _, 0¥p 0 oVg 0 ) PV Mhp Py Ip
((%p ROV dyp dxp  Ovp a?JP) Viers dr}p dyp - Oz pdyp Oyp

B dz%0yp O p oy’ Oxp

PUgp p  PVpoYp (8¢P 0 JYp 0O

— _ ) _2

As for the leading edge region f2.1, these equations still hold at leading order, if the
curvature of the body is small.

Motivated by our work ir§2.1, we introduce the following change of variables
Tp
&p = / Up(a')da', (2.95)
0
Np = Rig(&p)yp, (2.96)

whereg(ép) = Uf(gp)(%p)—%. Under this change of variables, it's easy to show that
the function for the base flows = (2§p)‘%\I/B in fact satisfies (2.34), and hence we can

write down its large p asymptotic form as

Uy = Rg%(Qgp)% (%(Np) + Qbﬁ(Np)lnéiP) + ¢7(Np)€ip) ) (2.97)

Note thato,, ¢, andg., are different fromp,, ¢, and¢. as§ # £p, but we shall write
down their full forms later.

We seek a solution to (2.94) in the form of traveling waves pAtilly evolving wave
of constant angular frequency, is described by specifying the streamwise wavenumber
a(&p) and the velocity profiles as derivatives of the complex mdugpe¢(&p, Np).

These components combine to give the disturbance streastidann the form,

Up(Ep, Np,tp) = $(Ep, Np)x(Ep, tp) + complex conjugate,  (2.98)

where
x(€p,tp) = exp (i(0(€p) — wptp)),

and

df
d§+p = a(ép).
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In the parallel flow case, we assume that the mode shaiseindependent of p,
and we derive the Orr-Sommerfeld equation. In the non-fgm@dse, our best chance to
simplify the problem is to have and« as slowly varying functions of . This cannot
be assumed straight away, because both oscillations amdignm £», can be absorbed
into ¢, as well as the phase functiénWe can remove this ambiguity by considering the
variation of¢ with £p. Unlike the parallel case, we can'’t figdindependent of », except
in some average sense across the whole flow domaiinin the simple 2D case, we
could apply a simple norm such dsp(N}**)| = constant, at some suitable distance
N7e* from the boundary, but we prefer norms which are physically mathematically

meaningful. To that extent, we note that, from (2.98)

(), = % tia,

which when multiplied by¢|? and integrated fronVy = 0 to oo gives,

Jo (In(¥p))ep|@*dNp o Z.fooo ¢ep¢'dNp
Jo~ 162dNp Jo 1o[2dNp

wheret denotes the complex conjugate. From (2.99) it seems reblsotoechoose as our

(2.99)

norm,
| éepdtane o (2.100)
0

which minimizes the streamwise variationg@fweighted by its complex conjugate, when
averaged betweeN = 0 andoo. This normalization condition places most of the stream-
wise variation of the solution into the exponential term 2:98). Thus from (2.99) we

take as our definition fos

Sy (In(¥p))ep ||*dNp
I 1g12dNp

From (2.97) and (2.91) we can see thgt(¢p, Np) varies on a short length scale
of O(Ry'), i.e. dVp/0¢p = O(Ry'). Therefore in the derivation of the Parabolized
Stability Equation, we assume that the disturbangevaries on a short length scale too,
which is at most as large as the base flow’s length scale. Byvhimean thad¢,/0¢, and
da/dép are atmosO(R; ). This assumption has also been seen to hold for T-S waves in

experiments and numerical computations (Morkovin, 1988us we assume that second
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derivatives of¢ and« with respect ta» and the product of their first derivatives are of
O(Ry?), and hence negligibly small. Also in the derivation of theEP&e assume that
the disturbances in the boundary-layer grow and decay asctad instabilities. That is
that the mean base flow acts merely as an amplifier of thelidisturbances, and in the
absence of these disturbances, the flow would return toigsat state.

Neglecting the second and higher derivatives.@nd ¢ with respect t& », attempts
to change the character of the PDE (2.94) from elliptic taapalic, and this is only
permitted if the stability problem is governed by downsine@ropagating information,
while the upstream propagation can be neglected. The fationldoes this, by changing
the eigenvalue of the problem to one which has no upstreapageiing information
(Anderssoret al, 1998). Attempting to parabolize the PDE (2.94) gives trmilteng
equation the name Parabolized Stability Equation, howevisrnot fully parabolic, and
still contains a small amount of ellipticity, and it is thifligticity which gives rise to
numerical problems which we discuss in chapter 4.

Using the assumptions, we can simplify derivativeg gfwith respect t&» into the
following form,

0™
o

= ((wf)mgb + m(ia)m_l% + im(m — 1)(2'04)’"_2%

qb) exp (i(0 — wpt)) .
(2.101)

For the purposes of this work, we shall only be considerirglitrear form of (2.94),
which we can do if the disturbances to the base flow are syiwhhll, vp < 1. Al-
though we are not considering the non-linear case herewtlris can easily be extended
to incorporate weakly non-linear effects, which would beeamportant if this work was
extended to look at the amplitudes of disturbances at therup@nch neutral stability
point. The non-linear PSE have been formulated by Bertostal. (1992), and have
been shown to yield good agreement with full numerical satiahs in problems where
weakly non-linear effects are important. However in onlyahéng up to the lower branch
neutral stability point, the non-linear effects are nagligy and hence the linear equation
will be sufficient.

Introducing (2.95), (2.96), (2.98) and (2.101) into (2,%)d neglecting any terms of
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O(Ry?), leads to the linear form of the PSE,

0
(Lo + L1 + L) + M—¢ + —N¢ =0, (2.102)
oép  dép
where
1 (ReD>  \* . o [ReD*
Ly = —— — Upy — _
’ R, ( 2% O‘) o —iwrlUi) { Gg o
— iaVUp, (2.103)
% % D3
L, = I ~WpsD — 4l ~Vpy (RO —042D>, (2.104)
(26p)2 (26p)2 28p
U 1 Ry,D?
Ly, = (=L - —|Np(OT — 302D ) +2 2D — Up,D
? (Uf 2§P) P( Bl( 28p so )+ wpally b )
2R, Ui ! D? UU2 =3V g ULU a2 2.105
+ omm 4513 +wpal;Uy U U o, (2.105)
D2
M = \1131(}%206 —3a2>+2wanf2—\1;BQ, (2.106)
P
N = wplU;?=3a¥p, (2.107)

andD = d/dNp, and the dashes on tli& terms denote derivatives with respectta

The functionsU g, (xp, yp) are defined as

1 0¥p
Uf Gyp
1 Vg
U} oyp
1 0%Vp
U} 0xpQyp’
1 8‘113
Uf axp

Vg =
Wpy =
Ups =
Upy =

which we shall write out using (2.97) later.
For the purposes of this work, we are only interested in tl@ggation of the eigen-

modes of the LUBLE, which have homogeneous boundary comditiblence we solve
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(2.102) subject to

vp=0on Np=0 = ¢(zp,0) =0, (2.108)
up=0on Np=0 =— %([[’P,O) =0, (2.109)
vp=0as Np — o0 = ¢(xp, Np) — 0 as Np — o0, (2.110)
up=0 as Np — o0 =— %(l’p,Np) — 0 as Np — o0. (2.111)

We also need to stipulate an upstream boundary (initialflitimm for the PSE, so we set

¢(&o, Np) = F(Np) (&) = ao, (2.112)

where¢, is the dimensionless starting position on the body. Thesevarious forms of
upstream boundary conditions applicable to the PSE, themenghall consider most of
all is the leading edge asymptotic form, although we couklaiparallel boundary-layer
assumption at the initial point, or a locally non-parallelindary-layer assumption at the
initial point, both of which will be discussed in more deptit4 when we consider a flat
plate.

The structure of the eigenvalues in the Orr-Sommerfeldreg the same as shown in
figure 1.2 of chapter 1. We have a continuous spectrum, andadiseunstable eigenvalue
moves from this continuous spectrum towards the Iinéa) = 0. The fact that the most
unstable eigenvalue approaches the continuous spectrmagproach the leading edge,
leads to numerical difficulties when solving the Orr-Somi@lerequation and the local
PSE equation described in the next section. The numeriochlgm occurs because we
cannot distinguish between the unstable eigenvalue andatnuous spectrum as the
leading edge is approached. Thus we are unable to solvephasems right back to the

leading edge. This numerical problem is discussed moreaptei 4.

2.2.2 Local solution to the PSE

We can solve the PSE locally about some upstream position- &, by writing the
solution as a Taylor series expansion in poweré ef £p — & . We note that the higher

derivatives can all be neglected because of the assumptienraade on the PSE that
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Gepeps epe, and the product of first derivatives af¥ R, ?). Expandingg(¢p, Np) and

a(&p) abouté,, we obtain

¢(&p, Np) = ¢(%, Np) +é%’%) +O(€%) = ¢ + £¢n, (2.113)
P £p=&o
aler) = alg)+E S L 0@) = ag+éan, (2114)
Plep=¢o

where theD(£2) terms are zero due to the PSE assumption andv.
Substituting these into (2.102) and requiring that the &qnée valid for varyingt

produces two equations

(Lo + Ly + Ly + oy N)po + Moy = 0, (2.115)
(Ly +icr M)go + Lopy = 0, (2.116)
where
Ry . o , inU} Ry D?
L4 = _2—&2) (ZOC()‘IfBl — Zu)Uf 2) D2 —+ <ZO¢0\I/Bl£P + U? 2&] _ ag
RyD*
— iU, + e (2.117)
28

and in the operatord,, L1, Lo, M and N, « is replaced byy,. The local form of the
PSE is commonly used as the initial condition to the PSE, ke tato account some of

the non-parallel effects (Bertolott al., 1992, Herbert, 1993).

2.3 Comparison of leading edge and PSE variables

The leading edge receptivity results, and the Parabolizetdil®y Equation derived in
sections;2.1 and§2.2, were derived using different non-dimensional vagabtia a dif-
ferent length scale. This was done to keep the general ciengssimple, and to keep them
in accord with the form in which they were originally derivadtheir original contexts.
This means it's difficult to change the leading edge soluitma the PSE variables to act
as the initial condition to the PSE. Thus in this section v tihe two sets of variables

in both regions, so that we can change the leading edge aolutio the PSE variables,
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Quantity PSE leading edge
Length scale o Uso Jw
Velocity scale Uso Uso
Time scale 60/Uso w!

Reynolds number Ry = U,dp/v Re =¢%= U2 Jwv

Table 2.1: Table comparing dimensional quantities for gaeling edge and PSE schemes.

and after the PSE calculation, change back to the leading eipbles to compare with
other results such as those of Goldstein (1983).
Table 2.1 gives a comparison of the major scalings for thedelemes used. If we

compare the two streamwise, coordinates, we find

x* = doxp,
* UOO
= —u,

w

where* again signifies a dimensional quantity. Now, as both thesedsional quantities

are the same, we can equate them to give
T . 50(.&) RU

R 2.118
zp Usx Re ( )
To compare the streamwise variabfeand(p, we note from (2.33) and (2.95) that
g o dép
therefore using (2.118) we find
4§ _ Rodp
dr  Re dx’
Integrating, and setting the arbitrary constant to 0 withosss or generality, we find
£ Ro
= = — 2.119
&= e (2.119)

which is of the same form as (2.118).

Equating the dimensiongl’ coordinates, we find
0(26p)iNp _ Us(26):N

UfRé wRez
Ro(26p)2Np _ Rg (26p)°N
Re Ré R@% R@% 7

Np = N
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Hence from now on we will refer only t&/ as the normal coordinate, as this is the same
for both schemes.

Comparing the dimensional frequencies in a similar fashéawl$ to the relation

Re
= —. 2.120
wp Ry ( )

A stream functionV has dimensions of a length a velocity, hence it's easy to show
that any stream function/ » in the PSE scheme satisfies

Rez
Ry

Up=—. (2.121)

We can now use this information to writeg in terms of the leading edge base flow

functions¢,, ¢, and¢.. Thus using (2.121) and (2.119), we find

( s (V) + Fe @) In(“52) | Re go(N)

N

Up=R,> (2€P)

—1.887
Ry &p Ry &p >+O(€p ). (2.122)

Using this new form ofl' 3, we can write¥ z,,, forn = 1,2, 3, 4, as

Re ¢pn In(Rofp/Re) = Re ¢cn

Upr = ¢anv+ o & Ro &p (2.123)
Vpy = 2}2‘; (%NNN + %@’NNN lng(fogp/ Re) gj d)“g;w) , (2.124)
Tre = ié ( pann  2Re ppn N In(Rofp/Re) | 2Re (2dbnN — ¢cNN))>
P72 \(2¢p)F Ro (26p)3 Ry (2p)3
RéN Uy 1) ( Re gy N In(Roép/Re) Re(chNN)
" (26p)2 <Uf 28p GanNN F R Ry &p i Ry ¢&p
2R; (U; 1 ) < Re gynn In(Rofp/Re) RemN)
+ (260)7 < U, 2% ¢aNN + o Ry r + Ro &5 ) (2.125)
s — i _ 2Re ¢p In(Ro&p/Re) | 2hRe (2¢0 — ¢c))>
Yoom 2£P R () Ry (2¢p)7
(2§p) ( 1 ) ( Re ¢bN ln(Rofp/Re) 1%€¢(N>
+ T\ % $an + Ro & + R e ) (2.126)

0

If we compare the forms of the disturbance stream functiod,wse (2.121), we find

that
Rez2

o(&p, N) exp(i(0(Sp) — wpty)) = R_Of(§7 N) exp(T;(€) — it), (2.127)

wheref (£, N) has a three layer structure. Hence we note that

a(ép) = — %% (2.128)
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and therefore our upstream boundary conditiomfdakes the form

C RoiN(20)% (b2 In(¢) (32— D)

We also note from (2.127) that

Rez
Bp, N) = o f(EN),

which we shall use in our numerical calculations.

2.4 Summary

In this chapter, we have considered a two-dimensional,nmpressible flow over an air-
foil with a high Reynolds number, which has a small harmonitysbation of frequency
w. We have shown that the flow in the leading edge region can lidérgp a base flow
and a linear perturbation flow. The base flaw(¢, V), is fully determined by the form
of the inviscid slip velocity at the edge of the boundary lay&. The perturbation flow
(&, N), up to the receptivity coefficient, is also fully determir®dl,, through¢, 5(),
(&) and the steady solutiopy (£, N). The particular form of the disturbandé,, enters
the problem through the receptivity coefficiedt,;, which for our work is an acoustic
wave. Hence the results in the leading edge region are \@lidlifgeometries where the
inviscid slip velocity tends to a constant far downstreasripag as the curvature, satis-
fies the properties that bottU,.6 /w and(UZ2.§ /w?)(0k/dz*) remain small. The form of
the solution in this leading edge region, in the limit as tineamwise variablé — oo, is
a Stokes layer solution, dependent on the forrgfand an infinite sum of homogeneous
eigenmodes. The eigenmodes are a generalization of theRaheigenmodes (Lam and
Rott, 1960), where a non-zero pressure gradient along thy lasl been incorporated,
which is generated by a non-zero nose radius.

In this chapter, we also derived the PSE, which is valid inGineSommerfeld region,
and is solved numerically to produce an infinite set of eiged@s, one of which displays
the required streamwise growth in amplitude, characterstthe T-S wave. We general-

ized the flat plate form of the PSE to include surface curegtand it is valid as long as
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the curvatures, satisfies the same conditions as for the leading edge pnofleese con-
ditions guarantee that the boundary-layer equations aredtrect approximation to the
Navier-Stokes equations at leading order. As in the leadduge region, the PSE is fully
determined by the form of the inviscid slip velocity in thegron and the exact form of the
free-stream disturbance is not required. Unlike Bertokitil. (1992) we formulate the
PSE in terms of and N instead ofr andy, so that the slow growth in the boundary-layer
thickness is taken into account by the numerical mesh.

The PSE is solved numerically by means of a streamwise nmraggiiocedure, from a
stipulated initial condition. The local PSE is valid in ai@gabout somé&,, and provides
an initial condition to the PSE, however, the local PSE dostao information of the
initial magnitude of the T-S wave. Therefore to transfeomiation about the T-S wave’s
amplitude downstream, we use the leading edge asymptatibe anitial condition to the
PSE.

It's the lowest order Lam-Rott eigenmode which is of mostnese to us, because it
is this mode which experiences spatial growth in the Orr-@enfeld region, and could
eventually lead to transition. Hence we examine the prapagaf this mode using the
PSE. Because the exact form of the free-stream disturbargeenters through the re-
ceptivity coefficient(;, the equations in both regions are valid for general distuces,
and not just for the acoustic ones examined here. The nuahalgorithms for solving

the PSE and parallel stability problems are discussed inglkechapter.
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Chapter 3

Numerical scheme

The numerical schemes used for stability type calculatinrtsoundary-layer problems
are based on eigenvalue solvers, as these problems argaigeproblems. The meth-
ods we consider for parallel boundary-layer problems agereialue solvers, based on
collocation methods. Iterative methods can be used forlph@moblems (Cebeci and
Cousteix, 2005), however as their results are identical @octhilocation methods, they

are not considered here.

3.1 Parallel stability problems

The numerical schemes behind the parallel flow problemsjnageneral very simple.
Spectral collocation is used, with Chebyshev polynomiatgl tae number of polyno-
mials used determines the accuracy of the results. Beforeonsider solving the Orr-
Sommerfeld equation, let us first consider a simple exangpéxamine how the spectral

collocation method works for solving differential equai$o

3.1.1 Spectral collocation method

Consider the Poisson problem for= «(z) in one dimension,

U p), (3.1)

dx?
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wheref(z) is a given function, and with boundary conditions
u(—1) =u(1) = 0. (3.2)

In a finite difference approach, we look to find the values @ft a discrete set of points

T, SAY,

form = 0,1,..., M, where M determines the spread of the set of points. Algebraic
equations are found by approximating the differential apmt d’u/dz?, in (3.1) with

terms like,
d*u U1 — 2Upy + U1

gz m) ~ (Ax)? ’

form=1,2,.... M — 1, where

Um = w(Tp),
2
Ar = =
SV

This form of (3.1) yields\/ — 1 equations for thé/ + 1 unknownsu,,,. The two boundary
conditions, (3.2), give two more equations which complbeegroblem.

The spectral collocation approach approximates the solwt all points, by a sum
over a finite set of orthogonal basis functions. Here, we idensa Chebyshev basis,

hence we write
u(z) = Zaﬂ}(m), (3.3)

whereT;(z) is thei!” Chebyshev polynomial of the first kind, defined by equation XC.2
Now we insist that: satisfies the differential equation and boundary conditexactly

at the collocation points

COSs <m7T>
T = BEYVEE
M

form = 0,1, ..., M. Hence we require the solution to satisfy

u(xrg) = 0, (3.4)
u(zy) = 0, (3.5)
d*u

@(mnﬁ = f(m), (3.6)
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form=1,...M — 1.

To solve (3.6), we first note that

CU S T (@),
dz? pr

The second derivatives of the Chebyshev polynomials can lleefound by using the

recurrence relations

T3 (@) = 0,
k k—1

T (@) = T3V (@m),
k k—1

T (@) = 4TV (2,0),

TW () = 23T8(le)(xm) + Ts(ﬁé(acm) s=3,4,...,

52
whereT* is thek™ derivative of thest” Chebyshev polynomial. These relations can be
easily derived from (C.5). Satisfying (3.6) at the collooatpoints, along with (3.4) and
(3.5), gives a system a¥/ + 1 equations for thé/ + 1 unknowns, which can be solved
by a linear system solver, such as the following.

The M + 1 equations can be written in the following form
Ba =c,

where thel M + 1) x (M + 1) matrix, B, is the coefficients of the LHS of (3.4), (3.5) and
(3.6),a is the vector of the constants, and the vectoe, is the coefficients of the RHS of

(3.4), (3.5) and (3.6). We wish to find
a=Blc,

but the calculation of an inverse matrix is hard to computddme systems. The numer-
ical solution toa can be calculated in many ways, the following method is knashU
factorisation.

First of all, B is transformed, using partial pivoting with row interchasginto

B = PLU,
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whereP is a permutation matrixLL is a lower triangular matrix with unit diagonal ele-

ments, andU is an upper triangular matrix. Once in this form
PLUa = c,

PLd = cis solved ford, and thenUa = d is solved fora. Both these systems are easy

to solve because the matrices are upper or lower diagonabAh©994).

3.1.2 Orr-Sommerfeld equation

The equation we have to solve for parallel flow problems iQhreSommerfeld equation,

which is derived in Appendix A. The Orr-Sommerfeld equatiam be written as
(D* —20°D* + a*)v = iaRe (U — ¢)(D* — o*) = U") v, (3.7)

whereD = d/dy. We can consider solutions to this equation in two ways. tlijreie
could input a real wavenumbat and solve for the complex eigenvalugs-ic;, in which

case we end up with the solution fofrom (A.10) with/ = 0, as
v = U(y)ez’a:pe—ia(cr+ici)t. (38)

Alternatively, we could introduce a real frequency= «ac, and solve for the complex

wavenumber = «, + iq;, leading to solution
v = U(y)e—iwtei(ar-i-iai)a:. (39)

Solution (3.8) is unstable when > 0, this is known asemporal instability, as the
solution grows with increasing time.
Solution (3.9) is unstable whem;, < 0, this is known asspatial instability, as the

solution grows in space.

Temporal eigenvalue problem

Finding the temporal eigenvalues is a straightforward jgmob as the eigenvalue appears

linearly in the problem. We write the Orr-Sommerfeld eqoatas

d*v v, d*v 9 " , d*v 9
d—y4—20z d—y2+oz v—iaRe <U (d_yz — U> -U v) —C(—Z&Re <d_y2 — U)),
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and looking for a solution of the form

it reduces to

Aa = cBa, (3.11)

wherea is a vector of the constants. By evaluating the left and right hand sides at the

fori =2,...., M — 3, we can then use an eigenvalue solver to solve.fdihe derivatives

collocation points

of v are again found using the recurrence relations

T[)(k)(yi) = 07
k k—
Ty = T3 (),
k k—1
T (y) = 41V (),

k— m k
T (yi) = 2mT7$%11)(yi) + mﬂig@) m=3,4,....,

where agairT,Ef) is thek!" derivative of then'® Chebyshev polynomial. This givég —4
equations for thd/ unknownsz;, which along with the 4 boundary conditions, and noting
that

Tn(£1) = (£D)™ T (£1) = (£1)™ 'm?,

gives the required information to put into the matrix eigagoe solver.

Spatial eigenvalue problem

The spatial eigenvalue problem is not as simple as the teahpoe in the previous sec-
tion, because in this case we stipulate an initial real feegyw = ca, and solve for the
complex eigenvalue, which occurs nonlinearly, thus the problem can not be amith

the matrix form (3.11). Thus we have to solve the eigenvatoblpm of the form

(C40z4 + Cza® + Cya? + Cra + CO) v =0.
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To solve this problem we use a method developed by Bridges asdrstein (1986)

and Bridges and Morris (1984), who introduce the quantities

I = awv,
Iy, = a?v,
Iy = a’v,

into (3.7), which leads to the following system of equationmatrix form

P11 P22 P33 P44 v 0 0 0 pss v
I 0 0 O Iy I 00 O Iy
=« (3.12)
0O o0 I 0 Iy 0 I 0 O Iy
o 0 0 I I's 00 O I's
where
Ly o
P11 = ——D* —qwD R (313)
Re
p = iUD*—iU", (3.14)
. 2
P33 = w+ —D7, (3.15)
Re
pu = —ilU, (3.16)
1
= —. 3.17
Ps5 Re ( )

This system can again be solved using spectral collocatethads described in the pre-
vious section. The functions I'y, I'; andI'; are all expanded in terms af Chebyshev
polynomials, which are substituted into (3.12) to give\d x 4 M matrix system to solve

using a linear system solver.

Finite and infinite domains

The temporal and spatial eigenvalue solvers using Chebysiignomials are fine as long
as they are for functions defined in the domgia [—1, 1], but the Blasius boundary-layer
is defined fory € [0,0), after the change of variabke = Re2y/(2z)2, which is the

change of variable for a flat plat&; = 1 in (2.23). To utilise Chebyshev polynomials,
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we first map the semi-infinite domaip € [0, co) to the bounded domain € [-1, 1],
using the mapping

n—L
n+L’
where L denotes a constant map parameter, chosen to map the majfotiity function

= (3.18)
being expanded to the regign1,0]. For our boundary-layer problem, we choose the
map parameter, so that we get a concentration of points tddke boundary aj = 0, to
resolve the rapid change of the mode shape in this region.omdfa value of_ in the
region of30 to 45 gave good results for the eigenvalues for Blasius boundsygriflow,
when compared with the work of Schmid and Henningson (20Bibw we can use the

same methods as before, but we must note that the derivaheege to

o  (1-7)?0
R A (3.19)
2 _=\4 92 _=\3
0 _ (1-n) 8_ _ (1—17) ﬁ_’ (3.20)
on? 412 0n? 212 0n
3 1—pn 6 23 1—n 5 92 1—pn 4
o _ -0 3l-n 0  301-7) 9 (3.21)
on? 8L3 O 413 On? 413 0n
o8 _ A=nfot 31-m)78  91-m)°8 31-7)°9 (3.22)
ont — 16L* ot 4L+ OB 414 On? 2[4 On

3.2 Parabolized Stability Equation

The Parabolized Stability equation (2.102) is a fourtheorguasi-parabolic differential
equation, for which a marching procedure is used to marchdahgion downstream from
the upstream boundary conditions defined by (2.112). Theeplare is iterative, and
works by fixing the value of the wavenumber and the mode sispinat it satisfies both
the PSE and the normalization condition.

The governing equation (2.102), along with its boundarydttions (2.108) to (2.111)
and upstream boundary condition (2.112) are solved usipge®l collocation technique
with Chebyshev polynomials.

We use a similar mapping as defined in the previous sectiorafotite semi-infinite
domainh € [0, o0) to the bounded domail € [-1, 1],

- N-L
N=%1 (3.23)
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In this problem, we found that we required a valuel.ah the region of20 to 45 to give
results which agree with those of Bertolatial. (1992), mainly because we are now not
using an eigenvalue solver, but merely a linear system soWe can then use spectral
collocation to solve fory(&p, V) in terms of M + 1 Chebyshev polynomials. We solve
(2.102) for a vector of ¢ evaluated at thé/ + 1 collocation points

N,, = cos (W) for m=0,1,..., M. (3.24)

The operators in (2.102) contain hence we have a coupled set of equations. To solve
them using a marching methodgp, we use an iterative scheme at each valie- ;, to
solve forg(¢;, N) = ¢;(IN) anda(z;) = «;. At each¢;, we solve (2.102) with an initial
guess fory; for ¢, and use the normalization condition (2.100) to update oasgtore;.

We also note at this point, that the mapping (3.23) changesdimalisation condition to

1
1 _
=N =0.
. Ger® (1-N)?

Herbert (1993) found that the simplest, but effective wagvaluate the derivatives

da/dép and0g/0¢p in (2.102) is to use a two-point backward-difference method

(%) :¢j+1—¢j (d_a) _ Q1 T
8513 j+1 Agg 7 ng j+1 Agg ’

whereA¢; = &4, — ;. Using these, the PSE equation becomes

{[(Lo)j+1 + (L1)jsr + (La)ja] AG + Mjp1 + Ny [0 — 5]} djn = Mjpa ¢
(3.25)

The scheme works by taking the initial data (2.112), andhigtbur initial guess for
ajt1, I.€ o at the next spatial step, taéljl = a;, Where the superscrigl) signifies the
first iteration. These values go into (3.25) and evaluategtah of thel/ + 1 collocation
points, (3.24), to findb!!), at the) + 1 collocation points. Then using the normalization
condition (2.100), we arrive at a better estimateder,, which we Iabelaﬁ)l. We then
resolve (3.25) for a better approximation oy, ;, which we Iabelgzbg-i)l. We then repeat
these steps, until we have converged onto a solution. Wehaawe have converged onto

. n+1 n —
a solution whem """ — a7 < 1075
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Hence our numerical scheme comes down to solving,

{02+ 2+ 2] 3+ % N8 ol ] s -

where to update;, we utilise (2.99), and write

(1) _ ) i) <¢]+1 925]) <¢]+1>TdN

Qi = Q5
’ A S 1y PaN

)

where(n) is the number of iterations.

3.3 Summary

The numerical scheme for solving the PSE is outlined in thegter. The scheme is very

j+1¢]7
(3.26)

(3.27)

similar to the one given by Bertolotét al. (1992), however we havd’ as our normal

variable rather thap, which means that the slow growth of the boundary-layerdkited

in the formulation of the numerical mesh. This approach l@deren used before, and

the results it gives are identical to the ones given whenchosen as the normal variable.

The parallel Orr-Sommerfeld schemes are of the same forsniealocal PSE, which is

solved as an eigenvalue problem.

These numerical schemes are now applied to bodies withrelifféeading edge geome-

tries, and the next chapter concentrates on the semi-mfiaitplate case.
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Chapter 4

The semi-infinite flat plate

Before applying our PSE method to perturbed flow around géoereed bodies, we first
apply it to the semi-infinite flat plate, and compare our rsswiith those of Goldstein
(1983), who extended the leading edge asymptotics idearteedine asymptotic form
of the wavenumber and amplitude function in the Orr-Someaidnfegion. We shall dis-
cuss the accuracy of our results compared with Goldstepite and including) (e In ¢)
terms, where = Re~s, and then include th@(e*) term (Goldstein, 1982), and discuss
the difficulties in using the asymptotics, and extending idea to more general bod-
ies. We illustrate the key points for the derivation of Gadils's asymptotics, but look
more closely at th€(e*) correction term, where we have calculated the values of some
undetermined constants to be able to calculate fullyahe) term.

As well as comparing the PSE results with Goldstein’s asptigst, we also illustrate
the consistency of the PSE, by demonstrating that the PSi@ols independent of the
choice of upstream boundary condition used, where the ayrabndition comes from
Orr-Sommerfeld theory, the local PSE and the leading edgmjgtetics. Also we discuss
the need to patch growth rate curves for moderately largad show how this is possible,
as well as demonstrating the step size independence of taad&ion for smalk.

We shall also compare our results to the numerical studigdanfdad and Corke
(1998) and Wanderley and Corke (2001), who consider flows ayparabola and a Mod-
ified Super Ellipse (MSE) respectively. We compare our teswuith Haddad and Corke

in the limit as the parabola’s nose radius goes to zero. Weigaathe work of Wan-



4.1 Equations on a flat plate 66

derley and Corke, who attempt to approximate the boundamsrlequations by the Orr-
Sommerfeld equation close to the leading edge. Howeveraghpsoximation does not
take into account the growth in the boundary-layer at thistpdnence we use the PSE
method to check the validity of this Orr-Sommerfeld appnoeaiion.

Further to this work, we also discuss the numerical problehish arise when solving
the PSE. In particular we consider the occurrence of intt@hsients from the initial
conditions, and hope to show that these arise as a consexjoémigher eigenmodes

being present in the composite form of the initial upstreamriglary condition.

4.1 Equations on a flat plate

4.1.1 Leading edge region

For flow past a semi-infinite flat plate, the slip velocity dodhe free-stream i§; = 1.

Thus from (2.36) and (2.38) we find

BE) =0, Q&) = 2, (4.1)

and hence (2.34) becomes

¢1NNN + ¢1¢1NN = 2§ (¢1N¢1N§ - ¢1NN¢1§> 5 (42)

with the same boundary conditions as in (2.35).£AE 0, the above equation reduces
to the Blasius equation, which has solutigi{0, N) = f(V). However, as this solution

satisfies the full steady equation, and the correspondingdery conditions, it remains

as the solution for alf. Now from (2.37) the LUBLE becomes

dUy
d¢’

which when written in terms of the stream functionp = h(£) g, = (25)% ¢, becomes

PonNN + [oann + 28idan + [ Do 4 26 ([ Poe — ['dane) = 28U — 26 (4.3)

Yonnn + frhonn +28i0on 4 fYon +26 (f"1boe — fone) = (25)% (l - %) Us. (4.4)

The variableg¢, N) from (2.33) and (2.23) are equivalent to

E=r=1c and N =(20) 3y = (22¢) ¢ *yo = 70
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where the subscript; denotes the variables used by Goldstein (1982) and Gatdstei
(1983) and® = Re~!. Therefore the above form of the LUBLE is identical to equa-
tion (3.2) in Goldstein (1983). Sindé; = 1, comparison with the largé asymptotic
form (2.41), gives the coefficientsand-~, which appear in the asymptotic eigenfunction,
to be zero. The steady solution has already been determingdVa, hence from (2.59),

D = E(N) = 0. Substituting these values into (2.74) and (2.75) gives

889 16p° L
T 7160 (4-5)
3
—\; (26)2
G —t (@6)
0

Also the variableM given by (2.67) is equivalent to the variabteused by Goldstein
(1983), hence the form of the unsteady eigenmode is ideémtiche one given by Gold-

stein.

4.1.2 Orr-Sommerfeld region - PSE

If we substitutel/; = 1 along withD = E(N) = 0 into (2.102) to (2.107), we recover

the Parabolized Stability Equation for a semi-infinite fleite,

0¢p do
Lo+ Ly + Ly)¢ + M=o + ~~N¢ =0, 4.7
(Lo + Ly + L))o AT o (4.7)
where
1 (RyD*  ,\* [ 0¥y RyD?
Lo — —_— _ _ _
0 Ro ( 265 O‘) T ) e
. OPVp
— ZO[%, (48)
3 3 3 3
I, - RS 1 0 \I/BQD_ R} 1 ov¥p <R0D —QQD), (4.9)
(2¢p)z OxpOyp (2¢p)z Ozp \ 28p
N [0Vp (R0D3 9 ) Py )
L, = — —3a°D ) + 2wpaD — D
? 28p (33/P 28p r oy
ovp 1,
— R—=2—D?, 4.10
ovp (ROD2 2> Py
M = — | — —3a" | + 2wpa — ——, 4.11
Oyp \ 2¢p r oy} ( )
N = wP—3a% (4.12)

dyp’
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andD = d/dN. The base flow' 5 ({p, N) is given by

2p)?
Waler N) = 20 py, (4.13
R4
and the relationship betweép andz, defined in§4.1.1, is
R
Ep = R—zl’a-

If we change the PSE variables fragy, N) to (zp, yp), using the fact thagr = zp and
N = (2xp)%yp/R§, we derive a form of the PSE similar to the one derived by Bettol

et al. (1992) for a semi-infinite flat plate,

0 d
(Lo+ L))o+ M22 4+ 9% N (4.14)
al’p dxp
where
1 2 . oVp
L - D2 A2 _ D2 A2
0 i ( o ) + (za oup zwp) ( (6 )
. 0¥Up
_ m—ay% 7 (4.15)
PV oV pg
L, = D — D3 —a*D 4.16
! dxpoys~  Oxp (D° - a’D), (4.16)
oV p 9 9 Py
M = —(D“-3 2 - — 4.17
8yp ( (07 ) + wpX 8y?3 ) ( )
N = wp—3a%, (4.18)
dyp

and wherepD = d/dyp. The difference between this form of the PSE, and the onegive
Bertolottiet al. (1992), is that we have neglected théR; ') terms given in the operators
M andN, as these only contribute up @(R;?) to the final solution. We feel our form
of (4.14) gives a more consistent equation than Bertolottabee all theD(R,?) terms
have then been neglected. We found in our calculations tiegetextra terms make no
significant effect to the PSE solution far from the nose, dtitbagh these terms become
significant close to the nose, they are as significant as e ©( 2, ) terms which have

been neglected.

4.1.3 Upstream boundary conditions to the PSE

As we mentioned ir§2.2, the PSE is solved with homogeneous boundary conditmns

pick out the propagation of the unsteady eigenmodes, howleed°SE is also subject to
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an upstream boundary condition of the form (2.112). Thisnolawy condition takes the
form of an initial wavenumber, and an initial mode shape ig@esome upstream position
xp = xo. This condition could come from a number of different sosraaree of which

are considered here.

Parallel flow assumption

The parallel flow assumption assumes that at the pginboth « and¢, along with the

base flowl z are independent afp. In this case, the PSE (4.7) reduces to

1 [ RyD? )\ .0V RyD? 2 _
_Eg( 2%, —oz) + zaayp — iwp 2% —« »=0, (4.19)

which is the usual Orr-Sommerfeld equation for parallel #ow his equation is solved

Lo¢ =

using a matrix eigenvalue solver described in chapter 3ttdpstream boundary condi-
tion is taken as the most unstable discrete eigenvaluetgodrresponding eigenfunction.
The main drawback of this boundary condition, is that it adteimcorporate any of the
boundary-layer growth. Therefore close to the leading edgm®n, this method produces
an unsatisfactory boundary condition, because the waveauand mode shape would
be in poor agreement with the actual wavenumber and grovighatathat point, which

could be calculated via a full Navier-Stokes simulation.

Local PSE solution

The PSE contains all the information needed to resolve thmdbary-layer growth, so
as an upstream boundary condition, we consider the locatisolto the PSE given in
(2.115) and (2.116). In the case of a flat plate, the operatorglify to the ones given in
(4.8) to (4.12), and the operatdy, simplifies to

R RyD*
L4 = ——02 (iozo\I/Bl — iw) D2 — ’iOéo\I/BQ§ + 0—5 (420)
2¢; 284

Similarly we could look for a local solution to (4.14) abobetupstream pointp =
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xo. Expanding the solution gives

¢(xP7yP) = ¢($0>yp) + T M
Tp

alzp) = a(xg) + 2 dalzr)

+0(3*) = ¢o+ 3¢, (4.21)

Trp=X0

+0(3?*) = ag+2a;. (4.22)

dzp TP=T0

wherei = zp — xg, and theO(2?) terms are zero due to the PSE assumptions and

a. Introducing these into (4.14) we find the two equationsovadr varyingz are

(Lo+ Li+oqN) g+ Moy =0, (4.23)
(Lg + iCklM) ¢0 + L0¢1 = O, (424)
where
2\ Wy
L3 = iayg Vg (D2 — ozg) — iy Vg (4.25)

and inLg, L;, M and N, « is replaced byy,.

The standard approach for solving this type of problem (Bettioet al, 1992) is
to consider the approximatiom = constant, i.e. a; = 0, which is a normalization
condition for the problem, although it is different to thermalization condition (2.100).
This approach cuts down on computation time, as we need ordglve a simple linear
eigenvalue problem, rather than perform many iterationstoBasti et al. (1992) suggests
other iterative methods for solving this problem, howeverfaund no advantage when
using these methods compared to the simpler one above. Timesk = constant

approach leads to the eigenvalue problem

Lo+ L, M 0
o %1 _ , (4.26)

L Ly 03} 0

which when solved atp = x( gives us our upstream boundary conditien= «, and

¢ = ¢o. The solution to this problem produces a pair of eigenvaimegh approach
the eigenvalue of the Orr-Sommerfeld equation in the lifyit— oo. Thus it appears
to be ambiguous as to which eigenvalue we take as our bourndaition, however
we shall show later that both eigenvalues and mode shapgsquékly iterate on to

the same solution when used as the boundary condition sereghacceptable. It is
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also the case that although we get a pair of solutions, bdthi@as actually give the
same growth rate when we consider the contribution from tbdershape as well as the
eigenvalue (Bertolotiet al., 1992). Hence the difference in the eigenvalues is not nthppe
to a difference in the growth rate, because the mode shaggisted accordingly for each
solution.

If we examine the form of (4.26) in the largg limit, we find that the asymptotic

form of ¢(zp, yp) in the region ofr, is
¢(zp,yp > 1) = (xp + Ayp) e %" (4.27)

where

B 1

1=V i(l —wp/ap)’

andV, = —V¥p,,. |y, — oo, IS the transverse mean velocity far from the plate. Thismsy

A

totic behaviour is different to that of the Orr-Sommerfetpiation, in which the larggp
solution isBe~*¥?, whereB is a constant. Therefore the non-parallel effects slow the

rate of decay outside the boundary-layer by an amount ptiopat toyp.

4.2 Leading edge region

4.2.1 lllustration of the leading edge receptivity results

Earlier we stated that we wish to utilise the laigéorm of the leading edge receptivity
analysis, by using it as our upstream boundary conditioméoRSE. We use the lowest
order eigenmode as our initial condition, as it is this modécv matches to the T-S wave
downstream and exhibits spatial growth. The full form of ibwest order eigenmode,

11, in this region, in the limit — oo, on a flat plate is given in chapter 2 by

A (26)2
Y1 =CEMg(§,N)exp | — 1 é;) : (4.28)
3U}
where; = —0.6921. Hence for the flat plate, our initial wavenumber comes from

(2.129), which becomes
_ Roih(22)}

\er U7 4.29
Re U} ’ ( )

%)
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wherez(®) = Ryxy/Re, i.e () is the starting point in the leading edge-= z; variable.

The initial mode shape is given by

¢ = 207 g(zO N), (4.30)
where
M = N
vyt (f?ﬁlﬁ%m for N =0(z"%),
1 -
g(z, N) = ¢ (220)7 f/(N) + o for N =O(1), (4.31)
l iU} Ayiz® .
(@ﬂ%me0+ﬂ0mm(ﬂ”th)fm N = 0(e 3271,

As it stands, we can’t use (4.31) as our initial mode shapeeaseed it in the form
of a single function. This is achieved by forming a composdghition of the three layers.
To see how a composite function works, consider the follgnerample. Consider the

function

hi(xz) for = 0(1
I (1

ho(z) for large z,

with the matching condition that

lim hy(x) = lim hy(z) = R(x).

T—00 r—0

We form the composite solutioH (z) defined as
H(z) = hy(2) + ho(z) — R(z),

so ast — 0, ho(z) = R(x), henceH (z) = hy(z). However, ag gets largef — o),
hi(z) = R(x), thereforeH(z) = hy(z), and there is a region in between where the
two solutions are smoothly joined. A composite functionto$tform is exact in the two
regions for which the original function was defined, but ie thatching region between
the two regions, the solution may not be exact. However theposite solution produces
a smooth transition between the two regions, so as long as #re no discontinuities
between the regions, the composite solution provides a gpprbximation.

Applying this to our three layer boundary-layer structu4e3(), we find our initial

mode shape is
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evaluated at: = 2(°). We can check that this is the correct solution, by lettvMgyary

over different length scales. Whéh= O (x*%), then

2€3i)\133N
Us

N[

f'(N) ~USN +O(N*), and exp (— ) ~ 1+ 0(z2),

SO

I <M - M) Ai(Z)M
[ Ai(z)dM

3

+ O(x™2)

¢o ~ ™ |Up

WhenN = O(1), then

M - N
i Ai(z)aM Ao Y ’

2e3i\ N
exp (—%) ~ 140(z?), and U}
0

SO

“TT!

bo ~ 7 {% + (2z)2 f/(N) + O(a:g)} .

Finally whenN = O(e 3z~ 1),

0 1
f(N) ~1+EST, and Uj ~ L+ Uj(27)IN
) 0 00 s )\ 0 )
Jo Ai(Z)dM 1
SO
3 .
1 2¢iAx N
+ (2x)2) exp (— -
UO
50 T T T 50 B
103 1.0
\ 0.5
of L °r s \\
105 | L
0 30
N l.d‘ N Lo
20 - 20 05 \“:
ol ol 10N\
(a) -0.4 -0.2 0 OZMagni;)u“de 06 08 1 12 (b) -0.4 -0.2 0 0.2 Magoi-?i[ude 0.6 08 1 12

Figure 4.1: Plot of leading edge mode shape, given by (4a882),= 2¢*z/U? = 0.3,0.5
and1.0 for (a) e = 0.05 and (b)e = 0.1, where the mode shapes have been normalised so
thatR6(¢0) =1.
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In figure 4.1, we compare the evolution of the leading edgearsithpe, given by
(4.32) at the scaled variable positiahs= 2¢%z/U}? = 0.3,0.5 and1.0, for e = 0.05 and
0.1, where the mode shapes have been normalised s&tliag) = 1. We note that as we
move further from the leading edge, = 0, in both cases the real part of the mode shape
tends to0 faster asV — oco. Also, for both values of it appears that the inner layers
are about the same thickness, but since the width of the ayterin the matching region
is O(e'), we note that the = 0.1 outer layer is much thinner, so the mode shapes are
more concentrated near to the wall than doe 0.05. The reason that the outer layer is

O(e71) in this case is because the matching region occurs anl@mgth scale 0O (¢~2).

4.3 Orr-Sommerfeld region

For the flat plate, which is the simplest geometry to consi@etdstein (1982) and Gold-
stein (1983) calculated the largee asymptotic solution for both the wavenumber and
mode shape in the Orr-Sommerfeld region. This will providenith a means of check-
ing our numerical scheme. In sectigh.3.1, we shall demonstrate the key stages in the
derivation of the asymptotics, but for the full derivatidime reader is referred to Goldstein

(1982).

4.3.1 Goldstein’s asymptotics up ta@)(e*Ine)

Goldstein derived the governing equation for the motionha& boundary-layer from
the vorticity-stream function form of the non-dimensioh&lvier-Stokes equations, and
wrote the equation as

=9 1 5($_1@2¢7$%f) 3($_%f”71/)) =T e 6
—iVY +x a@.n) + X 1 =V <2xV 1/)) + O(¢e’A) (n,z >0), (4.33)
where
N 0? 0? 0
2 9 6.9 | 609
vio= 8n2+26 Ia:ﬁ” ox’

2
A = max (n—,x_l),
x

e = Re !,
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and the variable$z,n) are equivalent tg¢, N) used in chapter 2 witl/; = 1. This

equation is solved with the boundary conditions

wzg—fzo on n=0,z>0.

In the limit e — 0 with z = O(1), (4.33) reduces to the linearised unsteady
boundary-layer equation (4.4), and gives the Lam-Rott ergetes as part of its solution.
However, the leading edge solution breaks down whenO(¢~2), therefore, to look for
a solution to (4.33) in the Orr-Sommerfeld region, we introel the scaled variable
(4.34)

T = €,

and look for solutions in the form of traveling waves

b = €Gler, ) exp ( | o e>dx) ,

wherex andG areO(1), and the constant= —(27; + 1), wherer; is given by (4.5). We

(4.35)

write the functionG(x1,n) as a product
G('rlu 77) = A(xl)fy(mh 77)7
where A(z,) is a slowly varying function ofz;, to be determined by the analysis, and

v(z1,n) is the mode shape.
The equation for the evolution of the wavenumkerp toO(e* In¢) is

3
3 72 3.1 2232 J. 3.
et () (2 -2 ) + (eed G5 it (1 o ”}5’)
0 0

w

i i
20" FU S22 Ai(¢)d¢
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where
. 2x
1\ 2
s (32
G = eo™ L) (4.38)
K
_ ! > 2 1 1
J1 = U i U _U2+U’2n2 dn, (4.39)
< /1 2 1 2
Jy = =U; — = — — d 4.40
c= U (g ) 4
oo oo 1
Js = J}-2Uf U? (Utm) dndn, (4.41)
0 ]
u = fn), (4.42)

and the subscript on oo is used to indicate that the path of integration tends toiigfin

in the sector—i7m < arg(() <

Goldstein (1983).

3

ir. Equation (4.36) is the same as equation (4.52) of

We solve (4.36) using a complex-plane eigenvalue searchadeit each step. At the

initial step,7, = 0, we set(, =

—1.0188, as this is the first root afli((;) = 0, and we

wish to track the evolution of the unstable eigenmode. Wa tharch in steps of 0.01,

solving for (,, and hence using (4.38), to solve foat each step. Figure 4.2 shows this

numerical result foe = 0,107,107,

. . . . . . .
. 1 2 3 4 5 6 7
(i) "

L
8

L
9

(i)

031 ¢804

0.2

Figure 4.2: Plot of (a) the real part, and (b) the imaginany pethe wavenumbey;, as a
function of the scaled downstream distance variable

Thee = 0 case is the solution in the limfite — oo, and hence corresponds to the
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leading order term of the asymptotic expansion given beluate, that at this order (up
to and including terms o (¢ In ¢)) the lower branch neutral stability poiritif(x) = 0)
first moves downstream, then upstream for increasinigowever this is not the case if
more terms in the smatlexpansion are retained. Asncreases, the missing(e?) term
from this result becomes more and more important, and hesrtteloutes more and more
to the solution, as we shall see later when we study the full R8nerics.

We also note that for both the real and imaginary cases, thé@oconverges to the
same solution for different asz; — 0. This is the previously discussed ‘matching
region’, where the leading edge solution and the Orr-Sorfettesolution both become
valid.

An alternative approach to solving (4.36) is by asymptdigaxpandingx in the form
K = ko + ek1 + Exy + € (In€)rs + O(?).

Substituting this into (4.36) and (4.38), expandii{(,) in a Taylors series about

2
1\ 3
Goo = €& (9““—) , (4.43)
Ko
and equating coefficients of like powerseteads to
3
H(Co) = 77, (4.44)
3
K/l 3 1. l~ jlijl /
== —Zenm2a 2 - H 4.45
Ko 264 Coo$1< i3, /H'(Coo) ( )
ke 1 (l B H"(Coo)(oo) (ﬂ)z
Ko 3\ 2 H'(Coo) Ko
1, [ T 2 K1 p
e " | — ) S| — ) /H
+ Je 4 <C00> 1(/1())/ (Coo)
3
3. 9 ~% 2.%1§J2 f?Jg ,
- = — H 4.46
22 OOxl < ZCgO ZCgO / (COO) 9 ( )
K 3 Lin %~%
= e G /H (o) (4.47)

whereH ((y) is defined by (4.36) and primes @hdenote derivatives with respectde.
The majority of the correction ab(e*) comes in via the slowly varying amplitude

function A(x;), which is discussed i§4.3.2. However, a small amount of tli&¢?)



4.3 Orr-Sommerfeld region 78

correction comes via (4.36). If we extend the asymptotidyaia to incorporate this

term, we find
ka1 (47_ 15C00H”(C00) _ QCSOH/”(COO)> (@)3 +2 (1 n CooH"(Coo)) /ﬁ/;z
Ko 27 H’(Coo) H'(Coo) Ko 3 H' (o) K2
- 5 2
3 1. T1\? K1 Ko ,
- = T — J — | —2—= H
2° (coo) 1 (( 0) KO) JH'(Go)
3
1 ~3J izﬁr 2
+ 3ZC§0£12 (1+ x163> (E> JH'(Coo) —I—@ln ¢ - LU (4.48)
b0 / \o o\ #y;
Im(K(;15
oos - Full
01 i 0 -T-\:'77"',"‘:5',';;,“&\,A_ O(€3In ¢)
005 | o@1) e T
(a) o 2 “ % 6 8 10 (b) 010 2 4 X 6 8 10

Figure 4.3: Comparison of (a) the real part, and (b) the imagipart of the asymptotic
and numerical value of the wavenumberfor ¢ = 0.1.

Figure 4.3 shows a comparison between the full numericat fofrthe wavenumber,
k, and its asymptotic form ab(1) and up to and including(¢*In¢). We see good
agreement between the numerics and the asymptotics ovemapgtely the first half
of the region considered, however downstream we have a sligtrepancy between the
numerical and asymptotic results which proves to be crigial when trying to calculate
the O(e?) term. TheO(1) asymptotic expansion, is quite different from the other two
results, although to leading order, they are the same, thigep that the correction terms
are very important, even for small

The mode shape function(z;,7) has a three layer structure similar to the leading
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edge region,

ce [§ (¢=0)Ai({)dC
Go [30 Ai(C)dS
V@Ln) =95 U= et —call (/2 (% —1)dn+n) +O(e?) for n=0(1), (4.49)
)

(1 —€c) e 4+ O(€? for n=0(e1),

+ 0(€?) for n=0(e),

wherelU = f/(n), & = (221)2k, ¢ = 1/k and¢ = (o(1 — Ujn/(ce)).

4.3.2 Determination of theO(e?) term of the wavenumber

TheO(e?) term in the asymptotic expansion for the wavenumber is rdtided in Gold-
stein (1983), however it is included in the NASA report Goduis (1982). This section
looks at the equation from which thg(c?) term is determined, and we derived the form
of the undetermined constants which appear in this equation so that we can determine
the O(e?) term. The form of these constants were not given in Gold¢i€82).

To find theO(¢?®) correction term to the wavenumber, we must find the form of

dIn A/dz,, because by considering (4.35), we see that

[* 4dIn A
W = €*y(xq1, 7, €) exp (E/ (K($1, €) —ie® - )dw) . (4.50)
€ Jo dxy
Goldstein (1982) derives the governing equation4ot, ), and writes it in the form
dln A
= = “ -n ~ (3 n)
2a . + Oy ZA C
— RULBI(G) / <H1d1“A+H2> i) — 2% [ Thap, (@451)
0 d cUs Jo
whereA,, are O(1) constants and
_ _ [/ 0 1 iU} 1
H, = D —qD —D(7*D 073 (Fo — ~nD . (4.
5 (39&1(% nD%) + o (1°D%0) = 527" (o = 37 %)) (4.53)

In the above equation; = n/e, D = d/di, and?, is defined by the mode shape in the
n = O(e) layer of (4.49). In (4.51),

[e's) o0 dl A 3 /
0 0 dﬂ?l 2%1
iU , .« ¢lag +¢) clag+¢)\ ,_
— U, d 4.54
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where
¢ ¢
Wi(¢) = - (Az’(@ / Bi(€)d¢ — Bi(() / Ai(f)df) , (4.55)
Co 001
and
¢ =2 (1 - @) . (4.56)

Note that (4.54) is not derived completely in Goldstein @Q®ut a full derivation for it
can be found in Appendix D. The majority of the integrals irtb@ can actually be eval-
uated, or simplified, although this was not noted in the mapan of this work (Turner,
2006).

In his appendix B, Goldstein (1982) writes that the solutiomfin the middle deck

of the Orr-Sommerfeld region can be expressed as
v =+ O(e"). (4.57)
He then states on p40, that it can be shown that
i o
——1Inn— 76 ; A,2a%™ + O(nlnn) as n— 0, (4.58)

where theA,’s are O(1) constants related to thé,’s. Hence to find the exact form of
the A,’s to be able to solve (4.51), we have to find the asymptotimfofv;; asy — 0,
and compare it with (4.58). To fingly we substitute (4.57) into Goldstein’s governing

equation (B-1) of Appendix B to show tha}; satisfies Rayleigh’s equation
(Un) = ec)(D* = €@ )y — U"(n)yn =0, (4.59)

whereD = d/dn, ¢ is the wave speed of the problem, amds the corresponding wave
number. We solve this equation by expandingas an asymptotic expansion for small

of the form

vu(n) = 7(0) + en(n) + €72(n) + €93(n) + €*74(n) + O(€). (4.60)
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This yields the system of equations

O(1) : UD?*yy — U"~y = 0, (4.61)
O(e) : UD?*y, — Uy, = eD*y,, (4.62)
O(é?) : UD?v, — U"~y = ED*y; — Ua*, (4.63)
O(é%) : UD?yg — Uy = eD?*yy + Ud?y, — e, (4.64)
O(e) : UD*vyy — Uy = eD*y5 + Ua*y, — ca’y. (4.65)

Each of these equations has to be solved with the conditi@mighiey match to the outer
and inner layers.
The first two equations (4.61) and (4.62) can be solved quis#lye and have the

solutions

T = U), (4.66)

v = —c—al(n) </n (%—1) dn+n). (4.67)

Equation (4.61) has to be solved with the condition that ¢timeekt order normal velocity

component of this solution has to vanish at the wall, i.e.

(0, 21) = 0.

This is why we take (4.66) as our solution and we ignore thenportant normalization
constant.

Asn — 0 we can write each solution as an asymptotic series in poviersThere-

fore,
12,4 11U’3777 5U/47’]10
~ U/ o 077 0 o 0 11 468
T o~ 1 " Tsoa0  assst O ) (4.68)
=~ =3 ~T7/2 4 —717/,.6
. a B an alUyJon 3aUyn 7
~ — | —aU!Jyn — 0] 4.69

whereJ, = fo(l (# - W — 1) dn. We can also solve (4.63) exactly, but writing down
0

the solution is very complicated, and as we only need thdisalin the limity, — 0,

we find it beneficial to guess a smalexpansion fory,, substitute it into (4.63) witty/ (1)

expanded for smal}, and equate powers of
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Therefore for each of the remaining equations (4.63), (4adl (4.65), we assume a

general asymptotic expansion of the form
6 6
Yo =D il +100 > A’ +0 (07) (4.70)
=0 1=0

for n = 2,3,4, where for each solution the constantsy, and~,, are determined by
matching to the inner and outer expansions. Thus althoughrtethod won’t determine
the full form of v, it will help us to determine the higher ordey; in terms of these
constants.

Substituting (4.70) into (4.63), (4.64) and (4.65) and éqgapowers ofy we get the

following expansions fotys, v3 and~,,

= =,2 1 =2 / ! ==
B _can Upa™  Upyo | Upcado 4
Y2 = 720+ Y21M i + ( 6 D + D Ui
Ulyan*  13can® 6
_ 4.71
o1t 100 T O (4.71)
ca ca? & aJy oy
. _ca _ _ 2
3 Y30 + Y317 2U6277 n(n) + ( 5 + 20 + 1 4 ) Y
n _U6@3J0 B Uszo O\ 3
6 12 12
o Ui\ 4 &a
_ — — O(n° 4.72
Ao Gyo  Cady
_ ca, - €A o). (4.73
Y4 Va0 + 207 n(n) + yan + ( 207 + 207 )77 n(n) +O0(n°). (4.73)

Now that we have determined the higher order terms in terntkeomatching con-
stants, we can use another form of the Rayleigh equation duyeviles (1962), which
is the inviscid Rayleigh equation transformed into a Riccqtiation, to determine these

matching constants. His result can be written as

D*)/H U/ 1 5
= — 4.74
VH U—e (U—ec)?Q 0, (4.74)
1
QO = T 2 + Qo + E@Ql + 62@292, (475)

ea(l — ec)



4.3 Orr-Sommerfeld region 83

where
B 1 * ((U—-e)* (1—ecc)?
v = i () @
2 o _
Ql = —m/n (U—EC)QQ()(Z?], (477)
Q = — /noo(U — ec)? (% + QQ) dn, (4.78)

and the dash denotes derivative with respect to

To solve this equation, we expang as in (4.60), expand the right hand side and left
hand side for smak, and equate powers ef Each equation can then be solved fully,
if possible, or we can let — 0 and expand for smat} to pick out the leading order
term. The reason we only want the leading order term, is lscthat’'s what we require

to substitute into (4.51). Doing this we find

% = Ulm), (4.79)

o= (ot g ) +omn+ 06 (4.80)
0

both as we found earlier. The constant can be written down asaU|.J, as before, but
we decide to leave it in this form to make the analysis eaSienilarly in the next set of
equations;,; etc. can be determined, although their explicit form is ngbortant here.

We find the solutions fotys, 3 and~, to be

i) mlerg)

Yo = — + + v21m + O(n ) (4.81)
Us Us
(c + 2952 + O‘U;?) Va1 (—é+ z%)
= UO + U
ma (26— 50 )
— e + v31m + O( ) (4.82)
0
Y31 (—E—l- U%)) Vo1 <2 ‘;}21>
Y4 = Y00t U - Uz

— 2acJ2 a2J3 e
Y11 (c + + 0 ) ads

Ué? T oup

In(n) + O(n), (4.83)
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where

2J1J- J3 4], J 6.J? 4]
—4 143 1 _3_ 142 1 3
= a — =+ J | +a + ] - 22
o0 ( 6) ‘ ( L(l)3 L(l)s ’ [’63)

8J, 10J 5 ac
_2_9 2 1
oo (J4‘U—g‘U—g‘m> 73 (4.84)

andJ; to J; are defined as

% 1 1
J, = U U2 - — d 4.85
! 0/0 ( U?*(U')) 0 (4.89)
© /1 2 1 2
I, = —U SR d 4.86
? 0/0 (U3 0z (Uén)3+(U677)2) G (4.86)
o0 o0 1
Js = JF—2U U? (UQ——2> dndn, (4.87)
0 n U
1 [>~/3 3 1
Jy = —— — — 148U —10U? — — d 4.88
=) <U4 ! T 2U63n) m (4.88)

s ([0 [ (o)

o Lo o).
VO NCE DR

([ (=)o) )

Thus with a little bit of rearranging and manipulation we find

~ _ 2J1J3 J?

Ao = ZU(; ( U64 U64 Jﬁ) (491)
~ o (AhJy  6JF 4]

Al = ZU, (U—é?) U_§ — J5 — U—ég (492)
p . 8Jo 10J; 5

Iy, = —— (4.94)

20

These are then used in (4.51) which can now be solved talfind! /dz; .

4.3.3 Matching of the leading edge and the Orr-Sommerfeld asymp-

totics

We stated, without proof i§4.3.1, that the Orr-Sommerfeld solution matches onto the

leading edge solution as — 0. We now formally prove this statement by considering
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4.3 Orr-Sommerfeld region
the asymptotic solutions in both regions. If we considerftren of the solution in the
(4.95)

Orr-Sommerfeld region as, — 0, it follows from (4.43) that
i(200)2);  de(2x)2 )

Us

Ro —
!/
Ug

andJ; is given bye%/p]%. More precisely it can be shown that
€(21)2 )
Ko = ze(x# +3Coz3 + o(x7),
UO
asr; — 0, whereCj is anO(1) constant. Also it follows thakl’ ((yo) andH'((oo) / H"” (Coo)

are non-zero constants as — 0 (Abramowitz, 1964). Hence (4.45), (4.46) and (4.47)

imply

K1 — 501%%7 Ky — 20911, Kz — 3Cs273,

asz; — 0, where(C', C, andC;5 areO(1) constants. We can therefore conclude from

= exp {—Aj?()?}z)g + iedz? (C’ox + Chx? + Cg) +iC38 Ine 2% + 0(64)} ,
(1 +iedz? (Coas Ot 4 02) + 0(64)) .

—);(22)%

(4.35) that
= exp

exp E/ k(x1, €)dx
€Jo
N 30U}

Hence this exponential term matches with the exponentrat feom (4.28) when the

subscriptl is replaced by for the more general case.
Now by considering (4.95), we can see that
/ ;2 4
c— —UOI and & — & (29/3)>\J
i€(2x)2 )\ Us

)

asx; — 0. Hence it is straightforward to prove that
Jo as x; — 0,

v —
(22)?

in every layer, using the fact thgt — ¢; in the inner deck. So the amplitude functions

N |—=

)

will match completely if
A1) — a7 (221)
asr; — 0. This can be proved by replacing, ¢ anda in (4.51) by their first-order
approximations(y, ;' and (le)%no respectively. We also note that &8i(¢) and
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Bi'((p)Ai(¢) are bothO(1) as¢, — ¢, we see that the second term on the right-hand
side of (4.51) will be negligible compared to the first. Exgiaug (o, for smallx,, shows

thatd(y/0x; is bounded for smalt,, but

dc 1

x| 201"
asx; — 0. Hence it follows by using the chain rule thatas— 0

% _L* + 3% ac 1 B %@
(9:61 2.’13’170 8(’ 8:161 N 21’1 8:161 8C7

where on inserting = «, ' into (4.56) and using (4.95) to eliminagegives

Mo L, o
or,  om (% — 71D%) -

Inserting this along witle = x; ' into (4.53) gives

7 T _ 1 _ 1 5
Hy — D |—=— ( (30 — 1D%) + 5 (1D*30 — 271D%) — Z0° A, (’_Yo - QD’_YO) :
221 2 6 4
asz; — 0, whereo = (22)7n = ¢ '(211)21).

It also follows that in equation (4.51)
UyeitG) | Huaid,
0

is O(1) and will not go to zero as; — 0, whereasy does go to zero. Therefore the
first term on the left-hand side of (4.51) goes to zero, andeh&ining terms tend to a
constant as; — 0, hence we can neglect them, as our leading order term onghe ri
hand side increases likg/z; asz; — 0.

Therefore (4.51) can be approximated by the first term onithe hand side. Thus
inserting (4.96) into this result, and using= go/2x; to eliminate?y, in terms ofg,, and
introducingo, defined above, as the new variable of integration, leads to

dlnA 27'j +1
—
dl‘l 2[L‘1

as 1 — 0,

wherer; is defined in equation (3.16) of Goldstein (1983). Hencegirattng with respect

to z; and making the appropriate choice for the integration @nideads to the required
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result, showing that the amplitude functions do indeed masa;; — 0. This is demon-

strated numerically in figure 4.4, which plat$n A/dz, and (27, + 1)/2z, to show that

we have good agreementas— 0, and in fact we have good agreementfor< 0.08.

The imaginary part ofl In A/dx; tends to zero ag; — 0.
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1421,
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Re(d In(A)/dx)

0.1 0.2 ~ 0.3 0.4 0.5

X1

Figure 4.4: Plot ofl In A/dx, as a function of;, plotted with(27, 4+1)/2x,, to emphasise
the matching of these results &as— 0.

4.3.4 Re-normalization

For a semi-infinite flat plate, the PSE normalization condisimplifies to

where we now usé&v = 7 to be consistent with Goldstein’s asymptotics. However the

/ ¢1p¢Tdn = 0,
0

normalization conditions used for the local PSE and Goid'st©rr-Sommerfeld region

asymptotics, were both different. The local PSE was nomedlby settingy; = 0, and

Goldstein (1982) chose to let his middle deck solution bdefform

LN
~v=U—c¢—eal (/ (ﬁ_1> dn+7}) + O(€),
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where he sets the constant multiplying thél) term, U(n), equal to 1, thus forcing a
split between the amplitude function and the wavenumbee faht that more than one
normalization condition has been used means that, as tleythe different methods
cannot be easily compared. To overcome this, we re-norenalizof the solutions, by

factorizing the amplitude function(xp, n) such that

o(zp,n) = ¢max(xp)(5<xP7 ),

where the maximum value af is 1. The stream function), for this problem is then

given by
Y = ¢(xp,n) exp <Zé($P) — wt) + complex conjugate, (4.97)
with ]
de
ay G,

whereG(zp) is the wave amplitude growth rate, and is given by

R . 1 a max
G(zp) = Fj (za + 7 ;iﬁp ) : (4.98)

A(z1)/(2z)z, thus producing the growth rate

i .dIn(A) 262 1 Mmax
G =~ 3 —— 4.99
€ (/’€ < dx, ) * U Amaz 01 ( )

for Goldstein’s asymptotics in the Orr-Sommerfeld regioherez, = 2x, /U2

4.4  Asymptotic results in the Orr-Sommerfeld region

4.4.1 Matching region

The PSE has three possible initial conditions which are #raljgel Orr-Sommerfeld so-

lution, the local PSE and the leading edge receptivity assly Figures 4.5 and 4.6 show
a comparison between the initial mode shapes of the thrassaps boundary conditions
at two different starting positiong.” = 0.3 andz!”’ = 1.0 whene = Re=s = 0.1 and

where the superscrigd) signifies that this is a starting position. The real partjrig
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Figure 4.5: Comparison of the real part of the initial modepgseof the three regimes at
streamwise locations (&)” = 0.3, and (b)#\” = 1.0, for e = 0.1.
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Figure 4.6: Comparison of the imaginary part of the initialdashapes of the three
regimes at streamwise locations (&) = 0.3, and (b)z\” = 1.0, for e = 0.1.

4.5, and imaginary parts, figure 4.6, compare very well ctodbe wall for both starting
points, but as we move away from the wall, they all decay to aeslightly different rates,
and at%ﬁo) = 1.0 the parallel Orr-Sommerfeld and local PSE mode shapes varg from
the receptivity mode shape than they ddﬂg{ = 0.3. This suggests thﬁﬁo) = 0.3 lies
closer to the overlap region, between the leading edge an@@nmerfeld regions, than
9250) = 1.0. Considering smaller values @ﬁo) for this value ofe does not improve the
agreement between the three mode shapes since the panaifeb@merfeld equation
and the local PSE become invalid ﬁg) — 0 due to non-parallel effects entering at

leading order. Also as we mg‘” — 0, we encounter problems identifying the most

unstable eigenvalue for both the parallel Orr-Sommerfeld lacal PSE calculations as
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Figure 4.7: Comparison of the real part of the initial modepgsafor the leading edge
receptivity, parallel Orr-Sommerfeld and local PSE analyshere the line styles corre-
spond to those in figures 4.5 and 4.6. Withda} 0.05 andigo) = 0.1, where the 3 mode
shapes lie over each other, and {b} 0.05 anda?g”) = 0.2, where only the leading edge
mode shape is distinguishable from the other two.
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Figure 4.8: Comparison of the imaginary part of the initialdashapes for the leading
edge receptivity, parallel Orr-Sommerfeld and local PS&lysis, where the line styles
correspond to those in figures 4.5 and 4.6. Withe(a) 0.05 and:igo) = 0.1, where the
solutions are the same for smalland (b)e = 0.05 andfgo) = 0.2, where the leading
edge mode shape is more distinguishable.
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discussed ir2.2.1. It is found that the unstable eigenvalue becomestinduishable
from the discrete approximation to the continuous specttimigenvalues in each case.
In order to illustrate the existence of a matching region endearly, we consider
corresponding results for a smaller valuecofWith e = 0.05, we can solve the parallel
Orr-Sommerfeld and local PSE equations clos%% = 0 due to the unstable eigen-

mode being distinguishable from the continuous spectrursetito the leading edge, as
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discussed i§2.2.1. Figures 4.7 and 4.8 compare the real and imaginaty pthe mode
shapes respectively &” = 0.1 andz\” = 0.2. For this smaller value of, figure 4.7(a)
shows that the real part of the three solution%ﬁ%.)t = 0.1 overlap each other while fig-
ure 4.8(a) shows that for the imaginary part of the solutibthe point, the local PSE
is in fact in slightly better agreement with the receptistlution than the parallel Orr-
Sommerfeld solution. From these figures it is clear ﬁ}{%ft: 0.1 lies within an overlap

region between the leading edge region and the Orr-Somldeegion.



4.4 Asymptotic results in the Orr-Sommerfeld region 92

100 i - 100 — - T T T T
| Imaginary Part | Imaginary Part Real Part
EY 1 9 ‘\
| |
80 | sof |
| }
|
{
70+ ot
60 1 60
n n
50 1 50
40 |- 40
30+ 30
20+ 20
10+ 10
0 0
a 02 12 02 12
100 100 - - - T T
i Imaginary Part Real Part
90 9 4 .
80 80
70 s
60 60
n n
50 50
40 40
30 30
Y
20 20| i
A
10 B 10 A\ B
\
N
o . n f 0 . p— n .
(C) 0.4 02 o 02 04 06 08 1 12 (d) 04 02 0 02 04 06 08 1 12
100 — T T v T T T 100 — T T T T T T
{ Imaginary Part . Real Part { Imaginary Part Real Part
90 | . 90 - | %
EY 80 1
0L 0k
60 [ 60 |
n n
50 1 s0
40 40
30 30+
20+ . 20+
Y \
A % A
10 1 10+ N
\ \
N N
o . == T | 0 . .
(e) 0.4 02 [} 02 04 06 08 1 12 (f) 04 02 [} 02 12
100 “ T T T T T T
{Imaginary Part “\ Real Part
90 { ;
80
70
60
n
50
40
30
20
10 -

Figure 4.9: Plot of the mode shapes for Goldstein’s Orr-Senf@d solution (dashed
lines), and the leading edge solution (solid line and doliteg) for z; = (a) 0.02, (b)

0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25 and (g) 0.3, wite: 0.1. Note that in figures (a)
and (b), the 2 solutions are indistinguishable.



4.4 Asymptotic results in the Orr-Sommerfeld region 93

The existence of this matching region can be seen more gleafigure 4.9. This
figure shows an evolution plot of both the leading edge anchasytic Orr-Sommerfeld
mode shapes close to the leading edges for0.1. Note that fromz; = 0.02to 7, = 0.1,
the mode shapes for both schemes are almost identical, sugg#hat this region is the
matching region. As we go further out of this region, we seg tthe imaginary parts seem

to differ more from each other than the real parts, althobghet is no specific reason for

this.
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Figure 4.10: Plot of the real part of the growth réteas a function of downstream dis-
tance, calculated by leading edge receptivity analysisaligh Orr-Sommerfeld theory,
local PSE theory, and asymptotic Orr-Sommerfeld theorytfercases (a) = 0.05 and
(b)e =0.1.

Figure 4.10 shows a comparison of the real part of the groatthd, calculated using
the different methods described in the previous sectiongwo different values ot.
The solid line shows the results for Goldstein’s asympt@sults in the Orr-Sommerfeld
region given by (4.99), up to and including thke3) term. This can be compared with
results from parallel Orr-Sommerfeld theory, (4.19) amahfrthe local PSE (4.26) which
takes some account of non-parallel effects. &ct 0.05 (figure 4.10(a)) results from
asymptotic analysis and the local PSE are indistinguighaldiile the parallel flow results

start to differ as the leading edge is approached, which Ietexpected as non-parallel
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effects begin to dominate. Asis increased t@ = 0.1 (figure 4.10(b)), the difference
between the different solutions in the Orr-Sommerfeldargire larger. In addition, the
local PSE solution can only be calculated far £ 0.25 due to the first eigenvalue of
(4.26) becoming indistinguishable from the other eigemeg) as described earlier.
Figure 4.10 also shows the existence of a matching regiondegt the receptivity
region close to the leading edge and the Orr-Sommerfeldmegrther downstream. The
dashed line marks the asymptotic growth rate of the first IRott-mode given by (4.28).
For the case = 0.05 (figure 4.10(a)), the receptivity results overlap the riesstriom
the asymptotic Orr-Sommerfeld and the local PSE in the réan@e< 7; < 0.1 and so
a matching region clearly exists. For the larger value (ffgure 4.10(b)), a reasonable
match between the receptivity and asymptotic Orr-Somriterésults is seen at, ~ 0.1,
but there is no matching region between the receptivityltesind local PSE results due

to the problem obtaining PSE results close enough to thengadige.

4.4.2 Importance ofO(€*) term

The O(e?) term in the asymptotic expansion efis calculated from (4.51), and in this

section we illustrate its importance in the overall form o ivavenumber.

6(83)
= 0(e%Ine)

O(e3Ing)

L L L L L L L } \ \ \ \ \ \ \
(a) 0 E 2 ot 5 6 7 8 (b) 0 1 2 3 4% 5 6 7 8

Figure 4.11: Plot of the real part 6f as a function of downstream distance, comparing the
asymptotic Orr-Sommerfeld results up@e® In €), and when thé (¢*) term is included
for (a)e = 0.05 and (b)e = 0.1

Figure 4.11 shows the real part@f for the asymptotic Orr-Sommerfeld regime, when
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we include only terms up t@(e®In¢€) and up toO(e*). Whene = 0.05, figure 4.11(a)
shows that the overall effect of having the extra term seenadlsHowever wher = 0.1,
figure 4.11(b) shows that afté; = 4.0, the effect of this extra term becomes significant.
There is also a reasonable difference close to the leadigg, éadit figure 4.10(a) shows
that this difference may be necessary to match with themggeliige result. Therefore we
can conclude that th@(e*) term is important to the overall result, as it is significaiose
to the leading edge in the matching region. However ¢hig’) term appears to become
non-uniform downstream, thus will introduce errors inta ocalculation of disturbance
amplitudes.

TheO(€?) term in the asymptotic expansion ferplotted in figure 4.11, is constructed
by only retaining the) (1) terms from (4.51). This was done by usingeverywhere that
x appeared. However, if we usecalculated up to and including(e3In¢) in (4.51)
instead, we expect this solution to be a small perturbatiam the previous one, because
we have included som@(e*), O(¢%) and higher correction terms, although we haven't
included all the correction terms at these orders. The tiagusolutions are shown in

figure 4.12.

T o(3Ine) |

35 F

. . . . . . . . . . . . . . . . .
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(a) % (b) X

Figure 4.12: Comparison of (a) the real part, and (b) the imagipart ofG as a function
of downstream distance, when thiEe*) term is calculated with: of both O(1), and
O(e*Ine), fore = 0.1.

We see that both solutions are in good agreement ap te 5, but beyond this point,

there is a considerable difference between the two sokitibs relatively straightforward
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to show that this difference is due to the second term on ¢ie-hand side of (4.51). The
function Wi(() is very sensitive to small changesnand hence:, as this moves the
integration contour along whidlvi(¢) is evaluated. Figure 4.3 shows that there is a small
variation inx as we add more terms to the asymptotic expansion, and igsv/ériation
which is translated into the difference shown in figure 4. TBese growth rates will be
compared with our PSE calculations in the next section.

Another subtle, but equally important problem that arisbenrvcalculating the solu-
tion for A(x,), is that, in the derivation of (4.51), the asymptotic appmation a; =

a /Ul — ¢+ O(e) is used to simplify the equation, where

L (_ _870)
ap = lim (5 —n—= ).
7—00 on

However if we don’t make this approximation, and keep thdargprder terms, the gov-
erning equation for(z,) becomes

~a\dhnA i I R S T A

Ué (CL1 +c+ 76) d—l‘l + Uéalxl + U[;CJ[;1 — U64—x10 + E ZA”C aB-n

/7 _dlnA
— WUéBi/(CO)/ (Hl dn
0

+ H2) Ai(¢)d — Lt / TTtar. (4.100)
0

T1 C

rather than (4.51). Infigure 4.12, we showed that (4.51) essobved using = xq, or the
expansion of; up toO(e3In¢). The results ford(x;) obtained using (4.51) and (4.100)
with k = kg are in close agreement except close to the leading edgelaBnf « is
taken up taO(€® In €), good agreement is found downstream. However when we cemsid
the growth rate curves with (4.51) and (4.100) solved with «, close toz; = 0, we see
a slight difference between the two curves. Figure 4.13 shbat the solution to (4.100)
actually gives a better match with the leading edge asynagtotvhen compared to the
solution (4.51). Therefore this, along with figure 4.12,\8kdhat the higher order terms
in the expansion for are very important, but they become very difficult to formela
Thus extending these asymptotics to bodies other than theldli would be extremely
tedious and we expect to find that, as for the flat plate(th€) term is significant close
to the leading edge, but that it has an apparent non-unifgrchie to numerical evidence,

downstream (Turner, 2006). Thus we use our PSE to marchghrine Orr-Sommerfeld
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region to eliminate the difficulty of deriving general asyiotes in the Orr-Sommerfeld

region.
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Figure 4.13: Plot ofRe(G) as a function of downstream distance for the Asymptotic
Orr-Sommerfeld problem, with th@(e3) term calculated from (4.100) (dashed line) with
k = ko. The solid line represents the same solution, except wittfl®) term calculated
using (4.51), and the dotted line represents the leading gayvth rate.

4.5 PSE results in the Orr-Sommerfeld region

In this section, we consider results from PSE calculatiédis.compare results from the
three upstream boundary conditions discussed, and see iffeveit starting positions
affect the downstream amplitude. We discuss some problemshvoccur when using
PSE, and in particular, we discuss the problem of initiahgrants from the initial data.
We go on to compare the results with the asymptotic resulendoy Goldstein (1982), in
order to justify the use of the PSE method.
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4.5.1 Comparison of different upstream boundary conditions

Previous studies of the PSE have either used the parall&@mmerfeld approximation,
or the local PSE analysis as their upstream boundary conditiVe hope to justify the
use of the leading edge analysis as a suitable upstream &yurwhdition, and show that

the PSE results are in good agreement with the Orr-Sommdeaggimptotics.

. Receptivity

Receptivity

0-s)”

/" Local PSE

Local PSE

4l L L L L L L
(a) 0.3 0.4 05 0.6 ~ 0.7 08 0.9
X1

Figure 4.14: Comparison of (a) the real part, and (b) the imagipart ofG as a function
of downstream distance for the three different initial atinds for the case = 0.1 and
with the initial conditions given af(lo) = 0.3.

Figure 4.14 compares the initial steps of the PSE for thalrdbnditions of the lead-
ing edge asymptotics, the local PSE and the parallel Orrr&enield analysis, given at
fﬁo) = 0.3. The initial mode shapes are given in figures 4.5(a) and }%.&(al the initial
PSE wavenumbersy, are given in table 4.1. We see that the three solutiongdé&¢oahe
same solution after about 2 or 3 streamwise steps, wherésicdbke the streamwise step
size isAz; = 0.1. The local PSE and parallel Orr-Sommerfeld solutions aaetprally

identical, but the receptivity solution is slightly diffamt, although aftef; = 0.5 all three

Regime o
Receptivity Analysis 0.006849 + 0.006849:
O-S Theory 0.008236 + 0.005829:
Local PSE 0.006833 + 0.004813:

Table 4.1: Initial PSE eigenvalues for the three differegfimes for the starting position
z1 = 0.3.
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are indistinguishable from the others. This justifies ousich of receptivity boundary
condition, although the solution requires two or threeastreise steps to iterate onto the

correct solution.

4l L L L L L L L L L L L L L
03 0.4 05 06 = 07 08 0.9 1 b 03 04 05 06 = 07 08 09 1
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Figure 4.15: Comparison of (a) the real part, and (b) the imagipart ofG as a function
of downstream distance for both the possible local PSE tiondi for the case = 0.1
andz\” = 0.3.

We discussed i§4.1.3 that there is ambiguity over which eigenvalue andreigsde
to choose for the local PSE problem, ancfgf = 0.3, the local PSE problem has eigen-
valuesay; = 0.006833 + 0.0048137 and g, = 0.009533 + 0.006518:. However figure
4.15 shows that either pair is acceptable, as they bothetévathe same solution, again
after only 2 or 3 streamwise steps, as expected, becausddred al. (1992) proved
that the difference in the eigenvalues does not carry ovéregrowth rate.

We have now established that the leading edge asymptotigssistable upstream
boundary condition for the PSE, however we need to be cortfidahstarting the analysis

at different starting points is consistent and leads to #meessolution downstream.

4.5.2 Matching between the PSE and the leading edge region

For sufficiently small, we demonstrated if4.4.1 that a matching region between the
leading edge and Orr-Sommerfeld regions exists, hence watdse this result by start-
ing our PSE analysis from inside or close to this region u$hg9) and (4.30) as the

initial conditions. Figure 4.16 shows the real part of thevgh rateGG, defined in (4.98),
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Receptivity

(@) e " (b)
Figure 4.16: Plot of the real part of the growth rétegiven by the PSE, started at two
different positions (ringed) for (&)= 0.05 and (b)e = 0.1.

calculated using the PSE at different starting points, withinitial condition given by
the receptivity analysis. Two starting positions were eém®ne lying within the match-
ing region discussed above, and one further downstreamewherLUBLE has become
invalid. The results in figure 4.16 illustrate the smallesssible value of&ﬁo) that the
PSE was able to be started at in each case, together with deseatqulation starting the
PSE marching solution further downstream. When we attentptede an initial condi-
tion further upstream of these smallest values, we founitifeeP SE would not iterate to
the correct solution. This is due to the unstable eigenviadileg close to the continuous
spectrum of eigenvalues, and hence the numerical schentiffi@dties picking out this
eigenvalue. We note that the minimum valuerefat which PSE marching solutions can
be initiated increases asncreases. The use of the initial condition further dowaestn
highlights the fact that the PSE will iterate to the corremuion, even if an incorrect
initial condition is imposed, as long as the point choseroisso far downstream that the
numerical scheme does not converge. This failure to corvierghe correct solution is
due to the first initial jump in the eigenvalue being too lardg#owever if at this point
we use the same mode shape as before, but instead use dreigéravalue taken from
a previous calculation which passes through this point, metthat the solution does in-
deed match onto the previous runs. This appears to sugggghthnumerical scheme

involved in solving the PSE needs a good initial approxiorafor the eigenvalue, but is
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more flexible in responding to the initial mode shape.
There are still two questions relating to the PSE which nelellesssing. Specifically,
how is the disturbance amplitude downstream affected bpgihg the starting position

of the PSE and by varying the step size? To address this, weedefi

U/2 z1
~(0 Yo
Crtun(il") exp (262 Lo G(s)ds>

to be the disturbance amplitudeit starting the PSE calculation ﬁi@), with the initial

AGED, &) =

condition given by the receptivity result (4.29) and (4.30he functionClgbLR(jz(lo)) is
the amplitude of the Lam-Rott eigenmode from the leading edgm®mn evaluated at the
pointigo), and at the) value wherdy; | is at its maximum. This value aif’leR(:i'go)) is
calculated from the composite solution of (2.70) and (2.&1ing this, the existence of
a matching region between the receptivity results and thiemeover which PSE calcula-
tions are possible corresponds to the range of valuééo)obver whichA is independent
of fﬁo). Takinge = 0.05 and a step siz&z; = 0.05, PSE calculations can not be started
closer to the leading edge théﬁ)) = 0.05, for reasons explained earlier. Thus in figure

4.17 we plot the amplitude at, = 0.5 as a function of starting position, but normalized

by the value wheri!” = 0.05

a0 = AE,05)
A(0.05,0.5)

The positionz; = 0.5 is chosen as the point of comparison of the amplitudes becaus
it is far enough from the turning point iRe(G), that the change in growth rate is much
smoother (see figure 4.16(a)), thus not affecting any intatpn of the final point in the
growth rate, which may introduce a small error. Taking langgues ofz; at which to
calculate the amplitude increases the computation timddes not affect the results. For
a PSE step size dkz,; = 0.05, itis seen that f00.05 < i§°> < 0.1thereis a 26 % change
in amplitude. This reinforces the earlier conclusion thatedl defined matching region
exists, at least for sufficiently small It is also apparent that changing the step size makes

about a4% change in the amplitude. Comparisons over a wider range pfs&tes is not

possible due to the appearence of initial transients winelliscussed in the next section.
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Figure 4.17: Plot of eigensolution amplitudesgt = 0.5 as a function of the starting
pointﬁég“) for e = 0.05. The downstream amplitude is normalized with respect to the
value given wheri\” = 0.05.

In general, we define the disturbance amplitude to be thelatesealue ofy) at the

point where the real part af attains its maximum value, i.e whef&(¢) = 1. We must

take great care when evaluating the disturbance amplitod@stream, because of the

exp (/ G(w)dm) |

termin (4.97), which when we change variableg{decomes

U/2 z1 ~ ~
exp (2—52/ G(xl)dxl),

as seen above. Thus any errors in the evaluation of the aitdge to the step sizAz,
are magnified for very smadl Thus we use Bode’s rule for equally spaced mesh points,
which has an error term @b ((Az,)7). This is applied to all the amplitude calculations

above and in future sections.
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4.5.3 Initial transients

In the previous section we encountered the problem that®ted®es not converge when
the initial condition, taken via the leading edge receptivesult, is too far downstream.
However, there is also a minimum, for each value of, before which the PSE wiill
not converge. Figure 4.16 shows this minimum value for treesa = 0.05 and 0.1.
For smallere, we can start the PSE closeritp = 0, however we have to increase the
streamwise step size to achieve this. We believe this isecklim the problem experi-
enced by Bertolottet al. (1992), where they see initial transients when they rarr thei
PSE code for large frequencies (large An example of these initial transients is shown

in figure 4.18. Figure 4.18 shows two PSE calculationscfer 0.175, one with a step

L LU ‘ ‘ ‘ ‘ Ll ‘ ‘ ‘ ‘
05 1 15 - 2 25 3 ) ~
(a) X1 (b) 05 1 15 1 2 25 3

Figure 4.18: Plot of (a) the real part and (b) the imaginamt p&G as a function of
downstream distance far = 0.175, showing the effects of transients from the initial
conditions for the step sizesz; = 0.15 and 0.175

size of Az; = 0.15 which has these initial transients present, and one wite@stre of
Az, = 0.175, without the transients. As the step size is made smallersaraller, we
find that these transients become larger and larger, urmriteally they become so large
that the numerical scheme fails to converge. This step ggeiction is not the same
as the step size restriction encountered in the primitivealile formulation (Andersson
et al, 1998), because our PSE is formulated in terms of the straaatidn,), which has
a less severe step size problem than the primitive variavtaulation. We believe that

the minimum starting point problem may be related to thigahtransient problem. This
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is because as we move closer to the leading edge, we are toraextease the step size
to make the PSE converge, which could be conceived as inegeth® step size to over-
come these transients. Although these transients haverimeed in previous studies, no
systematic study has been conducted. However some gemhsealvations can be made
about the appearance of such transients. In figure 4.19 we s@ee detailed plot of the
transients on the real part 6f for the case = 0.15. We note that for the two largest
step sizesAz; = 0.2 and0.1 there are no oscillations, and the difference between these
solutions is small. As we decrease the step sizAi9 = 0.06, we see these transients
beginning to appear and as we decrease the step size fiindhamplitude of these oscil-
lations increases, while the wavelength remains appraeiyaonstant);, ~ 0.39. One
possible explanation for the appearance of these trassienihat since the initial con-
dition is only a numerical approximation to the first eigemapthe initial waveform is

likely to contain small contributions from higher eigennesd Thus our initial condition
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Figure 4.19: Plot of the initial transients dte(G) for e = 0.15 for 4 different step sizes,
Az, = 0.05,0.06,0.1,0.2, showing the occurrence of these transients as the step size
reduces.



4.5 PSE results in the Orr-Sommerfeld region 105

is in fact a sum of these eigenmodes of the form
vic =Y A,
=1

where theA;’s are constants. For small values ©fwhere we can start the PSE from
within the matching region and where the composite solubib(2.70) and (2.87) is an
accurate representation of the first Lam-Rott eigenmodeAtlsefor ¢ > 2 should be
small. However if we have to take our initial condition odesithe matching region, then
the A;’s for ¢ > 2 will be larger because of the inaccuracy of the compositatsi.
Initially the higher eigenmodes decay more slowly than th& gigenmode and hence
these contributions may become significant if thés are large enough.

We can investigate the significance of the higher eigenmduesonsidering Gold-
stein’s asymptotic form of the wavenumber, as givefir8.1, up taO (e In €). We define
the function? as

7 = 1 + €y,

wherey,, given by

G = e (3 A exp ( / (1, e)dx) |
0

€
forn = 1,2, is then'" T-S mode, and is a small constant. We then define

7
A RS (4.101)

U U1

which we evaluate at the value gfwhere the value ofy, | reaches its maximum. The

A

results we expect to see, when we plodgs a function of 4, is a region close to the leading
edge wherel = 1, i.e. wherey;, dominates the solution, then a region of oscillation,
wherey, dominates, and finally another region wheredominates again. This behaviour
is clearly seen in figure 4.20(a), which shows the real pa® @fs a function ofi; for

e = 0.05, andé = 1 x 107%!, The reasori was chosen so small in this case, is just to
make the oscillations the same order of magnitude as thabse inumerical solution for

e = 0.15 illustrated in figure 4.20(b). Hence fer= 0.05 the oscillations would be very
large, if we had a large component ©f in our initial condition to the PSE. However,

as we are able to start the PSE right back into the matchingrrdgr this value ofe,
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Figure 4.20: Figure of the real part of as a function ofr; for (a) e = 0.05 andé =

1 x 10~* and (b)e = 0.15 andé = 0.1.

we find the constant multiplying the second eigenmode islsmdséo for this value of

¢, the wavelength of this oscillation\;, is very small, and in fach;, ~ 0.025. If we
now consider the case= 0.15, in figure 4.20(b), which was the value for which we saw
the transients in figure 4.19, we see that the region closketdetading edge wherg,
dominates has now disappeared. The reason/th@¥) does not go td asz; — 0,

is due to the neglecte@(e?) term being important in the asymptotics. Despite this, we
still obtain the region where); dominates downstream, but the region over whigh
dominates is now larger. We note that for this value,offe chose = 0.1, and we can
see that the magnitude of the oscillations appears to bdesrttan for the: = 0.05 case.
The wavelength of the oscillations is also larger for thiseca;z, ~ 0.36, however we
note that this wavelength is of a similar size to the one sedigure 4.19. The reason
we don't notice these transients for the= 0.05 case, as we do for the= 0.15 case, is
possibly due to the wavelength of the oscillations seen uré&g@.20. The wavelength for
e = 0.05 is very small, and generally we use a step size of about twisentavelength.
However fore = 0.15, a step size ofAz; = 0.05 is smaller than the wavelength of the
second eigenmode oscillations, and hence the PSE will pi¢kis behaviour. We saw no
transients forAz; = 0.1, and this step size is just larger than a quarter of the wagéte
of the oscillations.

While this is not conclusive evidence of the origin of transsein PSE solutions, it



4.5 PSE results in the Orr-Sommerfeld region 107

seems to suggest a connection between these transientsedndter eigenmodes. How-
ever further investigation is needed to find a step size imierms of this wavelength.
We believe it is a combination of these transients, whichralated to the streamwise
step size, as well as the difficulty finding the eigenvaluechtads to the failure of PSE
convergence starting the calculation too close to the tep€eldge. The magnitude of the
initial transient oscillations become increasingly lafgesmallere or smallerigo), and in
most cases become so large so quickly, that the PSE codefaisiverge.

The comparisons described in the above sections show &3k scheme proposed
gives consistent results, independent of initial positownl step size. We now compare
these numerical results with the Orr-Sommerfeld asymptesults defined earlier in this

section.

4.5.4 Comparison of PSE and asymptotics in the Orr-Sommerfeld
region

Having established that the leading edge receptivity aigig a suitable upstream bound-
ary condition for the PSE, we compare the PSE results witli€iein’s established as-
ymptotic results in the Orr-Sommerfeld region. In the faliog results, the upstream

boundary condition was given by the leading edge asympaoiatysis.

Asymptotic

’ Asymptotic

st iPSE

H L L L L L L L L L L L L L L L L
0 1 2 3 =4 5 6 7 8 9 0 1 2 3 4~ 5 6 7 8 9
(@) % (b) 3

Figure 4.21: Comparison of (a) the real parts and (b) the insagiparts of7, calculated
using the asymptotics and PSE, as a function of downstrestainie, foe = 0.1.

Figures 4.21 and 4.22 show a comparison of the PSE and asyeriptons of G, for
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N i L L L L L L L L 1 1 1 1 1 I 1 1
(a) 0 1 2 3 4 X 5 6 7 8 9 (b) 0 1 2 3 4% S 6 7 8 9

Figure 4.22: Comparison of (a) the real parts and (b) the insagiparts of5, calculated
using the asymptotics and PSE, as a function of downstrestandie, for = 0.05. For
this value ofe, the two solutions are almost indistinguishable from onetlaer.

E ! L L L L L L L L 0 L L L L L L L L
0 1 2 3 4~ 5 6 7 8 9 ~
(a) b (b) 0 1 2 3 LA 6 7 8 9

Figure 4.23: Comparison of (a) the real parts and (b) the inaagiparts ofG, calcu-
lated using the asymptotics and PSE, as a function of doeamstidistance, for = 0.1,
including the asymptotics up(e?), denoted by the dotted line.

e = 0.1 ande = 0.05, where the asymptotics are given up to and including?® In )
terms. For the = 0.1 case in figure 4.21, we see that there is a small differenceceet
the real part of the two solutions near to the turning point, ds we discussed in the
previous section, this is due to tiEe?) term being significant here. If we add this extra
term onto the asymptotics, figure 4.23, then we see we haveh baiter agreement up to
71 = 3.0, but due to the likely non-uniformity of the asymptotics, agve poor agreement

downstream of this point. Other than that, the real parteseagery well over the range of
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values shown in figure 4.21. The imaginary parts show moredifference between the
solutions, and this difference increases as we move dogarstr This slight difference
isn’t too significant, as this gives just a slight shift in thiease of the eigenmode, rather
than any difference to the amplitude. If we now compare tlogvgr rates for = 0.05 in
figure 4.22, we see that in this case both solutions are almdistinguishable for both
the real and imaginary parts. This definitely shows that &I Phethod is working and

is a very effective way to calculate the growth rate on a body.

Numeric 1 sr

Asymptotic

1 L L
0 02 04 08 1

. . . . .
06 12 -0.08 -0.06 0.04 0.02 0 0.02 0.04 0.06 0.08
Magnutude (b) Magnitude

Figure 4.24: Plot of (a) the real parts and (b) the imaginamtgpof the mode shape at
71 =2.0withe = 0.1.
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Magnitude

0 02 04 06
(a) Magnitude

Figure 4.25: Plot of (a) the real parts and (b) the imaginamtsoof the mode shape at
71 = 4.0 with e = 0.1.
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Figure 4.26: Plot of (a) the real parts and (b) the imaginamtgpof the mode shape at
71 = 6.0 with e = 0.1.
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Figure 4.27: Plot of (a) the real parts and (b) the imaginamtsgpof the mode shape at
77 = 8.0 with e = 0.1.
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Figure 4.28: Plot of (a) the real parts and (b) the imaginamtoof the mode shape at
77 = 10.0 with e = 0.1.
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Figure 4.29: An evolution plot of (a) the real parts and (lg)ithaginary parts of the mode
shape af; = 2.0,4.0,6.0, 8.0, 10.0.

The good agreement between the PSE and the asymptoticssodrmeadeen in figures
4.24, 4.25, 4.26, 4.27 and 4.28, which show a comparisoneoPBE and asymptotic
mode shapes &t downstream positions far = 0.1. In each case there is almost no
visible difference between the two solutions, further f@icing the validity of our PSE
method.

Figure 4.29 shows an evolution plot of the mode shapes fo10.1, calculated using
the PSE. Figure 4.29(a) shows that the real parts are all iofitas shape, but the max-
imum point moves slowly towards the wall as we move downstreAlso as we move
downstream, the real parts decay to zero faster-as> oo, so the main part of the mode
shape becomes more concentrated closer to the wall. Thenarggart on the other
hand, figure 4.29(b), shows that as the disturbance moveaghrthe neutral stability
point, z; = 3.946, the mode shape becomes purely real, and downstream ofdinis p
we find that the imaginary part has the opposite sign to thattwibhhad upstream of the
neutral stability point, with the imaginary part slowly lm&ging more concentrated at the
wall.

The above figures show good visible agreement between thgadsiic and numerical
values ofGz, and the mode shape, but we also compare some numericaliesmd the
solutions to see if the two methods agree. Table 4.2 showsdb#al stability point,

where/m(G) = 0, as a function ot for both methods, with the asymptotics up to and
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including theO(e* In €) terms. The values in this table are also plotted in figure.4.30

€ Asymptotic NS pointi; PSE NS pointt;
0.035 3.282 3.278
0.05 3.402 3.405
0.075 3.643 3.647
0.1 3.928 3.946
0.125 4.267 4.328
0.15 4.689 4.818
0.175 5.187 5.456
0.2 5.774 6.359

Table 4.2: Neutral stability points for the PSE and asymggot
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Figure 4.30: Plot of the position of the neutral stabilitymi@s a function ot comparing

the PSE and the asymptotics.

The results in table 4.2 are as expected, in that the difteréetween the two methods

increases as increases. However, it also helps to confirm the importaricbenO(e?)

term in the asymptotics, although adding this term into gysmptotic expansion does not
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improve the results for large due to the apparent non-uniformity seen in figure 4.11.
We note that for the case ef= 0.05, for example, the error between the numerics and
asymptotics i9).007 ~ 50e. This sizable difference shows that the higher order terims o
the asymptotic expansion appear to be very significant.

The main reason for developing this PSE theory, is so thatameuse it to calculate
the amplitude of the eigenmodes at different positions @live body. The amplitude
of the 1°* T-S mode/ (z, n), given at a pointr, and at they value whergz),| is at its
maximum, is

|’¢1’ = CﬂDLR(JJLE) exp (/z G(S) dS) s (4102)

wherey r(z ) is the amplitude of the Lam-Rott eigenmode evaluated at tive pgg

and at the position where .| is at its maximum. Also(’; = —0.45 + 0.855i is the
receptivity coefficient for acoustic wave propagating flal#o the mean flow (Goldstein
etal, 1983), and:, ; is a streamwise position in the matching region where the-Rantt
eigenmodes are valid. However at the moment, we are onlyestied in comparing the
relative accuracies of the PSE and the asymptotics, sorréitlie having the lower limit
of integration as:; , which is not possible for large we start our analysis at some given
point along the body. We also ignofg, as it's the same for both methods. For this
analysis we chose our starting point tobe= 1.0, and our end point to be the lower
branch neutral stability point. Although this point is @ifént for the PSE and asymptotic

methods, it still gives a very good comparison between treerethods. Hence in our

U2 [%ins
exp (2—22/10 G(s)ds)

as the amplitude we compare, where &g/ (2¢%) term comes from changing variables

case we define

15_

, (4.103)

from z to 7, = 2¢*x /UL,

Table 4.3 shows a comparison between the asymptotic andrioainalues of (4.103),
and because the amplitudes at each valueasé of the same order of magnitude the re-
sults appear to be satisfactory. We can compare the accafabg numerical method
better, if we consider table 4.4, which d$ln(v)) of the values in table 4.3. This then

gives a comparison of the values of the integrals in the exptials, which is a much bet-
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€ [Vasy] [VpsE|

0.035 4.783 x 107'%0 4.872 x 10~12¢
0.05 1.275x 107  8.616 x 107
0.075 6.771 x 1071¢  3.618 x 10716
0.1 7.191 x 107®  3.556 x 1078
0.125 8.130 x 1075 3.801 x 107°
0.15 2207 x 107  9.564 x 1074
0.175 1.297 x 1072  5.105 x 1073
0.2 3.663 x 1072 1.314 x 1072

Table 4.3: Table ofy| at the neutral stability point, for the PSE and the asymgsoti

ter comparison, as any errors in the integral is magnifiethy t* term in the exponential

in table 4.3, as discussed earlier.

€ 2 In(YPasy) € In(¢Vpsg)

0.035 —0.353 4+ 3.840¢ —0.353 + 3.832:
0.05 —0.264 +2.882: —0.265 + 2.8807
0.075 —0.196 4+ 2.1817 —0.200 + 2.175:¢
0.1 —0.164 + 1.872¢ —0.172 + 1.8661
0.125 —0.147+1.729¢ —0.159 + 1.699:
0.15 —-0.138+1.6867 —0.156 + 1.6961¢
0.175 —-0.133+1.7037 —0.162 + 1.7344
0.2 —0.132 4+ 1.767¢ —0.173 4+ 1.8657

Table 4.4: Table of*In(<)) at the neutral stability point for the PSE and the asympsotic

Table 4.4 shows excellent agreement between the ampliagies— 0, and we can
see this in figure 4.31, which shows the real par’dfi(¢)). The difference between the
imaginary parts is almost constantagaries, so we don’t get their values tending to the
same value quite as rapidly as we do for the real patt-as> 0. This is possibly due to
the missing)(¢®) term in the asymptotics, which is very significant for the(G).

This section has proved that for sufficiently smalthe numerical PSE results agree
very well with Goldstein’s asymptotics, and for larger \@dwofe, the PSE appears to be a
suitable way to calculate the growth rate. Thus, now we arsfigal that our PSE method

is valid, we can use it to calculate T-S wave amplitudes to pam@ with experimental

studies, and full numerical simulations.
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Figure 4.31: Plot of the real part efIn(¢) as a function of comparing the PSE and the
asymptotics

4.6 Experimental comparisons

We have now established that the PSE is a good method forla@hguthe solution to

the stability problem in the Orr-Sommerfeld region, we #iere now use this method
to calculate the amplitude of the eigenmode as a functionoafndtream position via
(4.102)

I

1] = |Crirr(TLE) exp (/ G(s)ds)

where (' is the receptivity coefficient. To calculate this amplitugle need to be able

to integrate over the growth rate from some point in the reei#yp region which we
believe to be in the matching regian, z, and where the amplitude is known from (4.28),
downstream to the point at which the amplitude is to be catedl This is straightforward
for small values ot, as we can take the PSE right back to this matching region.eidexy

for largere, we have to ‘patch’ this region using a curve fitting techmiqu
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4.6.1 Patching

For moderately small values efthe need to patch the solutions valid in different down-
stream regions can be seen in figure 4.16(b), wiere(.1. The PSE result has to be
taken fromz; =~ 0.5, and matched with the leading edge asymptoticg,atz 0.09, as
this appears to be a point in the matching regionefer 0.1. The difficulty in patching
this region is that the real part 6f has a turning point between these two points. De-
termining exactly where this turning point lies, and the imiam value ofRe(G) are not
straightforward. We can overcome this problem slightly bing the solution to the local
PSE problem from a point at which the PSE result has settlemlabsolution, backwards
towards the leading edge. By doing this we decrease the siteeqfatch needed, and

hence hope to increase the accuracy of the result.

-0.5 T T T T T T T

15 F .

Re(G)

-2.5

_4 1 \‘ 1 1 1 1 1 1
0 0.2 0.4 06 ~ 0.8 1 1.2 1.4
X1

Figure 4.32: Plot of the real part 6f as a function oft; showing the local PSE patching
(dotted line) over the gap between the PSE (solid line) aaditg edge solutions (dashed
line) fore = 0.1.

Figure 4.32 shows that the PSE and local PSE lie over one enfotim aboutz; =



4.6 Experimental comparisons 117

0.45, and the local PSE patches back to approximately= 0.3, for the case = 0.1.
Hence we now only have to patch from abauyt= 0.3 back to the leading edge. For the
casee = 0.1, the local PSE brings the PSE solution just back far enoughatove have
an idea where the turning pointis, and how large it is, seedig82. For larger values of
e we are not so lucky, and some element of guess work is requivedpatch the growth
rate,G, in the ranger, < 7; < 7, wherez,, is a point in the receptivity region that we
believe to be in the matching region, aiglis the closest point to the leading edge that

we could calculate the result in the Orr-Sommerfeld regia.require that

s fi(Z1) 71 <
G(T1) = :
fg(fil) T > i’/g
or better still we require equality, where the functifns the asymptotic receptivity result
and f; is the PSE/local PSE result.

There are various patching methods available, and we omlgider two of them here.

Patching method 1

The first method introduces the function definedign< z, < 3 as,
G1(T1) = )\1(51)]?1(51) + )\Q(fl)f;(fl),
where
1 1
A = 5(1 —tanhf) and Xy = 5(1 + tanh 6),
and

g5 (71 — 5(Za + 7p))
B ip— Tq

The function; is taken to be the straight line extension fgffrom z, to zg, and f, is

taken to be the straight line extensionfgffrom iz to z,,.



4.6 Experimental comparisons 118

Patching method 2

For the second patching method, we defifeto be

fl(jl) i‘l < Zi’a
Go(T1) =4 AP+ B2+ Ci1+ D 3, <31 < ip
fg(i'l) .%1 > .i'lg

whereA, B, C and D are constants found by ensuring tld&tz, ) is continuous and has

continuous slope at, andzs. Hence we require

Gy(Zg) = f5(Tp),

where the dash denotes differentiation with respegt to

The results of patching the growth ratd%(G,) and Re(G»), can be seen for two
values ofe in figure 4.33. For the case= 0.075, only a small amount of patching was
required around; = 0.1 and both methods gave similar results. However when).2,
we had to patch a much larger region betweeh < #; < 1.0, which leads to the growth
rate curve ofG; possibly dropping more rapidly betweéry < z; < 1.0 than expected
when we compare its shape to the= 0.075 curve. However thé&, curve appears to
give a shape similar to the= 0.075 curve, and this curve also has the correct values at
T, andzg, rather than approximations using the first patching methot because of
these reasons that we choose to use the second patchingytechor the remainder of
this work.

Figure 4.34 shows the imaginary part of the growth rate spwading to the real part
in figure 4.33. We notice that th&; curve fore = 0.2 doesn’t have quite as smooth an
arc as the&x, curve has, and in fact th@; curve has a slight rise in value &t ~ 0.55.
This rise is completely due to the choice of patching methddwever, this is not too

significant in our work, because when we integrétethe imaginary part just gives us



4.6 Experimental comparisons 119

-0.5 T T T

15 F

Re(G)

0 0.5 1 ~ 15 2
X1

Figure 4.33: Plot of growth rate&e (G, ) andRe(G»), for e = 0.075 which requires very
minimal patching, and = 0.2 which requires much more patching. The lower of the two
curves for the = 0.2 case corresponds 1®e(G ).

the phase of the eigenmode at that point. Hence this sligatwill only cause a slight
change of phase rather than any change of amplitude. We thahaith the first patching
method, this rise ifm(G,) increase slightly asincreases.

Based on the results shown in figures 4.33 and 4.34, we chosgettha second
patching method. Table 4.5 shows the values ptthat we thought were appropriate,
along with the values afs which are the closest positions to the leading edge that the
local PSE could be solved. Note that both values increasénaseases.

Now that we can successfully patch the solution data to gigersinuous complex
growth rate,GG, we can now consider amplitudes of the eigenmodes at vaptaces

downstream.
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Figure 4.34: Plot of the imaginary parts of the growth rates(G,) and Im(G-), for
e = 0.075 which requires very minimal patching, and= 0.2 which requires much more
patching. The lower of the two curves for the= 0.2 case corresponds fon(G).

€ ii’a i’g

0.035 0.05 0.05
0.05 0.05 0.05
0.075 0.05 0.10
0.1 0.09 0.14
0.125 0.15 0.30
0.15 0.22 0.40
0.175 0.25 0.50
0.2 0.25 0.90
0.225 0.25 1.00

Table 4.5: Table of values af, andz; that we found appropriate for the present work.

4.6.2 Eigenmode amplitudes at lower branch

The position commonly used in numerical and experimentakwm calculate T-S wave

amplitudes is at the branch | (lower branch) neutral stgiploint. Thus to calculate these
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values, we use the asymptotic form of the leading edge sol@s our initial condition
to the PSE, calculate the form of the growth rétér), patch it where necessary and
integrate it to the lower branch point. If we assume the gteeam disturbance to be an
acoustic wave propagating parallel to the mean flow, thengbeptivity coefficient’; is

then given by Goldsteiet al. (1983) agC| = 0.9662, and hence the amplitude ¢f at

lower branch is given by

Y

11| = |Crbrr(vLE) exp (/ ” G(x)dx)

wherez  iS a position in the matching region and;s is the position of the neutral

stability point. The values df)!| are displayed in table 4.6 for the two patching methods.

€ I || % difference
Patching 1 Patching 2

0.05 1.06&10~ ' 1.068<10~ ' 0
0.075 1.76%1073 1.915<10~% 7.62

0.1 1.4881071%  1.670x1018 10.90
0.125 7.154107*  7.887x107!! 9.29
0.15  2.47k1077  2.605<1077 5.14
0.175 1.14%107°  1.486x107° 23.08
0.2 1.50%10~*  1.922x10~* 21.85
0.225 7.49%10~*  9.324x107* 19.63

Table 4.6: Table of T-S wave amplitudes at the lower brancirakstability point, using
both patching methods. The two methods are compared usiig thfference between
them, 100 x |[¢o{]o — [f ] /1 2.

Table 4.6 shows a rapid increase in the size of the T-S wawenadrlbranch as we
move frome = 0.05 through toe = 0.15, but we see a much slower increase after
e = 0.15. This slowdown in growth can be seen much more clearly in §guB5, which
shows a plot ofy!|, using the second patching method, from table 4.6, as aiumot e,
plotted on a log scale. We only plot the amplitudes froe 0.075, in order to emphasise
the slowing down of the amplitude growth agets larger. Results for very smalbre
asymptotically valid due to the well-defined matching regibut are perhaps of limited
physical relevance, while results for larger values ofvolve numerical patching but do

allow comparison with experimental and numerical resultshsas Haddad and Corke
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Figure 4.35: Plot oft!| at the lower branch neutral stability point as a function &r
the second patching method.

(1998) and Wanderley and Corke (2001).

Haddad and Corke (1998) consider a parabola at zero angleidéirce to a uniform
flow with a small amplitude acoustic disturbance propagggparallel to the mean flow.
The steady flow around the body is solved numerically and tis¢eady disturbance ob-
tained by solving as a linear perturbation. Downstreamutisteady disturbance consists
of a Stokes-wave determined by the local forcing at thattlonatogether with a sum of
Tollmien-Schlichting waves. Upstream of the first neuttabdity point, the T-S waves
are small compared with the Stokes wave. The asymptotic @drthe Stokes wave far
downstream at leading order is given by

=

1+ 1 i1 13U 1 39U 1 4051(1 — U2 1
Ysr(z,n) = (27) (77— — 0 0 ( s

W - - — ) +0(Re™).
> or 22 32 22 64 o8 2048 x§>+ (Be™)

But rather than use this form, Haddad and Corke obtain a nuat@pgproximation to the
Stokes solution by solving the unsteady equation with cotmve-inertia terms dropped. If

we calculate the leading order term of the lakggsymptotic solution using the equations
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used by Haddad and Corke, we find that
sy = (21‘)%77 + O(Re™).

Therefore Haddad and Corke’s Stokes solution is the same &8) @xcept without the
O(1) correction terms. Having obtained an expression for thkeSteolution, this is sub-
tracted from the unsteady solution in order to provide anm@pmation to the magnitude
of the T-S waves, after a filtering process in which any wavesavelength greater than
2\rg are removed, whergrg is the wavelength of the unstable T-S wave. As well as
removing the higher T-S modes, this filtering process shaldd remove any remaining
contribution from the Stokes solution. Haddad and Corke ktheir method against
the asymptotics of Ackerberg and Phillips (1972) for a flatt@lby considering the limit
as the nose radius goes to zero. We illustrate the results & numerical scheme by
comparing them to the numerical results of Haddad and Conk#he limit as the nose
radius goes to zero.

Figure 4.36 shows a plot of the streamwise velocity, atn = 0.033 as a function of
R, = U,x*/v, wherex* is a dimensional distance from the leading edge. The strésenw

velocity, urg is defined asirg = dYrs/dy, where

rs =P = C1¢(x,n) exp (/w G(g;’)dx/) 7

therefore

azﬂTS 1 a¢ (/I / /)
Urg = =C - — ex G(x')dz' ),
TS oy 1 (20)} an p (')

after the filtering process. The results of the present waokd line) agree well with the
results of Haddad and Corke (dotted line) (cf figure 13(b) fidmadad and Corke (1998),
after the data has been filtered), downstream of the lowerchrpoint and in particular
around the upper branch of the neutral stability curve. Tikerdpancy between the two
sets of results around the lower branch point could be dueddactors. Firstly, the value
of e = 0.248 is relatively large and hence we are considering pointsedoghe turning
point of the neutral stability curve, where all numericalthozls are very sensitive (see
Schmid and Henningson (2001), figure 7.30). Secondly, anyenigal errors associated

with the subtraction of the Stokes wave and the filtering ghkr modes in Haddad and
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Figure 4.36: Plot of the T-S wave velocity;s, as a function oR?, = U,.z* /v atthe level
n = 0.033, for both Haddad and Corke’s method, and our PSE method,#$00.248.

Corke (1998) are likely to be most significant at this pointsitthe unstable T-S wave
has its lowest amplitude there. This comparison strongigssts that our receptivity/PSE

method is valid.

4.6.3 Leading edge receptivity coefficient

As well as producing amplitude results at lower branch to gara with experimen-
tal measurements, the numerical methods of Corke and coevsrlkere used to com-
pare with leading edge receptivity results. Wanderley antk€¢2001) define a gen-
eral form of the receptivity coefficient as the ratio of thexinaum T-S wave ampli-
tude at anz-location to the amplitude of the free-stream disturba@ecel denote it by
Ky = [(urs)|/|(us)

disturbance. This definition of the receptivity coefficidepends on downstream distance

, Whereurg is the streamwise velocity and,, is the free-stream

and has a very different meaning from the receptivity coefficdefined in the asymptotic
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analysis.

Wanderley and Corke (2001) consider flow over a Modified Sufigrsé (MSE) at a
zero angle of incidence to the free-stream. A MSE is half Apsal stuck onto a flat plate
with the discontinuity in curvature at the join removed. Shody is of great importance
to experimentalists, and we discuss its properties in metaildn chapter 6. Wanderley
and Corke solve the flow around a MSE in an identical fashionatddad and Corke. The
steady flow is solved numerically and the unsteady disturbas obtained by solving a
linear perturbation problem.

Wanderley and Corke calculate the valugqfz, which is K, evaluated at the leading
edge, by considering results close to the neutral stalpbiyt. Corke and co-workers
assumed that the* T-S wave dominates the solution at this point, and they prtede
the amplitude of this wave back to the leading edge in ordeotopare their numerical
results with the receptivity results of Goldstein (19834 atammerton and Kerschen
(1996). For the MSE, Wanderley and Corke considered therbetce amplitude in
a region just upstream of the lower branch neutral stalydint believing that in this
region the first T-S mode dominates. We are able to investidps assumption for a flat
plate in figure 4.37, which shows the log of the amplitudeéi;) = [ Re(G)dx) of the
first 5 eigenfunctions calculated using Goldstein’s asytipimethod as a function of the
streamwise variable?,. The value ofF’ = vw /U2 = 54 x 10~¢ used in Wanderley and
Corke (2001) corresponds t§ = 54 x 1075, and hence = 0.194. For this value of
¢ the neutral stability point occurs @&, ~ 3.1 x 10°, whereR, = U,x*/v andz* is
the dimensional distance from the leading edge. In the regjio 10° < R, < 3 x 10°
considered by Wanderley and Corke it does not appear thattfeS mode dominates
the 3'4, 4" and5*™ T-S modes, although it does dominate f#té. However, Goldstein
et al. (1983) showed that for a flat plate the receptivity coeffitsgemultiplying the3™,
4™ and5*™ T-S modes, are at least 5 times smaller than the coefficieliphying 15¢ T-S
mode. Hence if similar results hold for the rounded leadidgeesgeometry considered,
then the assumption that the first T-S mode dominates all 3t#%emodes may indeed be

valid.
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Figure 4.37: Plot of the log of the amplitude$ Re(G)dzx) of the first 5 T-S modes
(numbered) as a function a?,, with ¢ = 0.194. The neutral stability point occurs at
R, ~ 35 x 1074

Wanderley and Corke (2001) then assume that this T-S modeohataat decay rate
at all locations back to the leading edge and thus they obtaamplitude for the unsteady
disturbance at the leading edge, though the physical irg&on of such a quantity is
unclear. This extrapolation is marked as the dotted linegaré 4.38 (cf figure 10 of
Wanderley and Corke (2001)) fer = 0.194. However this analysis does have some
possible flaws. The most important of these is the assumptic@onstant decay rate
between the leading edge and the lower branch neutralisggimint. If the extrapolation
was performed on results closer to the neutral stabilitywfpthie measured decay rate
would be much less and the value/gf extrapolated to the leading edge would be much
smaller. In figure 4.38 the results from this thesis for a flatgpare compared with
the numerical results, on a MSE, of Wanderley and Corke (200h)s shows that the
assumption of constant growth rate is not valid in this cdisis. possible that the points
calculated by Wanderley and Corke in figure 4.38 could begthet of thel® T-S mode,
however a better comparison between leading edge redg@nalysis and the numerical

analysis of Wanderley and Corke would be possible if T-S anmidis slightly downstream
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Figure 4.38: Plot of figure 10 from Wanderley and Corke (2001 pf20:1 MSE with the
results from PSE calculations fer= 0.194.

of the lower branch neutral stability point were availatdgce then there would be no
question that the unstable T-S mode dominated the solutigeen in figure 4.36. Also
when we compare the value éf,, evaluated at the lower branch point, for a MSE from
Wanderley and Corke with the corresponding value for a flaeptalculated using the
PSE, we find that these values differ by three orders of magaitHence, leading edge
curvature is very important in calculating T-S wave amplés. Using results from PSE
calculations for the particular geometry would then alldwe £xtrapolation of the T-S
amplitude to positions closer to the leading edge. This dthugn allow comparison with
the receptivity coefficients used in asymptotic investa which have more physical

relevance in this leading edge region than iyg; calculated by Wanderley and Corke.
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4.7 Summary

In this chapter we consided the Orr-Sommerfeld region asytes, derived for a flat
plate by Goldstein (1983), and numerical results in thisaregyia the PSE. We found
that theO(¢®) term of the asymptotics given in Goldstein (1982) is very pboated and,
due to terms which contain integrals of Airy functions, agseto be non-uniform as we
move downstream. However this term is important near theidgaedge as shown by
comparing the asymptotic and the numerical growth rateasTime conclusion is that the
O(€®) term is very important for the accurate calculation of T-S&amplitudes. How-
ever because of the complexity of its derivation, and thesgm non-uniform behaviour,
it is not feasible to extend this method to general bodies.

The asymptotics and the local PSE calculations proved tistegice of a matching
region between the leading edge region and the Orr-Somldegegion, for sufficiently
smalle. This result was confirmed by the PSE, when a region was foond ¥ 0.05
where the amplitude at a point downstream was almost indigperof the starting posi-
tion of the PSE within that region. The PSE results also ptdeebe in excellent agree-
ment with Goldstein’s asymptotics, up €(¢® In ¢), away from the leading edge region,
in the limit ase — 0. As € gets larger, the asymptotics become more dependent on the
missingO(e) term, but the PSE appear to be a good alternative to the astiogpt

PSE calculations for larger suffer from numerical problems in the form of initial
transients, which come from a poor guess for the first Lam-&g&nmode for the initial
upstream boundary condition. Although no definite mechmaniss found to be respon-
sible for these transients, it was shown that higher T-S veagenmodes are the likely
cause. These modes enter the problem through the initigittam and propagate with
the T-S wave via the PSE, and these higher modes have a reere they dominate over
the primary T-S wave. Hence the growth rate will contain gbantions to these waves in
the form of transients.

A patching method was developed in order to calculate sst@gsT-S wave ampli-
tudes in the Orr-Sommerfeld region for valuesdbr which a matching region appears

not to exist. In these cases we were not able to start our PiS&aizon right back at the
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leading edge receptivity result, because of the non-cgevee of the PSE. We decided
on a patching method based on a cubic curve fitting technitpvegver an extensive study
of this, and the convergence of the PSE are left as areasuréfstudy.

The results for the semi-infinite flat plate were in good agreset with those of Had-
dad and Corke (1998) in the limit as the nose radius of the ptaawes to zero. At this
stage we weren’t able to make comparisons with more realjgometries, because it
appears, from numerical studies, that the introductionradrazero nose radius can make
lower branch amplitude values increase by as much as thdeesoof magnitude. Thus
we next consider the effect of non-zero mean pressure grizdéd a rounded leading
edge.

The next chapter extends the PSE method to the case of a fmrabexamine how a

favourable pressure gradient affects the propagationeot+8 wave.
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Chapter 5

A parabolic body

In chapter 4, we were able to validate our numerical stglitiethod on a semi-infinite
flat plate, where asymptotics were available in the Orr-Senfieid region, with which
to compare our results. However we are interested in penfgrstability calculations
on more realistic bodies which have a non-zero nose radinghi$ chapter we look
at a parabolic body, which was considered by Hammerton andcKen (1996). We
will show how the favourable pressure gradient on the bodshps the neutral stability
point downstream compared to the flat plate value, and shatath the leading edge
curvature increases, the value of the T-S wave amplitudei&ieal at the lower branch
neutral stability point reduces. In chapter 4, we considemrdy acoustic incident waves
parallel to the flat plate, but in this chapter, we considew tize receptivity coefficient,
and hence the disturbance amplitude, varies as a functiaheoincident wave angle.
This is important for experimentalists, because it allowsparisons with wind tunnel

experiments, where reflected sound waves from the wallsiargent to the airfoil.

5.1 The governing equations

Hammerton and Kerschen (1996) considered flow past a parabakro angle-of-attack
to the mean flow. A schematic illustration of the boundamelastructure can be seen in

figure 5.1.



5.1 The governing equations 131

Ug 5
Edge of boundary 777777 1
layer -~ -7 N=0
N 3 Orr—Sommerfeld
Overlap regime
LUBLE region
regime 1<E<g?

Us

Figure 5.1: A schematic illustration of the boundary-lag&ucture for a body with a
parabolic leading edge at zero angle of attack. The threksdecthe Orr-Sommerfeld
region are 1- the viscous wall layer; 2- the main inviscidelgy3- the outer irrotational
layer. Againe® = Re™!.

The non-dimensional quantity is called the Strouhal number and is defined as

WTrn

S=— 5.1
o 5.1)

wherer,, is the dimensional nose radius of the airfoil. The Strouhahher is the non-
dimensional form of the nose-radius. The inviscid flow abtime airfoil can be calcu-
lated using slender wing theory, and around the nose by tmraplex potential methods.
Hammerton and Kerschen (1996) formulated their work in seofiparabolic coordinates
(&m,mu), wherey is the coordinate along the body, ang is the coordinate normal to
the body, and the subscript distinguishes between their variables and ours. In terms of
the streamwise variabl€, it can be shown that the slip velocityy, at the outer edge

of the boundary-layer due to the free-stream is

Us(€n) = (521—115)5 (5.2)
il
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The derivation of equation (5.2) will be given §5.3.

In order to obtain the corresponding form{@f(¢) to use in the governing equations
defined in chapter 2, we need to find the relationghip £ (£ ). From equation (2.33) we
know ¢ = £(x) wherex is the distance measured along the body from the leading edge
hence we can find the relationskiip= £(¢y) by

¢ / o & / dx / /
- / Uy(a')da! = / Us(€h) o )i (5.3)

b (e )
dn ((d@) (i) ) ’ 64

is evaluated on the surface of the parabd¥a=€ ny = 0). The coordinateéry, yy) are

where

Cartesian coordinates related to the parabolic coorditgtes

xH+in:% ((§H+ie3nH+iSé)2+S> , (5.5)
andny is measured normal to the body witlh; = 0 corresponding to the parabola’s
surface. So far we have us@dandrny interchangeably, but we shall see later that there
is no problem doing this, as they are the same to leading.ortiess the relation between
the ¢ variable used by Hammerton and Kerschen (1996) and thepmethe present
study is¢ = £% /2. Using this transformation, the slip velocity due to thesfigream, the

mean pressure gradiemt,{), and the functiorf2(¢) are given by

(202 8 N B
Ur(€) = En p&) = %15 nd Q) =26+ 5. (5.6)

Similarly it is found that to leading orde¥ = 7y, as

dy g\ dyu \° :
— =) + (- = (€4 4+ 9)7 + O(Pny),

wherey is the non-dimensional normal coordinate of the Navielk&soequation intro-

duced in (2.6) and

6_3@
(& +9)
Under this change of variables, it has been shown by Nicl2818Y) that both the steady

N =gy = =ng+0 (6377%1) where € = Re ! <« 1.

equation (2.32) and the LUBLE (2.37) are identical to thosenébby Hammerton and
Kerschen (1996).
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If we consider the form of the inviscid slip velocity &s— oo, we find

S 352

+0 (7). (5.7)

Thus when we compare this with (2.41), we see that —S/4. We can now use this to
determine the large asymptotic form of the solution in the leading edge regiom also

obtain the governing equation in the Orr-Sommerfeld region

5.1.1 Leading edge asymptotic solution

In the leading edge region, (2.59) gives the asymptotic fofrthe steady solution for

flow past a parabola as

P&, N) ~ f(N) + 0300575? In(¢) + (D (Nf' = f) + E(N)) % +0(E7), (5.8)

where the constari? can be calculated by comparison with the numerical soltichols,
2001), and is found to b® =~ 0.0263 for the case5 = 0.01. We can remove the depen-
dency on the valué from the steady flow equation (2.34), and hence the abovdiequa
by introducing the new variablg = 2¢/S. With respect tcf, the asymptotic form of the

steady solution becomes

~

d1(E,N) ~ f +0.60115(N f' — f)lnéf) + BN S 5_ N+E +OE), (5.9)

where

2E(N)
.

Nichols (2001) calculates the value Bf ~ 2.075, which agrees with the approximate

2D )
By =~ +0.601151n (g) , and E(N)= (5.10)

value B; =~ 2.08 given by Hammerton and Kerschen (1996). The conveniencki®f t
formulation is now apparent, because the constanan now be calculated for different
values ofS, without the need for the numerical solution of the steady #gquation (2.34)
to be calculated each time.
In the new variableg, both the steady slip velocity/;, and the mean pressure gradi-
ent,3, become
. &2 ; 1

U (€) = _ and S
(&) ENL and  ((&) Y.
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which have been plotted in figure 5.2. Note from figure 5.2(a} the pressure gradient
is everywhere positive along the body, hence we say thatigshasfavourable pressure
gradient, as it helps to keep the boundary-layer attach#étktbody. A negative pressure
gradient is said to be adverse, and this then encouragestimeléry-layer to become

detached from the body, and we get boundary-layer separatio

~ ~

Figure 5.2: Plot of (aJ/;(¢) and (b)3(&) for a parabolic body.

Equations (2.74) and (2.75) give

7 o= —0.9621 — 1.98785i, (5.11)
7€) = % (% _ 0.300575S$ + (1.351155 — D)%) , (512

which are precisely the solutions given by Hammerton and&tern (1996) whegis re-
placed by¢? /2 in (5.12). Equation (5.12) gives the asymptotic evolutibthe wavenum-

ber for this flow over a parabola.

5.1.2 Upstream boundary conditions to the PSE

Equations (5.11) and (5.12) along with (2.129) producenit&l conditions for the PSE.

The initial value of the wavenumber for the lowest order LRt eigenmode is given by

_ Ryin(20)7
Re U]

a (5.13)

(1 ~ 0.3005755 &) (0755 — D)) ,

§ §
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and the initial mode shape given by (2.70) and (2.87) is fdunthe composite solution

of
([ on (77 JM0 (Mo—DT) Ai(2)dDT B !
S (UO [ Ai(z)dd > N =0({2),
olen, N) = ¢ & (@) +5E) N =0(1), (5.14)
7 (260 + 5 exp (——63“5(1”)@) N =O(e 3¢,
\ UgH(o)p

where for the parabola

1 S
M = (26)3 <1 + 4—£> N, (5.15)
&) = 1+ 0.3005755@ + (D — %) % (5.16)

Hence for giver, S and starting positiog,, we can march downstream via the PSE to

calculate the growth rate of the T-S wave as a functiof afd hence:.

5.2 Results for the parabola

In this section we consider the matching region. How doestise radius affect this
region? Does the region remain well-definedamries. We also look at how the non-
zero pressure gradient on the body affects the positioneoh#utral stability point and
we again calculate the T-S wave amplitude at this point.

In figure 5.3 we show how a non-zero nose radius affects themat region we
found in chapter 4 for a flat plate, using the local PSE andehdihg edge asymptotics
(see figure 4.10 for flat plate cas€,= 0). Just as for the flat plate, we see that the
e = 0.05 case, in figure 5.3(a), has a clearly defined matching regomdth values
of S considered. We were unable to extrapolate the solution bagkrd the leading
edge quite as far as for the flat plate, however the appeaddrbis overlap region from
& = 2¢2¢/UF =~ 0.075 is very satisfactory. Not being able to extrapolate sohsio
as close to the leading edge as we did for the flat plate may jpected, because the
favourable pressure gradient acts so to shift the whole thiroamte curve downstream by

an amount proportional to a function 6f which will be discussed later. Figure 5.3(b)

shows the same as in figure 5.3(a), except with(.1. In this case we see that we cannot
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Figure 5.3: Plot of the real part of the growth réteas a function of downstream distance,
calculated by leading edge receptivity analysis and |lo&# Fheory, forS = 0.1 and
S = 0.2 for the cases (&) = 0.05 and (b)e = 0.1. See figure 4.10 for th& = 0 case.

solve the local PSE right back to the leading edge receptasymptotics, as we found
for the flat plate case, hence we will again patch the two cusegethat we can extract
amplitude calculations.

The shift in the real part of the growth rate curve due to tlieltal number is shown
in figure 5.4 which plotsRe(G) for e = 0.05 and.S = 0,0.15 and0.3. From figure 5.4
we note that the&s = 0.15 curve always lies to the right of the = 0 curve and similarly
the S = 0.3 curve lies to the right of both curves.

Table 5.1 and figure 5.5 show the variation in the positiorheflower branch neutral
stability point as a function of. The neutral stability point was calculated both in terms
of the scaled variablé1 and the variablet;, = 2¢%z/Uj?, which is the scaled variable
along the body which does not contain any geometry effectsalFthree cases we see an
increase in the position of both forms of the neutral stgbpiint due to the favourable
pressure gradient. We also note that this increase appeaesaimost linear ity, but this
is possibly due to the small range $fchosen rather than a linear relation actually being
the case. We decided against checking this relation by asang S further, because

S = 0.2 is a typical Strouhal number for an airfoil (Hammerton andd¢hen, 1996),
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Figure 5.4: Plot of the growth rat&e(G), fore = 0.5 for S = 0 (solid line),0.15 (dashed
line) and0.3 (dotted line), showing the downstream shift in the curveS asreases.

&1 &1 &1 T Ty T

S e=005 €e=01 €=02]e=005 ¢€=01 e¢=0.2

0.0 3.402 3.946 6.359 3.402 3.946 6.359
0.025 3.406 3.962 6.432 3.408 3.968 6.454
0.05 3.410 3.977 6.492 3.413 3.988 6.533
0.1 3.417 4.003 6.601 3.423 4.024 6.676
0.15 3.424 4.028 6.706 3.432 4.058 6.813
0.2 3.430 4.052 6.809 3.441 4,090 6.947
0.25 3.437 4,074 6.906 3.450 4,121 7.074
0.3 3.443 4,096 6.994 3.459 4,151 7.191

Table 5.1: Neutral stability points for the parabala; 0.05,0.1 and0.2 for varioussS.

henceS > 0.3 gives nose radii which are not typical of airfoils. Howevhistdoes

suggest that in the vicinity of the neutral stability poitite form of the neutral stability

point is

Eins = &g + Sf(e),



5.2 Results for the parabola 138

345 F Xy 4 415 F -
344 F B 41t

343 | 4 405 | El 4

341} 1 395 b~

. . . . . L . . . L
0 0.05 01 015 02 025 03 b o 0.05 0.1 0.15 0.2 0.25 03
a S S
T

. . . . .
(C) 0 005 01 015 g 02 025 03

Figure 5.5: Plot of the neutral stability point on a parakasaa function of5 for both¢,
andz, for (a)e = 0.05, (b) e = 0.1 and (c)e = 0.2.

whereclFs is the neutral stability point for the flat plate case, dif is a function which

solely depends oa

S [Cy | x 1070 Cy] || x 10
0.0 1.105 0.9662 1.068
0.025 0.6010 0.98 0.5890
0.05 0.3401 0.95 0.3231
0.1 0.1104 0.78 0.08611
0.15 0.03630 0.57 0.02069
0.2 0.01206 0.37 0.004463
0.25 0.004040 0.19 0.0007676
0.3 0.001365 0.10 0.0001365

Table 5.2: Eigenfunction|C; '4!|, and T-S mode|!|, amplitudes on a parabola at
lower branch for varyings with e = 0.05. The values of the receptivity coefficien, |
are taken from Nichols (2001).
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S [C1 g x 10" |Cy| || x 10%°
0.0 1.728 0.9662 1.670
0.025 1.247 0.98 1.222
0.05 0.9120 0.95 0.8664
0.1 0.4893 0.78 0.3817
0.15 0.2698 0.57 0.1538
0.2 0.1434 0.37 0.05528
0.25 0.08705 0.19 0.01654
0.3 0.05042 0.10 0.005042

Table 5.3: Eigenfunction(; '+/!|, and T-S modej!|, amplitudes on a parabola at lower
branch for varyingS with e = 0.1. The values of the receptivity coefficient;, | are taken
from Nichols (2001).

S [Cy '] x 101 |Gy [aby] x 10
0.0 1.989 0.9662 1.922
0.025 1.805 0.98 1.769
0.05 1.636 0.95 1.545
0.1 1.337 0.78 1.043
0.15 1.057 0.57 0.6023
0.2 0.8062 0.37 0.2983
0.25 0.6382 0.19 0.1213
0.3 0.4940 0.10 0.04940

Table 5.4: Eigenfunction(; '+/!|, and T-S modej)!|, amplitudes on a parabola at lower
branch for varyingS with e = 0.2. The values of the receptivity coefficient;, | are taken
from Nichols (2001).

As for the flat plate case, we choose to calculate the amplitdithe T-S wave

éNs

)

G(m)dw)

Wﬂ = Cl¢LR(£LE) exp (

397
at the neutral stability point. Tables 5.2, 5.3 and 5.4 alwiitly figure 5.6 show how
the amplitude of the unstable eigenmode varies as a funofioh In figure 5.6, we see
that for all three cases the amplitude of the eigenmode atridananch decreases &s
increases. Although the amplitude of the eigenmode itg€|f' v, |, decays, we see that
when we include the effect of the receptivity coefficiefit, the overall amplitude of the

T-S mode /1|, decays faster.

The reason why we included the valde= 0.025 in these calculations is because



5.3 Free-stream disturbances at an incident angle 140

1e-120 T T T T T le-17

1121 Amplitude

le-18 |

Amplitude

le122 |

Eigenmode

etz Eigenmode |

T-S Mode .|

le-124 |

T-$ Modé™_

1e-125 L L L L L ] . A A A A A
a 0 005 01 015 02 025 03 b 0 0.05 01 0.5 02 0.25 03
S S
T T

0.001

Amplitude [~

leip Eigenmode ]

T-S Mode ™.

L L L L L
(C) 0 0.05 01 § 015 0.2 0.25 03

Figure 5.6: Plot on a log scale for the eigensolutiri, *+!|, and the T-S modey!|,
amplitudes on a parabola at lower branch, as a functighfof (a)e = 0.05, (b)e = 0.1
and (c)e = 0.2.

Hammerton and Kerschen (1996) showed that at 0.025, the receptivity coefficient
|C| rises from the flat plate value. However, even though theptedty coefficient
increases, the decay in the eigenmode was great enoughéhat3 mode amplitude

decreased from the flat plate value = 0.025, at least for the values efchosen.

5.3 Free-stream disturbances at an incident angle

Up to this point we have only considered a free-stream amowsive traveling at a zero
incidence angle with the chord of the body. We now consideatwlappens if we have a
free-stream acoustic wave interacting at an addtethe chord of the airfoil as shown in

figure 5.7.
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Figure 5.7: Sketch of a thin symmetric airfoil of chord lem@b and nose radius, in a
uniform stream[/,, at zero angle of attack with a plane wave incident at an athgpe
the downstream direction of the airfoil chord.

Having the acoustic wave at a non-zero angle of inciden@xtsfithe flow solution
around the parabola directly through the receptivity coedfitC';, see appendix E. Ham-
merton and Kerschen (1996) discuss how this incident arftgeta the receptivity co-
efficient for the two particular cases of very small Mach nensh and the case when
the acoustic wavelength is long compared to the hydrodyn#enigth scalel/, /w, but
shorter than the airfoil itself. These two cases can be destin terms of the reduced
acoustic frequency = wb/c, wherec is the speed of sound in the undisturbed fluid, as
k < 1 andk > 1 respectively. As the amplitude of the T-S wave is just thepsweity
coefficient multiplied by the amplitude of the eigenmodes thsults for the receptivity
coefficient are analogous to the results for the T-S wave itudel at lower branch. Hence

we briefly describe the results here.
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Figure 5.8: Variation ofC| with the acoustic incident angkg for £ < 1 and with a
non-dimensional airfoil chord lengih= 10, for S = 0 andS = 0.2.

5.3.1 Small Mach numbers < 1)

In equation (E.6), we show that the receptivity coeffici€rit, can be decomposed into a

symmetric,C, and an antisymmetric;,,, part as follows,
C1(S,0) = ks(0)C5(S) + ko (0)CL(9),

where the symmetric coefficient,(#), and the antisymmetric coefficient, (6), are cal-
culated in appendix E.

For the case of very small Mach numbérs< 1, figure 5.8 shows the variation of
|Cy| as a function of acoustic incident andglewhere the value of = 10 was chosen,
to coincide with a typical value for an airfoil. For the caSe= 0, which corresponds
to a flat plate, we see that the receptivity is dominated byathtesymmetric part, and
the curve resembles that of thia(0) curve, except neat = 0 andr, where the flow

is dominated by the symmetric part. The valdées- 0.2, a = 10 correspond to typical
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airfoil values, and for these values we see that the antisgtnerpart still dominates, but
not as much. This is due to the fact that@asicreases, the value ¢f's| decreases more
than the value ofC,| (Hammerton and Kerschen, 1996). The peak receptivity Vialue
S = 0.2 is approximately one fifth of that for the flat plate.

As the amplitude of the T-S wave is directly proportionallie value of C; |, we note
that the amplitude at lower branch has its maximum valueratéu= +r /2, and has its
minimum value close té = 0. The angle has a strong physical effect on the amplitude

of the T-S wave at the lower branch neutral stability point.

5.3.2 Case wherdé: > 1
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Figure 5.9: Variation ofC;| with the acoustic incident anglg for £ > 1 and with a
Mach numbeV/,, = 0.1, for S = 0 and.S = 0.2.

For the casé > 1, the variation of C | as a function of for a Mach number of.1
is shown in figure 5.9 (The large case is very different from the cage< 1 already

considered in figure 5.8). The = 0 case is dominated by the antisymmetric part of the
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flow, and the curve resembles that of #ie (g) graph, except neat = 0, where the
symmetric part dominates. As for the cdse 1, the overall receptivity folS = 0.2 is
reduced, but again the symmetric component is becoming imgrertant. We note that
this effect means that the amplitude of the T-S mode at lowaerdh reaches its maximum
value at approximately = +m, hence we again see that the valug @lan have a huge
influence on the value of the T-S wave amplitude.

The main reason for considering the free-stream distudan@n incident angle is
because in experiments, the results are sometimes comti@aiby waves reflecting from
the walls of the wind tunnel, and interfering with the aitforhus the results from this
section can be used by experimentalists to see how much dfeant these stray distur-

bances have on their measured results.

5.4 Summary

As for the flat plate, the numerical solution to the local P8&vgs that a matching region
exists between the leading edge, and Orr-Sommerfeld regfon sufficiently smalk.
Thus we can use the PSE as we did for the flat plate, to calcTH&tevave amplitudes at
the lower branch point.

The parabolic body has a monotonically decreasing, fal@rpressure gradient
along its surface, and this moves the neutral stability pdawnstream of its flat plate
value, with increasing Strouhal number, in line with experntal observations. The
favourable pressure gradient also produces a decreasdhirthi® eigenmode and T-S
wave amplitudes at the lower branch point, as the Strouhabeu increases, when com-
pared to the flat plate value. This is consistent with expenital observations, and the
numerical work of Haddad and Corke (1998).

The effect of the disturbance wave’s incident angleis also considered to try and
answer contamination observations in wind tunnel expertsmiéVhen the acoustic wave-
length is long compared to the hydrodynamic length scalea@fwil chord, the T-S waves
display maximum amplitudes wheéh~ +7. However, when the acoustic wavelength is

long compared the the hydrodynamic length scale but shibra@rthe length of the airfoil
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itself, the T-S wave has its maximum whér: +.
Although the parabola satisfies the condition that the awgislip velocityU; — 1
far downstream, it actually has an infinite thickness whihot realistic. Hence in the

next chapter we apply the same ideas from this chapter to aifab&dy.
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Chapter 6

Realistic experimental bodies - The

Rankine body

In the previous two chapters, we considered two simple bedygtries, the flat plate and
the parabola. The flat plate was useful because its geoneetaytd simple equations, and
we also had the advantage that we have asymptotic resutie @r-Sommerfeld region
(Goldstein, 1983), with which to check our PSE code. The fltepasymptotics also give
us insight into what happens as the T-S wave disturbancerge at the leading edge,
moves into the Orr-Sommerfeld region. Next we consideredralwlic body, which
had the advantage of being slightly more realistic, in titatad a non-zero thickness,
and the curved leading edge is more like that of a typicab#éirfHowever a parabola
isn't very widely used in experiments, because althougimitscid slip velocity tends
to a constant far downstream, the body there has an infinglkrthss. This makes wind
tunnel experiments difficult, as the body would increaséickiness and block the tunnel,
producing interactions between the flow and the wall of thedvtunnel. Thus there exists
very little experimental data with which to compare our ftssim the last section, and only
the numerics of Haddad and Corke (1998) give any meaninggigim. However, they do
not calculate the T-S wave amplitude at lower branch as wendiie previous section.
Most experimental and numerical studies on receptivitystability are carried out on

flat plates with an elliptical leading edge, whether thatteliipse stuck on to a flat plate
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(Saric and Rasmussen, 1992), or a specially machined Modsfigxr Ellipse (MSE)
(Saricet al, 1995). The geometry of a MSE is reasonably complicated,cdntaining
the slip velocity on the surface is difficult even before welddegin to use the methods
described in this thesis. However an approach which leads asbody which is more
like a MSE than a parabola, is to consider a line source in @umiflow, one of whose
streamlines has a shape known as a Rankine body. Althougm#hgses for a Rankine
body is not trivial, it's more straightforward than the M3#6,we use it as a stepping stone
to a further method described later.

We will show that the analysis for the Rankine body is depenhdrerone real dimen-
sionless parameter, which is directly related to the dimensional nose radiys, We
will then use this information to calculate results similakind to those we obtained for
the parabola. We then discuss how we could calculate singitadts for a MSE by using

slender body theory to calculate the inviscid slip velqdity.

6.1 The Rankine body

The formulation for the inviscid flow around a Rankine body wasdied by Nichols
(2001), and the formulation for the inviscid pressure geatand the slip velocity can be
found in appendix F.

We introduce the scaled variables= = /A, wherez = x. + iy, is a complex variable,
and the subscript denotes that these are the usual real Cartesian coordikatdsr this

change of variables, the slip velocity,, and pressure gradiert, can be written as

R sin? Ye sin (24, >
Us(9c) = (1+ yg ) _ ;y)) : (6.1)
) 25 dj. (sin(29.) sin*(g.)  cos(2.)
. s 5 I — N , 6.2
Bl U} dx ( 92 5 Je (6:2)

where¢ is defined by (F.17), and is a curvilinear coordinate measured parallel to the
body from the leading edge.

The plots ofU,(£) and3(¢) are shown in figure 6.1 and these hold for.&llWe see
that the slip velocity reaches a maximunigf,,., = 1.260, and this occurs a}. = 2.043
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Figure 6.1: Plot of (a}/;(¢) and (b)3(¢) for a Rankine bodly.

which correspond tg = 2.873. This leads to the pressure gradi@(é) starting off
favourable foré < 2.873, but becoming adverse, and slowly tending to zero far down-
stream. The minimum value for the pressure gradiept,js = —0.2434 and occurs at

§. = 2.614, which corresponds to= 7.130. The position of the neutral stability point on

a body depends on the pressure gradient along the body, and because the favourable
pressure gradient on the parabola moves the neutral sfgimint downstream of the po-
sition for a zero pressure gradient, we expect an adverssyme gradient to move it

upstream of the position for a zero pressure gradient.

6.1.1 Large¢ asymptotics, in the leading edge receptivity region, for

a Rankine body

To be able to construct all the leading edge asymptotics dtated in chapter 2, we
first need to find the large asymptotic form ofUs(x). To do this, we first note that as

r — oo, y. — Aw. Hence to construct the asymptotics for the Rankine body, we
introduce the new variable = An — y., and find the solution abowt= 0. In this new

variable, the asymptotic form of the slip velocity;, anddz/dy. are

2 2 3 2 4
p p (3—27") p (6—7%) p
Uf ~ 14—
' T e R B e R R T
dz Ar w2 (15 + 272) p? 4,
~ T2 T3 T 3AP T T 300 A2 anAs O(p*). 6.4
dye p? * 3 3Ap + 300 A2 45A3p +O(p") (6.4)

+0(p°), (6.3)
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Hence we can integrate (6.4) with respecyt@nd get

Al 1 1 5, (15+427%) p? 1

a0 i o 4 5
T T TP agp oor Az T ah TOW) (6.5)
Inverting (6.5) to findp in terms ofz gives
A’r A 4
p~—= 313 + O('T )) (6.6)
which on insertion into (6.3) gives
A A2 o A 4
Uf(iL‘)N1+;+E+(1—7T)E+O<$ ) (67)

From equation (2.33) we can then write the lagggsymptotic form of as

&(x) ~z+ Aln(z) — A—2 B ki B

T 2 2

+0(z7?), (6.8)
hence comparing (6.7) with (2.41) we note that for a Rankirgybo
a=A and =A%

Using these in comparison with (2.45) and (2.46), we canewthie large asymptotic
form for 5(£) and2(¢) as

) ~ —22 4L o)), 6.9)

3 &
Q) ~ 26—4A— 4A2% - 2%2 +O(672In*(¢)). (6.10)

From (2.59) we can now see that the asymptotic form of thelgtbaw past a Rankine
body is

1€ N) ~ f — 1L2023A(Nf' — f)h%f L DVF - g) + B(N)

where the constan® is given by Nichols (2001) in terms of as

+O(E71%7) | (6.11)

D = A(—4.71125 4+ 1.2023In(A)). (6.12)

The corresponding forms of (5.11) and (5.12) for the Rankodybfrom (2.74) and (2.75)

respectively are

7 = —0.6921 + 7.95084 i, (6.13)

T, = _ M) (1 + 1.2023/1% ~

U 2 (5.4046A + D) %) + O(£70%7). (6.14)
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From (2.129) the initial form of the wavenumber for the PSHe®

ap = %m%@é (1 - 1.2023A1“T§ — (3A+ D) %) (6.15)
and again the initial mode shape is given by the compositéieal of
[ g (T N=0(EH)
b60, N) = { & ((260)27() + 5E) N =0(1), (6.16)
| (et ) or (5200 ) wooen
where for the Rankine body
M = (2€): (1 - ?) N, (6.17)
¢ = 1- 1.202314@ + (D +34) % (6.18)

6.1.2 Stability results for a Rankine body

In this section we shall compare results for the positiorheflower branch neutral sta-
bility point on a Rankine body, along with T-S wave amplitudécalations at the lower

branch point.

Position of the neutral stability point

In chapter 5, we compared the position of the neutral stalgbint, for a parabolic body
in terms ofé, = 2¢2¢/U2 andz;, = 2€%z/UP, and also the eigenmode amplitudes at
lower branch for a range of values 6t In this section, we will do similar calculations
for a range of values ofl.

Tables 6.1 and 6.2 together with figure 6.2 show how the posdf the lower branch
neutral stability point varies with increasing, for e = 0.05, 0.1 and0.2. The adverse
pressure gradient along the Rankine body forces the netatzlity point to move up-
stream as! increases, in contrast to the parabola, where the favaipmbksure gradient
moves it downstream. Also we note that, @micreases, the percentage change in the
position of the lower branch point f@g, at A = 0.7 compared tod = 0.0 increases from

1.5% for e = 0.05, to 4.5% for e = 0.1, to 14% for e = 0.2.
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A & T

0.0 3.402 3.402
0.005 3.398 3.397
0.01 3.395 3.393
0.015 3.391 3.388
0.02 3.388 3.384
0.025 3.385 3.381
0.0275 3.384 3.379
0.033 3.380 3.374
0.04 3.376 3.370
0.05 3.370 3.362
0.055 3.367 3.359
0.06 3.364 3.355
0.067 3.360 3.350
0.07 3.358 3.348

Table 6.1: Neutral stability points for the Rankine body,det 0.05 for variousA.

&1 &1 T T
A e=01 e=02|e=01 €=0.2
0.0 3.946 6.359| 3.946 6.359
0.005 3.932 6.297| 3.928 6.284
0.01 3.918 6.237| 3.911 6.214
0.015 3.906 6.179 3.897 6.147
0.02 3.893 6.126| 3.881 6.085
0.025 3.881 6.072| 3.867 6.023
0.03 3.870 6.017| 3.853 5.961
0.04 3.846 5.905| 3.825 5.834
0.05 3.823 5.788| 3.798 5.704
0.055 3.811 5.735| 3.783 5.645
0.06 3.800 5.680| 3.770 5.584
0.07 3.777 5.565| 3.748 5.475

Table 6.2: Neutral stability points for the Rankine body, fo= 0.1 ande = 0.2 for
variousA.

Comparison of favourable and adverse pressure gradients

Before we go on to calculate T-S wave amplitudes at the lowaardir point, we first make
a comparison of how the position of the neutral stabilitynpds affected by a favourable
or adverse pressure gradient.

For thee = 0.05 case in table 6.1, we note that we have included the valugs-of
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Figure 6.2: Plot of the neutral stability point for the Rarkimody, as a function of for
both&; andz; for (a)e = 0.05, (b) e = 0.1 and (c)e = 0.2.

A:S &1 T &1 T

parabola parabola  Rankine body Rankine Body
0.033:0.05 3.410 3.413 3.380 3.374
0.067:0.1 3.417 3.423 3.360 3.350
A:S &1 — &ins| |21 — Zavs] 1§ — &ins] |T1 — Zins|

parabola parabola  Rankine body Rankine body
0.033: 0.05 0.008 0.011 0.022 0.028
0.067:0.1 0.015 0.021 0.042 0.052

Table 6.3: Table showing the position of the neutral stgbjioints, &, andz;, for the
parabola and Rankine body for= 0.05 (top two rows), and their relative shift from the
flat plate valu&; ys = T1y5 = 3.402 (bottom two rows).

0.033 and0.067. We considered these values, because by using (6.23) &4),(&e see
that these correspond to the Strouhal number vadues).05 and0.1 respectively. Table

6.3 shows the position of the lower branch neutral staljadint for both the parabola and
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the Rankine body, when= 0.05, along with the size difference between these values and
the position of the neutral stability point on a flat plate£ S = 0). We see that although
the neutral stability points are moving in opposite direcsi, the relative change in tije
position for the Rankine body is abo28 times that of the parabola, and thie change

is about2.5 times that of the parabola. The absolute value of the preggadients, for

the parabola at these neutral stability points.fsx 10~ for S = 0.05 and3.3 x 10~ for

S = 0.1. These values are about times smaller than the corresponding values on the
Rankine body, which aré.4 x 10~* for A = 0.033 and9.0 x 10~* for A = 0.067. This
suggests that at least for these bodies an adverse presadreng is more significant on
the position of the neutral stability point than a favoueatwhe, although it is unclear how

much difference the size of the pressure gradient at thealetiability point makes.

T-S wave amplitudes at lower branch

The position of the neutral stability point affects the aitypple of the eigenmode, by
changing the value of the integral of the growth ré@fe:). The favourable pressure gradi-
ent on the parabola moved the neutral stability point dowash, thus making the integral
of the growth rate&7(z) more negative, hence decreasing the amplitude of the eiggam
Consequently, we expect the adverse pressure gradient &atiiene body to make the
integral of G(z) less negative, hence increasing the amplitude of the eigdarasA in-
creases. By considering tables 6.4, 6.5, 6.6 and figure 6.3g@ehat this is in fact the
case.

Tables 6.4, 6.5 and 6.6 show the amplitudes of tHeeigenmode |C; ‘4| at the
lower branch neutral stability point fer= 0.05, 0.1 and0.2, along with the amplitude of

the T-S modej!|, where

[r] =

Crbn(Eee) esp ( / o G(x)dx)

ELE

The value of the receptivity coefficient;|, for the Rankine body tends to zero much

faster than for the parabola (Nichols, 2001). We can seeiftine consider the values
S = 0.05 and0.1 which correspond tel = 0.033 and0.067. For S = 0.05 the value of
|C| for the parabola (se5.2) is0.95 and the corresponding value for the Rankine body
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A Oy 1] x 1070 |Cy| [wi] x 10!
0.0 1.105 0.9662 1.068
0.005 1.632 0.82 1.338
0.01 2.658 0.61 1.621
0.015 4.341 0.40 1.736
0.02 7.071 0.22 1.556
0.025 11.64 0.12 1.397
0.0275 14.95 0.11 1.644
0.033 24.27 0.13 3.156
0.04 46.24 0.12 5.552
0.05 130.5 0.08 10.44
0.055 215.6 0.06 12.94
0.06 340.9 0.04 13.64
0.067 958.7 0.01 9.587
0.07 993.2 0.01 9.932

Table 6.4: Eigenfunction amplitudes at lower branch for Rankine body, for varying
A with ¢ = 0.05. The values of the receptivity coefficient;,| are taken from Nichols
(2001).

A (T x 10% |G| v x 10
0.0 1.728 0.9662 1.670
0.005 2.082 0.82 1.707
0.01 2.768 0.61 1.689
0.015 3.678 0.40 1.471
0.02 4.906 0.22 1.079
0.025 6.559 0.12 0.7870
0.03 8.825 0.11 0.9707
0.04 17.97 0.12 2.156
0.05 34.70 0.08 2.770
0.055 48.33 0.06 2.900
0.06 66.91 0.04 2.677
0.07 130.7 0.01 1.307

Table 6.5: Eigenfunction amplitudes at lower branch for Rankine body, for varying
A with e = 0.1. The values of the receptivity coefficient’;| are taken from Nichols
(2001).
is 0.13. Similarly for .S = 0.1, the receptivity coefficient for the parabolalig8 and for
the Rankine body it'9.01.

The amplitude of the T-S mode for the Rankine body is much nmdezesting than for
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A |G x 100 |Gy ]
0.0 1.989 0.9662 1.922
0.005 2.085 0.82 1.710
0.01 2.234 0.61 1.363
0.015 2411 0.40  0.9645
0.02 2.610 0.22 0.5743
0.025 2.801 0.12 0.3361
0.03 3.095 0.11 0.3404
0.04 3.687 0.12 0.4414
0.05 4.336 0.08  0.3469
0.055 4.715 0.06  0.2829
0.06 5.077 0.04 0.2031
0.07 5.963 0.01 0.05963

Table 6.6: Eigenfunction amplitudes at lower branch for Raakine body, for varying
A with e = 0.2. The values of the receptivity coefficient;;| are taken from Nichols
(2001).

the parabola, because there is a conflict between the imogesigenmode amplitude, als
increases, and a decrease in the receptivity coefficiemrdsulting T-S mode amplitudes
can be seen in figure 6.3. While the eigenmode amplitudes afipka straight lines, the
T-S mode amplitude has a double maximum as a functioA.oFor the case = 0.05

in figure 6.3(a), this double maximum is very clear, with rmaaiaroundA = 0.015
and A = 0.055, with the second being almost a factor of larger than the first. The
casec = 0.1 has a slightly different appearance, because the incrédbe eigenmode
amplitude is less than the= 0.05 case, while the values of the receptivity coefficients
remain unchanged. Hence in this case the first maximum of t8emibde amplitude
appears to occur closer tb = 0 and in fact the amplitude appears to be almost constant
betweend = 0 andA = 0.015. We still get another maximum arountd= 0.05, but the
relative increase in this maximum compared to the first omaush smaller than for the

e = 0.05 case, and is only a factor @f8 times larger in this case. Figure 6.3(c) shows
the same graph again except this timedct 0.2, and we see a decay of the T-S mode
away fromA = 0, and the second maximum which occurs aroune- 0.04 has in fact

a lower magnitude than the onet= 0. So as increases the growth of the eigenmode

with respect tod decreases, and hence for the 0.05 case, we find the two maxima are
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Figure 6.3: Plot on a log scale for the eigensolutiri, *+!|, and the T-S modey!|,

amplitudes on a Rankine body at lower branch, as a functiof fafr (a) ¢ = 0.05, (b)

e =0.1and (c)e = 0.2.

larger than the flat plate value, whereasdoet 0.2, the first maximum now corresponds

to the flat plate value, and the second maximum has a value tbae the flat plate value.
In the next section we look at the physical properties of @#@pola and the Rankine

body, in an attempt to get a better idea of what results mayxpected for a MSE.

6.2 Comparison of experimental and numerical bodies

In this section, we discuss both the parabola and Rankine, loodypare their pressure
gradients and slip velocities, and where we can, compasetivith the MSE which is

used so much in experimental and numerical studies.
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6.2.1 Body geometry

The equation for the upper surface of the Rankine bady= z.(y.), was derived in
appendix F, and given by

Te= A —y.cot (yz) . (6.19)

The equations for the upper surface of the parabola and MSE y.(z.), are

ye = (28z.)2, (6.20)
ml 2
b(1— (=2)™)> =24 (% )
Lo et e () e
b T.>a

respectively, wheré is the Strouhal number defined in (5.1)is the semi-width of the
flat plate on which the MSE is drilled, andis the length of the elliptical part of the
nose, as shown in figure 6.4. The ratia b is known as the aspect ratio for the MSE,
and typical values used in experimental and numerical wedch as Saric and White
(1998) and Wanderley and Corke (2001) ape 1 or 40 : 1. For a regular elliptical nose
considered by Saric and Rasmussen (1982); 2 in (6.21).

Figure 6.4: Sketch of MSE to show the definitionsuadndb in (6.21).

To be able to compare these three bodies, we have to find dlsyt@rameter which
describes all three bodies. A suitable choice for this isitoudate the dimensionless nose

radius for each body. This is defined as

r(0) =r(x=0)= : (6.22)
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Calculating the nose radius for these three bodies we find

rp = S, (6.23)

rp = %, (6.24)
b2

rmMse = —, (6-25)

a

where the subscript8, R andM S E correspond to the parabola, Rankine body and MSE
respectively. Thus for a giveA it is straightforward to convert to a value 8f and vice
versa. However for the MSE, the situation is a little bit mooenplicated. For a Rankine
body and a MSE, we have two choices, we can either fix the naolsgsraf the Rankine
body, or we can fix the aspect ratio of the MSE. If we fix the n@skus of the Rankine
body, i.e. we stipulated, then the thickness of the body is automatically fixe@ atr

(b = Ar for the MSE), as noted in the previous section. Thus if we farmMSE with the
same nose radius as the Rankine body, with thickhessir, this leads to the value aof

being

B 2_b2 B 212 A
34 37
which fixes the aspect ration of the MSE2at/3.

a

(6.26)

On the other hand, if we start with a MSE of thicknésand if we fix the aspect ratio
to bea : b, then we find from comparing the nose radii of the MSE and thekRRarbody

that
2w

=3

A (6.27)

and hence the nose radius of the Rankine body is fixetP#@t3a).

When modeling a MSE using a Rankine body, it seems logical tarethat we make
the nose radii the same so that the leading edge receptatyts are the same, however
when we move downstream into the stability region, it woutdntoore appropriate to fix
the aspect ratio of the bodies, so that the far downstreamsfare similar. The parabola,
Rankine body and MSE with the same nose radius, for the dase 0.1, have been
plotted in figure 6.5. We see that the parabola increasesakniss as. increases and
it also always lies outside the MSE. The Rankine body on therdthnd tends to the flat

plate of the MSE from inside, and always lies inside the MSLsSIthe geometry of the
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Figure 6.5: The shapes near the nose of the parabola, therfearday and the Modified
Super Ellipse for the casé = 0.1.

MSE lies between the parabola and the Rankine body. Howesestalbility properties of
the bodies rely on the form of the pressure gradient, so ussidering the geometry of
the bodies won't give us an insight into the stability prdjger of the MSE.

As well as comparing the physical shape of the bodies, we smma@mpare the
curvature too. We define the curvature as

d>y.
dx2

A = (6.28)
(- 7)

The curvature as a function of, for the cased = 0.1, for these three bodies can be seen

in figure 6.6. We can see that the Rankine body’s curvaturegtsehnithan the parabola’s
up untilz. =~ 0.475 and then the parabola has the larger curvature. The MSE anthbe

hand has a curvature similar to that of the parabola up.te 0.1, then the MSE has a
region of constant curvature before decaying to zerq.at a, which in this case equals

272 /30.
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Figure 6.6: Plot of the curvature of the parabola, Rankine/lzodl the MSE, for the case
A = 0.1, as a function of..

We can prove that the parabola’s curvature tends to zeroeslthvan the Rankine
body’s, by looking at the large. form of the curvature. Using the same method and
variables as ig6.1.1, withp = Ar — y., we see that the smallasymptotic limit of the
Rankine body’s geometry is

Ar m 1, T
e 3P T 3al T s

P’ + O(p),

and thus inverting this, we find that to leading order

A’

Yo = Am — +O(z.?). (6.29)

xc
Therefore ass, — oo, the leading order curvature terms for the parabola and Ranki

body are

2A%1
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which when we use the fact that

3A
S =—
2 )
we find
34)3
RKp ~ ( 2 )
4xé
2A%
/{R ~ xg b

so clearly the Rankine body’s curvature tends to zero mudbrfésan the parabola’s.
Just by looking at the geometries and body curvature, itg ddficult to tell how the
receptivity disturbances will behave on the MSE. To get éebédea of this, we need to

consider the pressure gradients for the three bodies.

6.2.2 Slip velocity and pressure gradient

Although comparing the body geometries gives as an insigfot how the receptivity
disturbances will behave as they move downstream, the bgight into how they will
behave comes from comparing the slip velodity, and the pressure gradiept, Figure

6.7 shows a comparison of the slip velocity and pressurdematbr the parabola and the
Rankine body as a function af the coordinate along the body’s surface from the leading

edge, for the casd = 0.1.

14 T T T T T T 1

08

Rankine
,,,,,,, 06 |

Parabola| B

04t i

02f | &

Parabola

0.4 ‘ B 0 B
Rankine|
0.2 B 02 F B

04

. . . . . . o . . . . . .
(a) 0 1 2 3oy ¢ 5 6 7 (b) 0 1 2 3oy 4 5 6 7

Figure 6.7: Plot of (a)/;(x) and (b)3(z) for a Rankine body and a parabola fbr= 0.1.
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The maximum value of the slip velocity for the Rankine bodywscclose to where
the parabola’s slip velocity becomes constant. Similarly minimum ing occurs near
the point where the parabola’s pressure gradient turngplhand tends to zero. The
pressure gradient for the parabola tends to zero fasterfthahe Rankine body, which
perhaps is not as expected, as the curvature of the Rankiyadlass than the parabola
far downstream, see figure 6.6.

In a way similar to the treatment of the curvature of the twdibs, we can prove that
the pressure gradient for the parabola tends to zero fdstarthat of the Rankine body,
by using the large: asymptotic form ofj(x). From§6.1.1 we found that for the Rankine

bodya = A andy = A2, hence from (2.45), we can write the largéorm of 5z (&) as

Br(€) ~ —% - 4A2h§—f L O(EP ().

The corresponding largeform of 55 (&) for the parabola comes from (5.6) and is

S S? S3
Bp(&) ~ % ie + & +0(E™).

Hence using the fact that~ = as¢ — oo for both bodies, and that = 3A4/2, we see

that to leading order

2A
ﬁR = T
X

3A

br = 4

Thus both pressure gradients tend to zero like, however the pressure gradient on the
parabola will tend to zero faster than for the Rankine bodg wuthe smaller constant
multiplying thel/x term. These expressions also show the difference in sigifafthe
Rankine body and the parabola as shown in figure 6.7(b).

Calculating the slip velocity, and hence the pressure gnadiea MSE is a non-trivial
exercise, but is possible via a full numerical inviscid siation. However, we would like
to gain an analytic approximation to the slip velocity of tieem (2.41). A possible
method to calculate this would be to increase the numberwtss on the real axis, until
the streamline through the stagnation point resemblesabmgtry of the MSE. The next

section on slender body theory discusses how this is pessibl
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6.2.3 Slender body theory

Consider first the flow produced by a source, streryt’, at = = 7K and a sink,
strength2n K, atz = 27K in a uniform stream of unit strength. The complex potential,

w, for this flow is

w(z)=z+ Kn(z —7K) — KIn(z — 21 K), (6.30)

wherez = z + iy.

Figure 6.8: Plot of the streamlines for the complex potéf@a0) for the casds = 1.

The streamlines for this flow wheR = 1 are shown in figure 6.8. We can see that
this flow produces a closed streamline, which can be replagedsolid body, so the flow
can be thought of as the uniform flow of unit strength, padtitbdy. Slender body theory
extends this idea to put a continuous distribution of scaier® sinks on the real axis to
produce a streamline which matches, or in some cases, apyai@s, the surface of the

body we wish to model the flow around.
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Here we consider a symmetric body, of len@thwith the uniform flow at zero angle
of attack, although this theory can be extended to incotpama@ambered bodies and bodies
at non-zero attack angles.

Following Thwaites (1964), the complex potential for a Isaurce of strengtimdz,
atz =z =z +iy, IS

mox,

w(z) = 5 In(z — z1).

If we consider this line source to be gn = 0, and integrate over the continuous distrib-

ution of sources in the interval, € [0, 20|, we have

w(z)=Uz+ /2b m2(x1) In(z — 21)dzy, (6.31)
0 m

where thel/ z term is the complex potential for a uniform stream of strérigt and the
length of the body we wish to model . For the body formed to be closed, we also
require

/% m(xq)dzy = 0. (6.32)
0

However this does not have to hold if we consider bodies amtd the Rankine body
which tend to a flat plate downstream, but this is only relé¥anb — oo.

The velocity field produced by the presence of the body wiehthe form
u=(U+ux+ vy,

where(u, v) is the perturbed velocity in theandy directions respectively, which are unit
vectors in the horizontal and vertical directions respetyi On the body, inviscid theory
says that the velocity is tangential to the body’s surface, so the boundary candis

dy _dF v
dv|,_pgy dr U+u’

wherey = F(z) < 1is the equation for the upper surface of the body. For a stende
body we expect only small changes in the horizontal velpbignce we expeat < U,

hence
a_ v
de U’
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approximately. Using the fact that— iv = dw/dz, we can write this boundary condition

as

dw dF
Im|—|=-U—. 6.33
" (dz) de ( )

Differentiating (6.31) with respect togives

d 2 1
u—z’v:—w:U+/ m(z1) dxq,
dz 0

which on the introduction of = = + iy we find that the imaginary part gives

2b
v 1 / m(z1)y day.
o (

:g x—x1)2+y2

Evaluating this ory = F'(z) we find

1 [ mz)F dr
dr, = U—. 6.34
21 Jo (v —x1)% + F? “ de (6-34)

We split this integral up into three integrals, to carefutlyat the integrand around the

pointz, = z, giving

F(x) v m(zy) 2 m(xy)
27 (/0 <$—$1)2+F2dx1+/x+6 ($—9€1)2+F2d$1

z+0
m(xy) dr
d =U—
+/x5 (x —x1)% + F? xl) Udac7

where( < 4.

For F' < 1, the first two integrals are much smaller than the third, athéthird
integral, the integrand is very large near= z;, hence we can ignore the contribution
from the first two integrals. The third integral, under thgmximation that) is small

compared witl2b, butd > F(x), can be approximated using a Taylors series expansion

for m(z4),
dm
m(zy) = m(z) + (x1 — x) . + O((z1 — 2)%),
L1 r1=x
forz, € [x — 6,z + 9.
Hence to leading order we have
F(z)m(x) /””‘s dxy L AF
27 o (1 —2)24+F2 7 dx’
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which can be integrated to give

(o (1) (4) -

In the slender body limitf — 0 with ¢ fixed), we find

m(z) = 20 (6.35)

Thus given any slender body geometry, we can find the soustddition to approximate

the flow around this body in a uniform flow.

6.2.4 Approximating the MSE using Slender body theory

Using the analysis frorf6.2.3, we write the dimensional complex potential for thegn

cid flow past a MSE as

dF* o s
w* = Uyz" +—/ dml 2* — xy)dx],

wherey* = F*(x*) is the dimensional form of the equation for the MSE’s surfand
U, is the free-stream velocity. Introducing the non-dimenalguantityz = wz*/U,,
the dimensionless body geometify= wF*/U,,, and changing the integration variable

to r; = wx} /Uy, gives

Uz LU3 [*dF Uso
w'=—">=z+ — —_— (ln(z — 1) +1In (7)) dx;.

w T w Jo dry
We define the dimensionless complex potentiak ww* /U2, and use the fact that the

upper surface of the MSE in Cartesian coordinates is given. by F'(z.), where

bl—Mm% m:2+ﬂ2 T. < a
piay = PO (%) e
b To > a
wherea andb are defined ir$6.2.1, to simplify the complex potential to
dF
w=z+— / — In(z — x1)dx; + b In <%) . (6.37)
T )y dx; T w

As a complex potential is defined up to an arbitrary constdng,constant term from
(6.37) can be dropped without loss of generality. The upipat bf integration has been

changed from to a, becaus@F’/dx; = 0 for z; > a.
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The velocity field is calculated from (6.37), and is

d 1 [*dF 1
u—iv = d_w =1+ - — dz;. (6.38)

z T Jo dryz— 1

Due to the assumptions of slender body theory, (6.37) ar&B)@lo not give the exact
flow past the body. = F(z.). This can be seen by looking at the flow close to the nose,

where the slip velocity— oo (see§6.2.5).
Equations (6.37) and (6.38) can be integrated by parts teriem more convenient

to use, giving
. d’u} b 1 a F(Jfl)
— — _ = 1 = .
R Rt e ey el A ey e (6.39)
_ b ) 1/ (Te — 1) — 1Y b Us,
w o= 2o In((z. — a) + iy.) + - /0 F(xy) (e — )2 5 42 dzi + - In " .(6.40)

From (6.40) it is now straightforward to write down the vetggotential, ¢, and the

stream functiony, as

b 1 [ F(x)(z. — 1)
= 2.+ —In((z. — a)® + ¢ —/ dr,+ B, (6.41
¢ = we+g-((ze—a)’ +y2) + — A s v L (6.41)
b . ye [° F(x)
= Yo+ — . — ) — 2= day, 6.42
0 Yo+ —arg((zc — a) + iye) W/O TRl (6.42)

whereB = b/mIn (U /w) iS a constant.
Although we wish to calculate the flow around the MSE, theadiody shape formed
by the slender wing theory is not quite that of the MSE. We aanthis more clearly if

we consider the component of velocity given by (6.38),

Ye /a dF 1
v== —_—
T Jo dxy (e — 1) + 32

If we consider the limit ag, — oo, theny, — b, and

b ¢ dF 1 2$1 _4
~ - (= d
v WA d{[‘l (x2 + {L‘?’ + O(xc )> X1,

v 1

72
T X

dl'l.

+O(z.?).

c

Hence we see that only tends to0 asx. gets large, whereas on an MSkEwould be
identically zero on the flat plate part, and hence the slebddy approximation only
tends to a flat plate far downstream, whereas the MSE is gxaditht plate. Thus rather

than just assuming the body geometry is that of a MSE, we lzd&ethe body shape found
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by the theory. This is done by solving = C' where(C' is a constant, ang is given in
(6.42). The streamline corresponding to the surface oftldy s obtained by considering
the body far downstream, — oo, wheny. — b. From (6.42)3)c — b in this limit,
and hence the streamline corresponding to the upper swfabe body is given by the

solution of

Ye + éarg((xC —a)+iy.) — %/ P dry =b. (6.43)
T T Jo (x

c 131)2 + yz
Care must be taken with the choice of the argument functiors fkes the form

yc
(zc — a)

arg((z. — a) +iy.)) = tan™* ( ) for z.> a,

arg((z. —a) +1y.)) = 7r—tan‘1<| Ye ’) for z. < a.
Te—a

Equation (6.43) is not valid in the vicinity of the leadingged and in this region we

approximate the equation of the surface by a parabola ofttme f

22\ 2
yc—<—xc) |
a

The reason that (6.43) is not valid in the vicinity of the le@dedge, is because the
slender body assumption thét'/dx. < 1 is no longer correct. As we approach the
leading edge of a blunt body such as a MSE, the gradient otuttiace becomes infinite,
and hence violates this assumption. Figures 6.9 and 6.10 tleobreakdown of (6.43)
as the leading edge is approached, and they also show thhingabetween the leading
edge parabolic solution and the slender body solution. Rerstaller20 : 1, aspect
ratio in figure 6.9, we see a relatively small matching redietween the two solutions,
but as the aspect ratio increaseslto : 1 in figure 6.10 we see that the length of the
matching region, between the two solutions, increasess iEhilue to the slender body
theory becoming a better approximation to the MSE, becalms@gear aspect ratio means
that the body is more slender, i.e. the gradient of the sarfasmaller. This leading
edge region, and the breakdown of the slender body theoisgessed in more detail in
§6.2.5, when we consider the slip velocity and pressure gragiroduced by the slender

body theory.
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Figure 6.9: Plot of the matching between the leading edgatmdic solution (dotted line)
and the slender body solution (solid line) fora : 1 MSE. Figure (b) shows a more
detailed plot of figure (a).
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Figure 6.10: Plot of the matching between the leading edgabpdic solution (dotted
line) and the slender body solution (solid line) foi@ : 1 MSE. Figure (b) shows a
more detailed plot of figure (a).

A selection of body shapes for different aspect ratios ist@tbin figure 6.11, and in
figure 6.12 we see two different aspect ratios plotted withabrresponding MSE that
they are approximating. In both these figures, the leadirgg @sl approximated by a
parabolic body. We see that as the aspect ratio increagesietider body approximation
becomes much more accurate. This is because the highelt aspeaneans the body
is becoming more ’slender’ in the sense th#t/dz. is becoming much smaller. The

agreement between the MSE and the higher aspect ratio sleodsg theory can also be
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Figure 6.11: Plot of the approximations to the MSE for the¢hdifferent aspect ratios,
20:1,40:1and100 : 1.
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Figure 6.12: Plot of a comparison of the upper body surfacéi®MSE and the slender
body approximation to the MSE for the aspect ratio2(g) 1 and (b)100 : 1.

seenin figure 6.13, which shows a plot of the curvature fotwlmeaspect ratio0 : 1 and
100 : 1, where the curvature is defined by (6.28). We see that for tié: 1 aspect ratio,

the MSE and the slender body have good agreement up to thevguogne the curvature
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Figure 6.13: Plot of a the curvature comparing the slenddy hoeory (solid line) with
the MSE (dotted line) for the aspect ratios £8): 1 and (b)100 : 1.

starts to become constant, but then the slender body’s tcweveends to zero at a more
constant rate than the MSE. For th# : 1 MSE on the other hand, we observe very good

agreement between the MSE and the slender body, far. albnsidered.

6.2.5 Slip velocity and pressure gradient

The steady slip velocity/;, on a MSE is given by
Ur = (u? +v?)2, (6.44)

whereu andv are given by

oo (Rt [ R ),

Ye b “ F(x) (1 — we)
= £ 19 .
o= B 2 e
If we consider the complex form of the velocity (6.39) evaadhatr,. = 0,

u—iv=1- L l/ F(xl)dlj, (6.45)
0

ma ™

we find that for blunt bodies, i.e. for bodies where there iglisoontinuity in curvature at
the nose, we get infinite velocities at this point, and henee@ed a local solution about

the nose, which has to be matched to the slender body saltieMSE is a blunt body,
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and the smalk. expansion of (6.36) is

1 3 5 7 9
F(x.) ~ s12& + s3x? + ssxé + sqrxé + O(x2), (6.46)
where
9\ 2
Ly
a
b /22
§53 = —— [ =
3 da \a ) ’
T (2
% = 32a2 \a /) ’
a1 [2)\®
5= 128a3 \a /)

Local solution near the nose

For the local solution near the nose, we introduce scaledhias, scaled on the dimen-
sionless nose radius,= )55, given by (6.25). The local solution, to leading order, is
flow past a parabola as discussed in detail in chapter 5, sost/pliesent the results here.

The variablesZ, in the nose region are related to the slender body variahley
2= (24 1),
2
and the complex potential;, in the vicinity of the nose is
1 92
w = §U7"(Z — 1),

where the surface of the body is given by.(Z) = 1 andU is a constant. Thus we can
write the slip velocity in terms af. = Re(z) as

1
Uux?

Uy — 2%
T e+ 1)t

(6.47)

This solution is then matched with the slender body soluf@89) to give

% 1 [ 2\2 1) 1
U:l—i-f—s\/ b——/ (F—b(—) xf) —dry, (6.48)
m™a mT™a T 0 a ﬂfl

From (6.44) it is straightforward to plot the slip velocity a function ofz.., however

in previous chapters, we plotted the slip velocities witbpect tog which is defined in
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(2.33). To make the calculation gf more straightforward, we change the variable of

integration fromz to x., wherez is measured along the body. Hence we have

Ze 2 %
5:/0 Up(z.) <1+ (Zi) ) dz.. (6.49)

In the local leading edge region, we figd= Uz., whereU is given by (6.48). Else-

where we evaluate the integral by means of the trapezoitialFigure 6.14(a) shows the
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Figure 6.14: Plot of the slip velocity on (a)28 : 1 MSE and (b) al00 : 1 MSE as a
function ofz.., showing the matching region between the leading edgendgalid line)
and the slender body theory (dotted line).
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matching region between the slender body theory, and th#isolin the nose region for
a20 : 1 MSE. The overlap region is very hard to see, due to the ch@sge value of
e = (90 x 10‘6)%. This value is the same as that used in figure 6.15, and is olsuse
that results can be easily compared with those of WandendyCarke (2001). The size
of this over lap region increases as the aspect ration of t8& Mcreases, and this can
be seen in figure 6.14(b) which shows the two slip velociteesafl00 : 1 MSE. For the
100 : 1 MSE, the overlap region is hard to see because the two sotusie close to each
other over the whole region considered, however it is cleian for the20 : 1 MSE.
Figure 6.15 shows a plot of the slip velocity from the slenolaily theory approxima-
tion of the MSE for different aspect ratios, as a functiorg éér the case® = 90 x 107°.
The constant only affects the unsteady solution, whereas the steadyicohs indepen-
dent ofe, however the value of enters the streamwise length scgl@nd hence we have
to consider it in the steady solution too. The slip velocitynade up of the two solutions,
given by (6.44) in the main region, and (6.47) close to theen&gyure 6.15(a) shows the
slip velocity, as it rises fron® at¢{ = 0, however on this scale, we see very little detail
of the curves outside the nose region, as their maximumscanelly quite small. Thus
figure 6.15(b) shows a close up of the curves arolipd= 1, where we can see a rapid
increase in the slip velocity until it reaches a value clasgstmaximum, and then a slow
growth until it reaches it's maximum, before decaying away.t The value of¢ where
the maximum occurs increases as the aspect ratio increamkalso the maximum value
of Uy itself decreases. The maximum valueldf and its corresponding value can be
see in table 6.7. For the smaller aspect ratios, the maxirsusaiched earlier compared
to the larger aspect ratios, and also the slip velocity témddaster for the smaller aspect
ratios. The results presented in figure 6.15 are calculatéddv = 90 x 1075, how-
ever changing the value efdoesn’t affect the shape of the curves, all this affectses th
value of¢, i.e. changing acts like multiplying¢ by a function ofe. The steady base
flow would be independent afif it were plotted against the variable, = Rex./R;,
used by Wanderley and Corke (2001), whé&e= ¢ % and R, is the Reynolds number

based on the length of the body. The reason we do not use tiieblahere is because,
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Figure 6.15: Plot of the slip velocity from the slender bolgdry approximation to the
MSE as a function of, for the aspect ratio20 : 1, 40 : 1 and 100 : 1, and with
€® =90 x 107°. Figure (b) is a more detailed plot of figure (a).

our analysis in the leading edge region was non-dimensgathlsing a different length
scale to Wanderley and Corke, which left thecaling in. To keep the variables used in
this section consistent with the variables from chaptensddta we decided against using
thex,, variable.

Experimentalists typically report pressure distribusiaather than fluid velocities,

hence we don’t have any experimental data to compare outs&gth. However a more
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a:b gmax Uf (gmax)
20:1 2.223 1.037
40:1 4.447 1.020
100:1 11.146 1.008

Table 6.7: Values of the maximum value @f for the MSE for the case® = 90 x 107°
and the corresponding value &f ..

suitable quantity to measure in experiments is the pressurhe surface of the body,
and it is this which Wanderley and Corke (2001) compares iin thanerical model. We

define the pressure coefficient, to be

2(p" — p5.)

wherep* is the dimensional pressure on the plate aids the dimensional pressure as
xz. — oo. The numerical calculations @, here agree with those of Wanderley and
Corke (2001), but there is a typing error in equation (3) of Wé&atey and Corke, and
a factor of2, present in (6.50), is missing from their equation €. The form of the
surface pressure can be found by considering the steadgfiibg slip velocity in (2.15),

and i||tegrati||g with respect toto give
1(72

This form of the non-dimensional pressure is the same agiben by Bernoulli’'s equa-
tion along the streamline at the surface of the airfoil. iAgtthis pressure into dimen-
sional form, and then evaluating it far downstream, whére— 1, to findp}_ gives the

two equations

* 1 2 2 !
Pt = —§pUOOUf+C,
1
P = —pUn+C

whereC’ = pUZ2C.

Substituting these dimensional pressures into (6.50sdve pressure coefficient as

C,=1-Uj. (6.51)
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The resultant plots fo€’, using the slender body theory are given in figure 6.16(b), and
they are of identical shape to the ones given in figure 4 of \Wdag and Corke (2001),

which is also presented in figure 6.16(a). The pressureahlison for the slender body

0.2
i — Present study (20:1 MSE)
fffff Present study (20:1 Reg. ellipse)
0.]— — — - Present study (40:1 MSE)
O Experimental (40:1 MSE)—Saric et al. (1995)
Gi 7
()—3O ~
,,-/"’::6@_76-6. (SHC RS R A L")
%/@W
0 0.1 0.2 0.3
(a) .Y
0.1
0.05
Cp
ot 0 OIOS Oll 0‘15 OI2 OI25 0.3
(b) R

Figure 6.16: Figure showing the surface pressure distabut’, on a MSE as a function
of z,,, which is the streamwise variable of Wanderley and Corke12@@fined ing4.6.3.
(a) is figure 4 taken from Wanderley and Corke, and (b) is theesalot produced with
our slender body theory. The ‘present study’ shown in figaeréfer to the numerical
solutions of Wanderley and Corke.

approximation to th&0 : 1 MSE in figure 6.16(b) is compared to the solid line in 6.16(a),
and thed0 : 1 aspect ratio MSE result is compared to the long dashed liGelis(b). For
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the 20 : 1 case, we see that the minimum of the pressure distributiappsoximately
—0.09 for Wanderley and Corke’s work, ané0.075 for the slender body approximation.
Similarly for the40 : 1 MSE, the minimum pressure distributions are approximately
—0.05 for Wanderley and Corke’s work, and0.04 for the slender body approximation.
Thus as the aspect ratio increases, the body becomes modersland hence the slender

body approximation gives a better approximation to the MSE.

(a) o 5 " £ ®

(C) 0 0‘.5 ‘1 1‘.5 H ‘2 z‘.s 3

Figure 6.17: Plot of the pressure gradiestfor the slender body theory approximation
to the MSE as a function df, for the aspect ratio20 : 1, 40 : 1 and100 : 1. Figure (b)

is a more detailed plot of figure (a). Figure (c) shows a clgsefdigure (b) to make the
first minimum ing3 clearer.

Now that we have calculated the slip velocity for a MSE, we wawv convert this into

the pressure gradient, given by (2.36). By changing variables frafrto x.. to simplify

26 dy.\*\ ° dU;
== (1 i 52
= ( i (dxc) > dr. (6-52)

the algebra, we find
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The form of 3 in the nose region(. < r) can be found simply as

T
2w+

g

wherer = rysp = b?/a. The resulting calculations fgt can be seen in figure 6.17. As
for the slip velocity plots, figure 6.17(a) shows the presgynadient as it decays from 1
down to zero, but to get a better view of what is happeningradgu= 0, we have plot-
ted figure 6.17(b). As for the Rankine body, we observe a regidavourable pressure
gradient close to the nose, and then a region of adverseupeegsadient further down-
stream. The pressure gradients decay fiotowards zero, and then reach a minimum
value, greater tha®, rise slightly, and then decay to another minimum which $s ldhan

0 before increasing again towards zero. The first minimumHter20 : 1 MSE is seen
more clearly in figure 6.17(c). As the aspect ratio is incegasve find that both the min-
imums are shifted downstream, and that both the values s¢ timenimums are closer to
8 = 0. The¢ values for both these minimums and the corresponding valugare given
in table 6.8. As with the slip velocity, a change in the valtiejost acts as a scaling factor

on the valug, and doesn't actually affect the shape of the curves. Thedatween the

a:b & B(&1) 3 B(&)
20:1 0.932 0.006939 4.107 -0.08292
40:1 1.356 0.001977 8.034 -0.04768
100:1 2.560 0.000264 19.830 -0.02050

Table 6.8: Values of the minimum values @for the MSE for the case® = 90 x 10~
and the corresponding valuesgfandés.

pressure gradiert and the geometry of the MSE can be seen in figure 6.18, whidhk plo
the pressure gradient and the curvatureagainst the chord length. for a20 : 1 MSE.
The first minimum which occurs around = 1, along with the next maximum, are due
to the curvature of the body becoming more constant, andydegauch slower. Once
this happens, the pressure gradient becomes adverse,aatsdtstdecay to the second
minimum. This second minimum occurs around= 4 which is the point at which the
curvature is almosdi, and the body resembles that of a flat plate. Over the resedially

we see the pressure gradient recovering to the value for jal .
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0.1 p

005 | 1

01 | | | | | | |

Figure 6.18: Plot of the the pressure gradig¢hgnd the curvature for a20 : 1 MSE
generated using slender body theory.

In order to use the PSE to calculate the T-S wave growth rat&édVISE, we require
the largex form of Uy(x) to find the constanty multiplying thez~* term in (2.41). In
the analysis below, the variableis again the streamwise variable along the body,and

is the usual Cartesian coordinate. The largéorm of (6.44) is

1 [ 1
U ~1+ b + <a_b__/ F(xl)d:m) ;%—O(xc_g), (6.53)
0

T T p

where we have used the fact that

2

Yo~ b— +O(xc_2),

X,

asx. — oo. To write the slip velocity in terms of, rather thane., we use the fact that

1

dx dy. 2\ ?
=11

dz, ( i (dxc) > ’

b4

2.3
62z’

to show that

T~ Te—
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for largex., and consequently that

b 4
ICNI—FW—FO(ZE ),

asr — oo. Substituting this into (6.53) gives the largdorm of the slip velocity as

1 /¢ 1
0

T™r ™ ™

Thus, comparing (6.54) with (2.41) we see that for the MSEs b/x, which is inde-
pendent ofz, and hence independent of the aspect ratio. This may sedtteadtunter
intuitive, however, we are in a region far from the leadingedf the body, and so the
affect of the aspect ratio has diminished. This behaviorleen observed before by
Nichols (2001), who found that for a body generated by a soand a sink, the (z1)
correction term to the slip velocity was in fact the body hhl€kness divided byt.

Using the fact thatv = b/7, we can calculate the form of the lowest order Lam-
Rott eigenmode from (2.70) and (2.87), by settijing= 1. This initial mode shape and
the initial eigenmode given by7;/d¢, whereT is given in (2.75), are then used as
initial conditions to the PSE (2.102) which can be marchebbieer branch to give the
eigenmode amplitude there. To complete the calculatiom®fTtS wave amplitude at
lower branch, the receptivity coefficient needs to be caled. This is done by using the
method of Nichols (2001), who compares the asymptotic golwvith the full numerical
solution in the leading edge region in a part of the complexe) where the lowest order
eigenmode dominates the solution. Nichols conducted tlnsemical procedure for a
source and a sink in a uniform flow, and this method can be dgttiy adding more
sources and sinks along the real axis, until we have the saumeesdistribution as we do

for our slender body theory.

6.3 Summary

In this chapter, we have presented T-S wave amplitude edlook at lower branch for
a Rankine body, as we did for the parabola in chapter 5. We atsepted the method

of slender body theory, to approximate the geometry of th&Mfd allow us to calcu-
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late the inviscid slip velocity[/;, and the pressure gradient, at the outer edge of the
boundary layer.

Unlike the parabola, the Rankine body has a pressure graudéctt starts off favourable
at the nose, then becomes adverse downstream, tendingttazeownstream. This be-
haviour moves the neutral stability point upstream of theesponding flat plate value,
and for the Rankine body we also found that as the nose radivsaises, the amplitude
of the eigenmode, excluding the receptivity coefficiensoaincreases. However, this
combined with the rapid decrease in the receptivity coeificfor the Rankine body pro-
duces T-S wave amplitudes which have a double maximum appeagas the nose radius
increases, for certain values af For small values ot this behaviour is clearly seen,
however ag increases to values more readily found in wind tunnel expenis, then this
behaviour disappears, and we are left with a T-S amplitudetwttecreases from the flat
plate value. Thus if experiments were carried out on the Renlody, it is unlikely that
parameter ranges which exhibit this double maximum wouldtbeinable and it would
be expected that only the decrease in amplitude comparée ftat plate value would be
seen.

When comparing the shape of the parabola, Rankine body and$ite fwas shown
that the geometry of the MSE lies between the other two bodi¢swever, the MSE
exhibits a very different surface curvature, due to the nexhof the junction of the el-
liptical edge and the flat plate, and this produces a diffeieam of the pressure gradient
compared to the parabola and the Rankine body.

The MSE itself is modelled using slender body theory and #sailts for the slip
velocities and pressure distributions proved to be velgfsatory, when compared to the
work of Wanderley and Corke (2001). The pressure distribpgtizave a minimum close
to the nose, which decreases for larger aspect ratios,uglthtine pressure tends to zero
faster for the smaller aspect ratio. The pressure gradentse other hand have a small
positive maximum before decreasing to their minimum adv@ressure gradient. Both
this maximum and the minimum move closer to the zero presgwadient line, as the

aspect ratio increases. The slip velocities obtained haumitar property to the pressure
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gradient, with the largest slip velocity occurring for theallest aspect ratio.

Using the slender body theory, we made comparisons of tlespre distribution with
the calculations of Wanderley and Corke (2001), and foundlgmweement as the aspect
ratio reduced. When the slender body theory is extended ®tg® form of the Lam-
Rott eigenmode in the leading edge region, and when we carhed@SE to march this
solution downstream, we will be able to make further congmars with Wanderley and
Corke. Firstly, we will be able to make comparisons of the fpmsiof the lower branch
neutral stability point, and the neutral curve in generatcéhdly, we will be able to
calculate the amplitude of the T-S wave at lower branch earies, and compare these

results with figure 9 from Wanderley and Corke.
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Chapter 7

Conclusions

In this work, we have focused our attention on the propagatioTolimien-Schlichting
waves, through the Orr-Sommerfeld region of a two-dimemaidoundary-layer on an
airfoil. In particular we have considered the propagatibi-& waves generated by an
energy conversion process in a region at the nose of the bdwre the body has con-
tinuous curvature and where the inviscid slip velocity tetala constant far downstream.
The disturbances in the nose region for a flat plate were fembd Lam-Rott eigenmodes
(Lam and Rott, 1960). For more general bodies, these distudsavere generalizations
of these Lam-Rott eigenmodes, with added components to atfamthe mean pressure
gradient. We were only concerned with the propagation ofiaiwest order eigenmode
of this set, as it is this mode which matches (in the matchgohp®otic sense) to the T-S
wave, which exhibits spatial growth downstream in the Gym&erfeld region. The main
aim of this work was to compare results for T-S wave amplitudehe Orr-Sommerfeld
region with existing direct numerical schemes and exparig)en order to help to bridge
the gap between numerical and experimental results.

All of the results are discussed in more detail at the end efabpropriate chapter,
so only the more important results are discussed here. Iptehd we formulated the
asymptotic form of the generalized Lam-Rott eigenmodedudhicg the outer inviscid
layer, where this had not previously been derived. We alsweatkthe generalized form
of the Parabolized Stability Equation, for non-zero presgmadients, for which the Lam-

Rott eigenmodes provide us with a suitable upstream boundtanglition. Both these
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results are valid for bodies for which the Navier-Stokesagiguns can be approximated by
the plane wall boundary-layer equations to leading ordee tWo methods are completely
determined by the inviscid slip velocity in its far downstne limiting form, and in fact,
we only require the coefficient multiplying the first corriect term, to produce results to
the desired order. Hence, combining the asymptotics inteh&owith the numerics in
chapter 3, allows us to solve a huge range of receptivitylprob, where the slip velocity
is known fully in terms of the streamwise variable.

For the case of a semi-infinite flat plate, we were able tozetithe asymptotic form
of the wavenumber and mode shape of the T-S wave given in @aid4983), to justify
fully our PSE results in chapter 4. For sufficiently largeuwed of the Reynolds number,
we were able to show that the PSE method is problem free, beauthe well defined
matching region. For smaller values of the Reynolds numbefpwnd inconsistencies in
our results when compared with the asymptotics, and thisattabuted to the difficulties
in deriving theO(e?) term of the asymptotics (Goldstein, 1982). Thus, we coregdud
that even if this term is correct to the desired order, it ipriactical to try to extend the
asymptotics to other bodies.

In chapter 4 we also examined the occurrence of initial teamts which appear in the
solution to the PSE for particular values of the Reynolds nemaimd step size. No spe-
cific cause for these transients was found, although we fatnathg evidence to suggest
that these transients are consequences of having smatlbedians from higher Lam-
Rott eigenmodes in the initial condition to the PSE. The higligenmodes enter via the
composite solution of the three deck eigenmode structuresd@ higher Lam-Rott modes
match onto higher T-S modes in the Orr-Sommerfeld regionghvimitially decay more
slowly than the unstable T-S wave, and so we have a regionethey may dominate the
solution. It is this domination that we believe is the caus#hese transients.

The T-S wave amplitude calculations at the lower branchraésitability point for the
parabola, in chapter 5, were consistent with experimertgravthe amplitude was seen
to decrease with increasing Strouhal number. This has b¢#louged to the favourable

pressure gradient which exists along the whole boundarjeopairabola. For the values
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of the Reynolds number considered, it was seen that the gliglgase in receptivity co-
efficient for small Strouhal numbers, noted by Hammerton leeichen (1996), makes
very little difference to the amplitude of the T-S wave, dadhte fact that the amplitude
of the eigensolution had decayed by a sufficient amount teftre amplitude of the T-S
wave to decay from the flat plate value. However, correspandesults for the Rank-
ine body in chapter 6 are much more interesting, as the T-& wawlitude was found
to increase and decrease depending on the values of both yinelBe number and the
nose radius. This is due to the adverse pressure gradiengy tde body, which forces the
eigensolution’s amplitude to increase with increasingenaslius, which is in direct con-
flict with the decreasing value of the receptivity coefficierlowever, experimentalists
may not be able obtain this result in wind tunnel experimelésause the wind tunnel
has a restriction on the range of Reynolds number that it caduge. Thus the experi-
mentalists will probably just observe a decrease in T-S veanplitudes at lower branch,
as the nose radius is increased, similar to the parabola.

The slender body theory work on the Modified Super Ellipse BYIigas a lot of scope
for further work. Although very little work has been carriedt on the MSE in this thesis,
we believe that a detailed study of how the slender body weldktes to numerical and
experimental data will be of huge benefit. The most intemgstvork will possibly be
on the far downstream section, where the slender body thedegnding to a flat plate,
whereas the MSE is exactly a flat plate in this region. Workis thesis concludes that
this makes very little difference to the pressure field altmgsurface of the body, but
this could still lead to large differences in the amplitudele T-S wave downstream.
The MSE extension could also be taken as far as to calculatesiceam amplitudes in
a similar way as we did for the parabola and the Rankine bodyeder the receptivity
coefficient for an MSE would have to be calculated first, usirgghods similar to Nichols
(2001).

This work could also be extended to look at other airfoil getmas such as cambered
airfoils (Hammerton and Kerschen, 2005) or Joukowski d8fdA relatively simple ex-

tension might be to consider a parabola at an angle of attathetfree-stream, as then
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results could be compared with those of Corke and co-worktaddad and Corke, 1998,
Erturk and Corke, 2001, Ertust al., 2004 and Haddaet al., 2005). The asymptotic/PSE
method described in this thesis could also be extended tidmmother mechanisms of
receptivity, such as the receptivity due to an element ofaserroughness. Our PSE
method is linear, so we can compare the evolution of T-S w&wees each receptivity
mechanism separately. Thus we can make a comparison of thliéwdas of T-S waves
generated at the leading edge and waves generated at Sadgbamess elements, and see
which type of wave dominates at the neutral stability paistthe position of the rough-
ness element is changed. However, a simple starting pladartber research would be
to use the source/sink bodies studied by Nichols (2001)dk & the effect of pressure
gradients on the overall T-S wave amplitude downstream.

To summarize, we have developed a method to calculate T-& wmplitudes at
streamwise positions along a body via the numerical saludgidhe Parabolized Stability
Equation, which uses the leading edge asymptotic resul astial condition. Using this
method we have obtained T-S wave amplitudes for various bBbdpes, which agree with
other numerical and experimental schemes, where thedesrasiavailable. This method
has the potential to solve many receptivity problems, sofwehich are described in this
chapter, and contribute greatly to this area of applied srattics. The recent develop-
ments described in this thesis and in other papers addressad work, in my opinion,

show that the area of receptivity and stability has a brigist @xciting future.
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Appendix A

Derivation of the Orr-Sommerfeld

equation

In this appendix, we derive the Orr-Sommerfeld equation¢tvts the governing equation
for parallel flow problems. The dimensional Navier-Stokggations for the fluid velocity
vector,ut = (U, V, W), in Cartesiar(z*, y*, z*) coordinates is

ou; - - 1. -
GtV = V5 oV (A1)

Vi = 0, (A.2)

wherep is the fluid densityy is the kinematic viscosityy;. is the pressure, and

. o 9 0
V—(a—@a—)

wherex denotes a dimensional quantity.
Using suitable dimensionless variables, the Navier-Stekgiations become

ou - - . 1
X tip - Vip = —Vir+
Re

o Viir, (A.3)
V-ar = 0, (A.4)

whereRe is the Reynolds number, which is defined by,

L
Re:UL,

14
whereU, is a common velocity scale, andis a common length scale. Typical velocity

scales could be a constant velocity, in a constant flow oveing,vor a mean velocity,
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in channel flow. Similarly a typical length scale could be tidth of a channel, or the
length of an airfoil etc.

For parallel flows, we assume the velocity has the form
ur = U(y)Xx + etu(x, t), (A.5)

whereU (y) is the purely parallel part ofir, u is the perturbation velocity, andis a
small parameter. The pressure has a main component whigdsdhe parallel flow, and

a perturbation component, in the form
pr = P+ ep. (A.6)

Substituting (A.5) and (A.6) into (A.3) gives,

1
688—‘;+6U881+euT V(U%) = —VP—eVﬁ—i—E(VQU)&—FéVQﬁ—FO(eQ). (A.7)

Equating the coefficients ef gives

VP+ "% =0,
v +Redy2x

They andz components imply? = P(z), hence the&k component gives,

AP _ 1 #U

dvr  Redy?’
The right hand side of this equation is a functionyobnly, and the left hand side is a
function of z only, hence both sides must be a constant. So the base flowhanesta

constant pressure gradient, and the velocity profile mugul€ratic,
Uly) = ry* + sy +1t, (A.8)

wherer, s andt are constants, and= Re/2 dP/dx.

TheO(e) equation from (A.7) gives

811 811 2...
5 U%—FUUX——VP—FR—V (A.9)

whereua = (@, 0, w), andU’ = dU /dy.



190

We can now separate the variables of this equation by takidgpendent normal

modes of the form

i = (u(y),v(y),wy))e o, (A.10)

]5 _ p(y)ei(kx-i-lz—act)’ (All)

wherek and! are the streamwise and transverse wavenumbers igritie wave speed.

Substituting these into (A.9) gives

(D? —a® — (ik Re)(U —c¢))u = ik Rep+ Re U’ v, (A.12)
(D? —a® — (ik Re)(U — ¢))v = Re Dp, (A.13)
(D? — a? — (ik Re)(U — ¢))w = il Rep, (A.14)

wherea = (k% + 12)z andD = d/dy. The continuity equation gives
iku 4+ Dv + ilw = 0. (A.15)

We now use Squire’s transformation to simplify the systerhisTransformation re-

duces the problem from a 3D problem to a 2D one. Squire’s fivamsis

au = ku+lw,
_ Q
p = Epa
o= v,
Re = ERe,
Q

where the quantities on the left-hand side are the new wamsfd variables.
Now using this transform, and eliminatingw andp from (A.12), (A.13), (A.14) and

(A.15), and dropping the bar for clarity, we get the equation

1
iaRe

(U —c)(D* - —U'"v= (D? — a?)*v. (A.16)

This equation is known as tl@r-Sommerfeld equation. This is a fourth order equation,

and hence we need four boundary conditions. As with mosbussdluid problems, the
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boundary conditions are, no flow at the solid boundagies y, andy = y,. The no

normal flow condition is simply

v(y1) = v(y2) = 0.

To find the condition for no tangential flow, we take (A.15)equire’s transformation

and drop the bar for clarity. Doing this we find
Dv = —au,
henceu = 0 aty = v, y» iImplies
Du(y1) = Dv(yz2) = 0.
Hence the boundary conditions are
v(y1) = v(y2) = Do(y1) = Du(y2) =0,

wherey; andy, can be infinite. Ify; and/ory, are infinite, then we use the condition that

the perturbation velocity has decayed to zero at infinity.
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Appendix B

Airy functions

Airy functions are solutions of

d*w(z)
dz?

— zw(z) =0, (B.1)

which is known as Airy’s (differential) equation, in the cphax z plane. It has three pairs

of linearly independent solutions

2mi

Ai(z) , Ai(zes),

27i

Ai(z) Ai(ze_T;).

For realz, the functionAi(x) and its derivativedi’(z) are plotted in figure B.1. Both
these functions tend to zero exponentiallyras— oo, and ast — —oo, Ai(z) — 0.
The functionBi(z) and its derivativeBi’(z), which are plotted in figure B.2, both have
exponential growth ag — oo, but againBi(xz) — 0 asx — —cc.

The Wronskian of the linearly independent functioh$z) and Bi(z) is
1
W (Ai(z), Bi(z)) = Ai(2)Bi'(z) — Ai'(2)Bi(z) = —. (B.2)
™

For more information on the Airy functions and their propest see Abramowitz

(1964), page 446.
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Appendix C

Chebyshev polynomials

Chebyshev polynomials are widely used in spectral collooatiroblems, especially in
parallel flow problems, where the domain can be mapped t¢-thel] domain, where

these polynomials are valid.

Chebyshev polynomials are an orthogonal set of polynomiblswsatisfy the differ-

ential equation,

x ——a:d—+ny: , (C.1)

Xz
wheren is an integer. We define thé" Chebyshev polynomial of the first kind by
T, (z) = cos(ncos ' ). (C.2)

These polynomials are orthogonal, with respect to the wvigighiunction

w(z) = (1-27)2,
and satisfy the orthogonality condition,
0, n#m

1
/ (1—22) 2T, Tdx = ., n=m#0 . (C.3)

1

SIE]

m, n=m=0>0

If we write cos # = x, and use the trigonometric identity

cosnf + cos(n — 2)0 = 2cosf cos(n — 1)6,
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then we see that Chebyshev polynomials satisfy the recugneation forn > 2
To(z) = 22T, 1(x) — Th—2(x). (C.49)
From (C.2) we can easily see that

To(z) = 1,

Ti(x) = =

Then using (C.4) we can write down the first few Chebyshev patyats.

Ty(z) = 22°—1,

Ts(z) = 4a® — 3,

Ty(z) = 8z* —8z" +1,
Ts(z) = 162° — 202° + 5,

which are plotted in figure C.1. Note that the odd humberedrmtyials are odd func-
tions, and the even numbered ones are even functions. Tdtisdenes in handy when

solving symmetric problems.
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Figure C.1: Plot of the Chebyshev polynomidls(z), forn = 1,2,3,4,5.
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Another fact which follows from (C.2) is that Chebyshev polymals satisfy the con-

dition
(1)~ D210 () = 2T, (0) c5)

Cp, ’
n+1 n+1

for n >0, wherec,, =d,, =0if n <0,¢cp =2,dy =1,andc, =d, = 1if n > 0.
We can represent a functigiiz), defined onz € [—1, 1], as a series of Chebyshev

polynomials,
N
g(x) = aTi(x),
=0

where thez; are constants. To fingd we use (C.3), so that

a; = %/_1(1—x2)§g(x)Ti(x)dx,
ag = %/_1(1—x2)§g(m)dm.

For more information on Chebyshev Polynomials, see Rivlirr§)9
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Appendix D

Derivation of equation (4.54)

This equation is merely stated in Goldstein (1982), howdéegederivation is important,
and is derived here.
We define

¢

v = i (4i60) [ gBiteyis - Bic) [ TR (1- (et de),

gAi(S)dé) +

¢o 001 EC
(D.1)
whereg = HIC”;T(I@ + H,.
Changing the variable fromto ¢ we find
_ /Oorwn:/mmg.
COU(/) 0 o
Integrating the first term dff by parts and using (4.55), we end up with
00 ¢ ¢ ¢ ¢ o1
[ riac = xitng [ it “oicac - [ Bt i (O]
0 001 0 0 1 ¢o
001 . o001 F2717/ =
—m’U[’)Co/ Wi, dc+/ 7o <1 - (alfc)g()) d¢. (D.2)
¢o d ¢o 2 ¢

Let us consider the first part of (D.2). We note thatdsr () — oo,

G~ Goo = Ao+ MC + Al + A3,
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where
ic (¢ (a1+70)
o= D.3
B <<5‘>+ 2 ) &)
iC 3
A= —¢ D.4
Ay = —i—é(a + 3¢) (D.5)
2 ettt : '
1C
A3 = —0. D.6
3 2043 (D-6)

Note that in the first part of (D.2), the zero limit gives a zeamtribution, but to evaluate

the infinite limit, we have to insewi,, for g, and carry out the resulting integrals, noting

that
/ 2Bi(z)dz = Bi(2), (D.7)
/ 2Bi(:)d: — 2Bi(z) — Bi(2), (D.8)
/ 2Bi'(2)dz = 2*Bi(z) —2zBi(z) + 2 / Bi(2)dz, (D.9)

and similar results hold fadi(z).

We now define
¢ ¢
AL [ gpitcyac (D.10)

¢ ¢
I = /< BiQ)iC /OO g AT (D.11)

So using (D.7), (D.8) and (D.9) we find
¢ ¢
L1, = A (Bz"@) [ aitac-aro | Bz‘(@dc)

Co

. (< (Bz"(@ [: (e~ A0 / C Bz’(@)dc) (D.12)

o

- (Bz’(o [: A~ A0 / C Bz’(@dc)) (D.13)

¢o

Y (42 (Bz"(@ [: (e~ A0 / C Bz<<>d<) (D.14)

¢o

— 2 (Bz@) [: 1 Ai(¢)d¢ — Ai(¢) / C Bz(g)dg)) + EST, (D.15)

o
which upon using (4.55) becomes

1
=Ty = — (MW 4 ACWT = MW+ MG — 2X5¢ W) (D.16)
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This is now differentiated with respect{oso that it can be put under an integral sign,

which gives
d%(h —1) = % (M€ + 220 4+ AsC® = 24g) Wi (A1 + AaC + AsC%))
= % ((goo — Ao — 2X3) Wi+ (A1 4+ Aol + A3¢7)) (D.17)

where we have used the fact that” — (Wi = 1.

If we now write part 3 of (D.2) in terms af and\; we find

977/ = C C
UTUO (1 _ (@ +96 ;_ZC)CO) = —iUyCo <>\1 + Xl + A3 + C(;;—U—L/_CC)) ; (D.18)

which on combining with part 1 of (D.2) and (D.17), we achi¢¥e1).
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Appendix E

Free-stream disturbances at an incident

angle

This appendix considers the effect on the receptivity coefiit if the free-stream distur-
bance interacts with the body at a non-zero incident artgldn chapters 4 and 5 we
have been able to ignore the length of the body, however, wWemcoming flow is not
symmetric, the length of the body affects the local flow atldsing edge. Hence, we
consider a body of lengthb with a dimensional nose radius gf, shown in figure 5.7,
where the leading edge is assumed to be parabolic.

From equation (5.5) we see that the non-dimensional Cant¢sjay.) coordinates

are related to our paraboli¢, N) coordinates by

. 1 VSN
Te+ 1Yo = 5 ((Z+ZS ) +S>,
whereZ = ((25)% + ie3N>. Under this conformal mapping, the parabola in figure 5.1
gets mapped to flow in a right angle corner in theplane, as shown in figure E.1.

In the Z—plane, the complex potential for this flow is given by

1
w(Z) = 522,

and hence the velocity field is given by

) dw dwdZ A
U — v = = =

dz  dZd: 7 4iSi
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N=0

&=0

—

(b) ¢

\

(a

Figure E.1: Figure showing the symmetric flow around a pdrabdmody (a) in the
z—plane, and (b) in theZ —plane.

The unsteady, inviscid slip velocity on the body & 0) is then given by

(?5)% 1| — (2€>% 1 (El)
(28)2 +1iSz (26 +5)2

which is the same as for the steady componént,as we noted ir§5.1. This form of

dw_

Ud(f): % -

the slip velocity is the symmetric part, which represent& #fdongé = 0 and around the
body as shown in figure E.1(a). We now need to consider theyaninetric flow which
moves parallel to the plate from the bottom surface to thestoface as shown in figure

E.2(a).

N=0

&=0

\ \

(a) (b)

Figure E.2: Figure showing the anti-symmetric flow arouncheapolic body (a) in the
z—plane, and (b) in th& —plane.

The complex potential for the anti-symmetric flow in tHe-plane is given by
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which leads to an antisymmetric unsteady slip velocity of

b
(26 +S)7

For low Mach numbers, the acoustic wavelergjth/w, wherec is the speed of sound,

Ug™(€) = (E.2)

is long compared to the hydrodynamic length sdalg/w. Thus, outside the boundary-

layer, the flow can be assumed to be inviscid and irrotatismthe complex potential

theory above shows that the local flow has a slip velocity efftirm
2€)2 1

(26 +5)2 (26 +5)2

The coefficients, andx, multiplying these eigensolutions are independent of theubal

Ua(§) = rs(0) (E.3)

number, and only depend @n Substituting the form of (E.3) into (2.37) and using (5.6)
gives

25 ) N Ka
260+S5) (202
whereF'(¢,) is the LUBLE operator defined by

Fos) = s (@'(25 +8)— (mg I S) (B9

2%+ S

F(¢2) = panvn  + donn (01 + 2801¢) + dan (i(2§ +5) - 2525 S¢1N — 25(/511\[5)

+  Padinn + 28 (1NN P2e — PinPane) - (E.5)

Hence if we writeps = k0, + k.04, then it follows that the receptivity coefficient on the

upper body of the surface is given by
Cl<57 9) = I€5<9)CS(S) + ’fa(e)ca<5>7 (E6)

where the solutions fat’; andC', are found by solving

F(6,) = (i<2§+3>— e 5), E7)
1 2%~ S
P = oor (494 353), €®)

respectively. The corresponding receptivity coefficiemtthe lower surface can be found
by replacingd by —6.
The symmetric and antisymmetric flow coefficients,andx,, are found by asymp-

totically matching the local velocity field near the noseggi by (E.3), to a global velocity
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field given by complex potential theory. The solution of #aé¢wo coefficients depends
upon the reduced acoustic frequericy= wb/c, where agairn is the speed of sound in
the undisturbed fluid. Sedov (1965) describes how to caileulee velocity field about a
thin wing, including the effects of compressibility, butgeneral, no simple form of the
inviscid slip velocity can be obtained. We consider two sastich do lead to simple
slip velocities. The first being wheln < 1 which is the case of very small Mach num-
bers, when the acoustic wavelength is long compared to betlihnydrodynamic length
scalelU,,/w and the length of the airfoil chord. This leads to the flow besmalyzed
using classical unsteady airfoil theory for incompressitdw. The second case is where
k > 1, which is when the acoustic wavelength is long compared eédhfrdrodynamic
length scale, but shorter than the airfoil itself, and trasecis analysed using acoustic

diffraction theory.

E.1 Small Mach numbers ¢ < 1)

We assume that the airfoil semi-chord is the relevant lesg#te for this problem, and

since this is the relevant length scale for unsteady aemdiminteraction, we can ignore
the thickness of the airfoil, except in the region of the nas®d hence it reduces to a
zero-thickness flat plate. The complex potential for thig/fbmnsists of two parts, a non-
circulatory part, and a part which is due to the circulatiotiuced by vorticity shed from

the sharp trailing edge. The shed vorticity gets convecteehdtream from the body, so
we assume it takes the fory{z, ) = 4¢'(@@~t), wherea = wb/U,, is the aerodynamic

reduced frequency.

The flat plate is mapped to a circle in tie-plane by the conformal mapping

1 1
1==(z+=
Z 2( —l—Z),

which has an inverse mapping of

N

Z=z—-1+(2(2—-2)).
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The non-dimensional complex potentialjs then written as

efz't 0 ez’@ Z',S/efit o oo 7 _ ZO

where the second term is given by Milne-Thomson'’s circletbm, excluding the term
atZ = 0, which is used to eliminate any circulation induced by usinig theorem (Ache-
son, 1990). We can do this because we are going to fix the vafubyusing the unsteady
Kutta condition at the trailing edge. The unsteady Kuttaditbon states that the velocity
is finite at the trailing edge of the flat plat& & 1), and this is achieved if

5= 27 sin 6 . (E.10)

1
X iaxg T 2
/- 2 € ( Zo—2 ) dxo

We wish to match this with the local solution given in (E.3),we require the smalt

expansion of the velocity evaluated on the airfoil's suefagherer is the variable along

the body without any geometric effects. Doing this we find
sin ¢
V2
whereJ(a) is an effect of the vorticity shed from the trailing edge asdiven by
J(a) = e <_2> o

[ etawo <x:32> * dag

The area we are interested in, is that of high reduced fregegnso the effect of the

u(x,0t) ~ (j: (1+ J(a))x_% + cosf + O(x5)> e as x—0, (E.11)

=0(a™") as a— oo. (E.12)

shed vortices in the vicinity of the leading edge is then marolaller than the contribution
of the non-circulatory part, by the factor 6fa~!). Hence matching (E.11) with (E.3) as
¢ — oo gives, atO(z~2) andO(1),

sinf kg
V2 V2a’
cosf = kg,
hence we see that
ks =cosf, K, = a? sin 0. (E.13)

We see from this, that close to the nose, except whismear0 or 7, the slip velocity is

dominated by the antisymmetric part of the flow, and in faetiraximum flow speed of
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(b/r,)? is reached at the nose of the body. Also in the 1 limit, we note that the flow
near the nose, and hence the receptivity coefficient, isahesf the body has a rounded

trailing edge as well as a sharp trailing edge.

E.2 Use of acoustic diffraction theory ¢ > 1)

In this case, the acoustic wavelength is short comparedetdetigth of the airfoil, and
the interaction can be analysed by taking the airfoil to beraisnfinite flat plate. Sim-
ilar to the above case, on the scale of the acoustic wavéletigg airfoil appears as a
zero-thickness flat plate, so the problem reduces to theicEdsSommerfeld diffraction
problem (Noble, 1958). The velocity potential for this wealy flow is given by

. . oo 2 1.2\4 _ 4 X
d)(x’ y) = ,Eeik(x cosf+ysinf) _ sin <9) bgn(yz / exp( (/\ k )2 ‘y| 7’1)‘$) d\ | e
k 2) 1(2k)2 Jooo (A +kcosO)(\+ k)2

3

(E.14)

where the functiosgn(y) is the sign function defined as

—1 for y <0,
sgn(y) =9 0 for y=0,
1 for y>0.

Differentiating (E.14) with respect te, leads to a slip velocity on the body & 0) of

ﬁeiw/zlm_
(mk)?

- 0
u(z,0+) = (cos et cost(] F erf®) £ sin (—)

SIS

5 ) e ™, (E.15)

whered = ei7/4(2kx)3 sin (¢), anderf is the error function, and is defined as

2 z
erf(z) = ﬁ/ e~ dt.
0

As we letx — 0,

i /4 N N ]
u(z,0£) ~ [ £sin 4 Ve —272 +cosf + O(z2) | e ™. (E.16)
2) (mk)2

Thus matching (E.16) with (E.3) @s— oo, we find

2 im/4 0
ks =080, Kq= ¢ - sin (—) ) (E.17)
(mMw)?2 2

whereM,, = U, /cis the Mach number of the mean flow, which we have assumed to be

small. We again see that the antisymmetric component daesribe flow, except near
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6 = 0, however this time the slip velocity has a maximum valuget/* (c/mwr,,) sin (£)

at the leading edge, which is independent of the semi-chicitteaairfoil, b. We also note
that for the casé& < 1, both the symmetric and anti-symmetric components were in
phase, but in this case, the antisymmetric component lagsyimmetric component by

7 /4 because of the effect of compressibility.
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Appendix F

Rankine body formulation

The Rankine body is formed by considering a line source in goumiflow, so we can

write the dimensional complex potential} as

K K
* _ * 1 *_ F.1
w* =Uyxz" + 5. 10 (z QWUOO) : (F.1)

where X' > 0 is the strength of the source, antl = = + iy, where the subscript
denotes that these are the usual Cartesian coordinatesl)mg-have located the source
atK/2nU, so that the leading edge occurgat= 0. The following theory also holds for
the source at any point on thé axis. Introducing the same non-dimensional quantities

as we did for the formulation of the governing equations iagthr 2, (F.1) becomes

w—z—l—Aln(z—A)—l—Aln(Uﬁ), (F.2)
w
wherew* = U2 w/w, and
Kw
A= : F
21U (F3)

We note that the complex potential= ¢ + i1, where¢ is the velocity potential, ang

is the stream function. Equating the real and imaginaryspzir(F.2) leads to
Uso
¢ = z.+Aln(lz—A|)+ Aln (—) , (F.4)
w
Y = y.+ Aarg(z — A). (F.5)

We can also work out the velocity field by differentiatingAFwith respect ta to give

A
z—A

u—iv=1+ (F.6)
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Equation (F.6) can be solved to show that the stagnatiort pbthis flow occurs at = 0.
The streamlines for the flow are given from (F.5)/as ¢;, wherec; are constants, and the
argument ot is taken to lie in the rangerg(z) € (—m, 7]. The streamline which passes
through the stagnation point will be replaced by a solid haay the other streamlines
shall then represent the flow around that body. At the stagmabint, (F.5) is evaluated

to givey = Aw, hence the equation of the body is then given by
Y.+ Aarg(z — A) = Am. (F.7)

We note from (F.6) that the flow velocity has a singularity la¢ pointz = A. This

however is of no concern to us, as it lies inside the streayliiich we are replacing by
an impermeable surface, and hence the singularity liedartbie body. Outside the body,
the velocity field is finite. The body is symmetric, so we neely @oncern ourselves with
the derivation of the equation for the upper surface. From) (e see that the equation

for the body can be written as

Yo+ Atan™? ( Ye ) = Am, (F.8)
T, — A

wheretan™! is defined so thatan=!(p/q) € [0, /2] for p,q > 0. We can then rearrange

this to give the equation of the upper surface of the body as
_ A Ye
r. = A —y.cot <A> . (F.9)

We note that the functiof, cot(y./A) has poles af. = nAxr, wheren = 1,23, ..., and

it has a periodic behavior far. > Ax. Thus to make the equation of the upper surface of
the body single valued, we restrigt € [0, Aw). We note from (F.8) that far downstream,
r. — 00, Y. — Am, so the asymptotic thickness of the bodyras— oo is 2A7.

To find the form of the slip velocity on the surface of the Raeliody, we substitute
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(F.9) into (F.6). Hence we find that

Ur = |u—1v|,
T+ 1Ye
(370 - A) +Zyc

24y )
B ((fvc—A)2+y§) ’

A2 .2 (Ye A . 2yc %
= (14—?811& <Z>—ES1D(A)> ) (F.10)

C

)

and we note that the slip velocity is parameterised by thamatery.. In the formulation

of the main governing equations, we introduced the varigabig2.33) as a variable along
the surface of the body. We definédas the integral of the slip velocity along the body
from the leading edge, to a poinf wherez is also measured along to body. In this case,
the slip velocity is only known in terms of the Cartesian pagtany,., hence by a change

of variables, we can define

dx
dy.

- / U ) 2 () d, (F.11)
0

where

dx dz.\” : Ye Ye 5 (e )\ 2 3
m = (1 + (dyc) ) = (1 + (— cot <Z) + 7 cosec (Z)) ) . (F.12)

From these definitions, we can then see that the functiéfisand(2(¢) defined in (2.36)

and (2.38) are also functions gf.

F.1 Introduction of scaled variables

As in chapter 5, we can introduce scaled variables so thaemeve the dependence on
A from the equation of the body and the slip velocity. Here wingethe scaled variables
z = z/Aandw = w/A. Thus introducing these and following the analysis throfrgin

the above section, we find that the equation of the body’s ugyace is given by

536 =1- gc COt(gc - él)u (Fls)
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where¢; is a constant which corresponds to the streamlines of thedimthe streamline
for which ¢; = 7 corresponds to the surface of the body. Under these newblesiahe

components of velocity become

i = S0 _ldzdw
YW E T T Adz a4
1
- 14— (F.14)
z—1

The streamlines for flow past a Rankine body in these scaleablas is shown in figure
F.1. We note that the streamlines external to the body aendiy¢; > = in the upper

half plane, and; < —= in the lower half plane.

——

Figure F.1: Figure showing the streamlines around a Ranlodg m the(z., 7.) plane.
Note that the streamling = = denotes the surface of the Rankine body.

Under this change of variables, the slip velodityanddz/dy. become

2(4, (20 ¢
Uf(gc) _ <1 4 smAgy ) . SIH(A Y )) 7 (F15)
yc yc
dx . . . . 3
20 = (1 (= cotlie) + gecosec®()) (F.16)
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Thus we can actually remove the dependenced érom the pressure gradiefit¢) as we

did for the parabolic body. This is achieved by introducinhg variablef = ¢/A, where

- Je dz
§= Ur(9e
0 f( ) dyc

(9e)de, (F.17)

then we see that )
_28dUy _ 2AgdEdUy
However, we can go further than this, by writing

B(€) B(E). (F.18)

dUy _ 1 dedUy
dé Uy dx dj.’

then we see that

B 26 dij. <sin(2gc) B sin?(,) cos(2gc)>

8000) = 77 g - (F19)
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