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— Abstract —

The evolution of a Gaussian vortex subject to a weak-external-random n-
fold multipolar strain field is examined using fully nonlinear simulations. The
simulations show that at large Reynolds numbers, fine scale steps form at
the periphery of the vortex, before merging, generally leaving one large step,
which acts as a barrier between the vorticity within the coherent core and the
surrounding, well mixed, ‘surf zone’.

It is shown for n = 2 that the width and the number of fine scale steps
which initially form at the periphery of the vortex is dependent on the strain
parameters, but that the range of radial values for which steps initially occur
is only dependent on n and the amplitude of the strain field. A criteria is
developed which can predict this range of radial values using the linear stability
results of Le Dizes (J. Fluid Mech., vol. 406, 2000, p.175). This criteria is based
upon the perturbation vorticity needing to be larger than some fraction of the
vorticity gradient to flatten the vortex profile.

For n = 3 and 4, the radial step range is again predicted, and it is observed
that for these higher wavenumbers the long lasting steps are narrower than the
n = 2 case. For n = 4 the steps which form are so narrow that they do not
persist very long before they are destroyed by the strain field and viscosity.

— November 5, 2014—

1 Introduction

The literature available on the motion of passive scalars in fluid flows is expansive. Once
the motion of the fluid is determined (either kinematically or dynamically), the motion of
the passive scalar added to the flow is simply found by advection. However, the study of
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flows containing a dynamic scalar which feeds back to modify the flow field are less well
understood. In this paper we consider flows within two-dimensional coherent vortices,
where vorticity plays the role of a dynamic scalar. In such flows, vorticity is mixed by
the flow, but also feeds back to modify the flow itself. It is this dynamic feedback which
leads to interesting evolutions of the fluid system.

In this work a coherent vortex is considered, which is placed in a weak external strain
field to mimic the flow generated by the interaction with other distant vortices in the flow,
or the motion of solid boundaries. This type of study has physical relevance to flows such
as geophysical flows where vortices are associated with planetary rotations, and may be
concentrated by antecedent diabatic processes [1, 2|, and in turbulent flows where there
are many vortices interacting with one another [3, 4, 5]. When an inviscid, axisymmetric
coherent vortex, such as a Gaussian vortex, is placed in an instantaneous external strain
field that acquires n = 2 symmetry when viewed in the circular frame of reference, then
the vortex is initially forced into an elliptical shape which generates an n = 2 mode in the
vorticity field of the vortex. This mode then evolves in time, dynamically feeding back on
the core of the vortex, forcing the vortex to return to an axisymmetric state and spirally
winding up the additional vorticity [5, 6]. This dynamical feedback was further studied
by Schecter et al. (2000) [7] and Balmforth et al. (2001) [8], with the latter constructing
an asymptotic analysis linking the suppression of vorticity to the existence of a ‘quasi-
mode’ in the vortex. A quasi-mode is a damped mode of a flow which incorporates both
neutral modes as well as contributions from the continuous spectrum. The decay rate of
the quasi-mode can be linked to the value of a Landau pole of the flow field, which was
first studied by Briggs et al. (1970) [9].

If instead the coherent vortex is placed in a weak-external strain field, whose axes
are rotating with constant angular velocity ae, for a fixed period of time, a critical
layer occurs within the vortex at a radius re where the angular velocity of the vortex
equals (e [10, 11, 12]. The nature of the critical layer can be nonlinear, viscous or a
combination of both by considering the relevant higher-order terms neglected by linear
analysis [13, 10, 11]. Irrespective of the nature of the critical layer, Le Dizes (2000)
[14] identified that the amplitude of the non-axisymmetric quasi-mode generated by the
feedback process depends upon the value of a... The consequence of generating large
non-axisymmetric quasi-modes in the vortex is that, via the nonlinear terms in the Navier-
Stokes equations, these modes will feedback to modify the axisymmetric profile which
changes the response of the vortex to future strains [8, 15, 16].

If now the strain field is considered to be random, and applied continuously to the
vortex, then Turner et al. (2009) [17] showed that the dynamic feedback from the vortex
acts to generate fine scale steps in the periphery of the axisymmetric vortex. These
steps eventually evolve to form a vorticity staircase. In the flat regions of the staircase
the diffusivity is large, while the steep vorticity gradients in between act as barriers,
preventing the transport of vorticity out of the vortex. They also observed the merger of
steps overtime, typically leading to one or two large persistent steps, as well as the steps
slowly drifting towards the core of the vortex. The evolution of the steps was followed
in time using a weakly nonlinear expansion about the small strain amplitude. This led
to a linear quasi-mode response equation, identical to that given in Le Dizes (2000) [14],
feeding back on the axisymmetric vortex profile via a diffusion equation which evolves
on a long time scale. The work presented in Turner et al. (2009) [17] was essentially an
extension of the weakly nonlinear initial value problem considered in Bassom & Gilbert



(1999) [6] which forced a Gaussian vortex with a random strain field explicitly. However,
due to the weakly nonlinear formulation, the simulations could not follow the vortex
evolution very far in time due to the neglected higher order Fourier modes becoming
significant. Turner et al. (2009) [17] resolved this issue by using the diffusion equation
approach, but the neglected higher order modes of their work still needed to artificially
suppressed, which was achieved by introducing a smoothing parameter.

The purpose of the current paper is two fold: Firstly by considering fully nonlinear
solutions of the Navier-Stokes equations we are able to follow an explicitly forced Gaussian
vortex for large times without the need to introduce a smoothing parameter, hence this
work enhances the results presented in Turner et al. (2009) [17]. Secondly by using
the linear feedback theory of Le Dizes (2000) [14] a criteria which predicts the range of
radii over which steps are observed forming in the vortex is formulated. Using this linear
feedback theory we are also able to highlight why the steps observed in Turner et al.
(2009) [17], and the current paper drift towards to the centre of the vortex over time.

The formation of vorticity staircases also occurs in other flows, most notably in the
jet structures which emerge in the oceans, our atmosphere and in the atmosphere of the
gas giant planets such as Jupiter [18, 19, 20, 21]. The underlying process leading to the
formation of vorticity staircases in these flows is identical to that studied in this article.
A gradient of potential vorticity in the flow is homogenised in regions due to an external
forcing which eventually leads to jets forming. The sharp vorticity gradients between the
steps again act as barriers in the flow preventing the transport of vorticity.

The layout of the paper is as follows. In §2 we formulate the governing nonlinear
equations and discuss the numerical scheme used in the simulations. In §3 we discuss the
quasi-mode feedback process in more detail and highlight the strain field angular velocities
where we expect to see a large feedback to the azimuthally averaged profile leading to
the formation of vorticity staircases. In §4 we present the results of the simulations for
strain fields with azimuthal wavenumbers n = 2, 3 and 4, while concluding remarks and
discussions are given in §5.

2 Formulation

We consider the evolution of a two-dimensional vortex with vorticity field w and stream
function 1, which is placed in a weak, horizontally non-divergent, externally imposed,
irrotational flow field given by the stream function .. The evolution of this vortex is
governed by the dimensionless vorticity equation

0w — J( + e, w) = RTIV?w, V) = —w, Ve =0, (2.1)

where u = (r~'9yt, —0,4) in plane polar coordinates, and J(a,b) = r~! (8,adpb — Fpad,b).
The variables are non-dimensionalised by the total circulation of the vortex, I', so that
the Reynolds number is defined by R = I'/v, where v is the kinematic viscosity. We
consider the vortex to be in an unbounded domain, thus the stream function ¢ is not
permitted to grow faster than logr at large values of r, while the external forcing can
increase in powers of r. We are ultimately interested in results in the large Reynolds
number limit, but in this work we present long time simulations so it is inevitable that
the results will display some dependence on the value of the Reynolds number. For ex-

ample, the destruction of fine scale structures in the vortex will occur on the shear-diffuse
time scale of O(R'?) [22, 23, 24, 25] and the vortex will spread on the O(R) time scale.
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The external flow field is chosen to represent an irrotational strain field of the form
Yext (1,0, 1) = q(t)r"e™ + complex conjugate, (2.2)

where ¢(t) is the time dependent strength and orientation of the strain field, to be stipu-
lated. This is a multipolar strain field with n-fold symmetry in 6, where n takes integer
values. In the results which are presented in this paper we only consider strains with
n > 1, because n = 1 is a pure translation mode and, thus is of no dynamical interest if
q(t) is independent of time.

Initially the vortex is axisymmetric w(r,t = 0) = Qo(r), ¥ (r,t = 0) = Uy(r) which is
taken to be a Gaussian vortex given by

1 1 ("1
Qo(?“) = —€_T2/4, \IJU(T’) = —%/ ; (€_T2/4 — 1) dr. (23)

The angular velocity of this vortex as a function of r is given by

100, 1 [ 1 2
C(()(?”) = _;8_7”0 = ﬁ ; SQ()(S) ds = omr? (1 — € /4) . (24)

The initial axisymmetric vortex (2.3) is placed in the external strain field (2.2), which
is switched on for ¢ > 0. The strain field forces the vortex into a non-axisymmetric
shape by inducing higher order Fourier modes into the solution. The time evolution of
the vorticity w and stream function 1 are found by time stepping (2.1) with a time step
At, and seeking a solution for these quantities in the form of truncated Fourier series

N

w(r,0,t) = Z Wk (r, )™ ap(r, 0, 1) Z Vi (7, 1) ™. (2.5)

k=—N

The external strain field drives the n'" mode of the vorticity field, which then excites
higher Fourier modes through the non-linear terms J(t) 4 thex, w) , as well as dynamically
feeding back to modify the basic vorticity profile wy. Equation (2.1) is integrated using a
Crank-Nicholson scheme in spectral space on the linear terms while the nonlinear terms are
updated in real space using the fifth order Adam-Bashforth method. The discretization
in the radial direction uses central finite differences with M = 1500 grid points in the
range 0 < r < 15, with the 6 direction discretized using N = 128 Fourier harmonics.
The Poisson equation for v in (2.1) is solved by inverting a tridiagonal matrix system via
an LAPACK routine. The code is initially tested with ¢(¢) = 0 to check that the viscous
decay of the vortex is captured correctly for the length of the runs in §4. The nonlinear
runs are then checked so that they are independent of At, N and M for all times. The
time step used in the simulations is At = 0.01.

Before presenting the results of the numerical simulations we first discuss the sig-
nificance of the critical layers generated in the vortex by the external strain field, and
highlight the quasi-mode’s feedback from these critical layers onto the azimuthally aver-
aged vorticity profile wo(r,t).



Figure 1: Streamlines showing a cat’s eye structure in 1, in the rotating frame of the
imposed strain field with n = 2.

3 Ciritical radii and feedback responses
For a two-dimensional vortex with an azimuthally averaged vorticity profile wy(r,t), its
angular velocity is given by

r2

a(r,t) = 1 /07‘ wo(s,t)sds, (3.1)

which for the Gaussian vortex (2.3) is given in (2.4). When this vortex is placed in the
external strain field (2.2), with an amplitude A and with axes which rotate with angular

velocity eyt , i.€. R
q(t) = Aexp (—inaext) , (3.2)

then there exists a critical radius in the vortex where the angular velocity of the strain
equals that of the vortex. Turner & Gilbert (2007) [15] show that the co-rotation of the
vortex and strain field leads to finite thickness cat’s eyes being formed at the critical
radius Tey where a(reg) = qexy (provided a solution of this equation exists). This cat’s
eye structure is formed initially in the co-rotating stream function

Yeo(r, 0,1) = U(r,0,t) + %aextr2,

but by advection, it manifests itself as a cat’s eye structure in the vorticity field too [16].
The streamlines for the cat’s eye structure in the Gaussian vortex (2.3) is given in figure 1.
Note that we choose the strain field to rotate in the same direction as the vortex otherwise
no critical layer is generated, and the problem is uninteresting. During the formation of
these cat’s eyes, the nonlinear feedback of the higher order Fourier modes on the basic
axisymmetric state, wq, acts to flatten the vorticity profile around r = rey¢ producing an
homogenized region of vorticity [6, 15]. In reality this homogenized region often contains
fine scale structures in nonlinear simulations, but the overall homogenization of wg around
Text 18 clear, for example see figure 3(a) in Turner & Gilbert (2007) [15].

5



The response of the vortex to the external strain field with amplitude function (3.2)
depends upon the nature of the critical layer which forms at Text . The width of the critical
layer is O(A'Y2) and it turns over on a time scale of O(A~Y/2). Therefore, within the
critical layer it is sensible to define the effective Reynolds number as

Rey = A*?R, (3.3)

which is effectively the inverse of the Haberman parameter used in Le Dizes (2000) [14] and
Haberman (1972) [11]. This definition also arises naturally in the critical layer analysis
of Hall et al. (2003) [26].

When Reg — 00 as R — oo the critical layer is nonlinear in nature [10], but when
Rt — 0 as R — oo the critical layer is viscous in nature [13], with values in between
giving a mixed effect. Le Dizes (2000) [14] showed that the nature of the critical layer
can be compressed into the value of the phase jump of the perturbation streamfunction
of the linear problem, Y, as the solution crosses the critical layer. He showed that y =0
implies that nonlinearity dominates the critical radius and y = —n implies that viscosity
dominates at the critical radius.

For nonlinear critical layers Le Dizes (2000) [14] found one specific critical radius for
strains with n = 2 and n = 3, at which infinitesimally thin, rotating cat’s eyes can persist
in a Gaussian votex without requiring an external strain field to maintain them. Thus, if
infinitely thin cat’s eyes were created by an external strain field at any radius other than
this critical radius, they would decay away once the strain field was switched off. Turner
& Gilbert (2007) [15] showed that finite thickness cat’s eyes can persist at other radii once
the strain field is turned off, but in this case the basic vorticity profile was modified by
the strain, hence the vortex is no longer Gaussian. The critical radius, which we denote
by rN' has a corresponding angular velocity ot determined by solving a(riY) = ok

cat cat cat cat *
For n =2 and n = 3 these values are found to be

n=2 r~344 o ~0.0127,

cat — cat —
n=3 ri~168 ol ~0.0285,
for the Gaussian vortex (2.3). For n > 4 Le Dizes (2000) [14] showed that no such radii
exists in the Gaussian vortex. The consequence of these values is, if the strain field were
tuned such that re = riL then we would expect a resonant response at this point and
a rapid growth in the perturbation vorticity.

For viscous critical layers Le Dizes (2000) [14] found that no corresponding resonance
radii exist for any n, but he did show that the maximum value of the non-axisymmetric
perturbation vorticity (quasi-mode amplitude) is given by

WA = BARYG,(r), (3.4)
where B is a numerical constant defined in Appendix A and G,,(r) is given by (3.13) of
Le Dizes (2000) [14], which is determined numerically. A plot of G, (r) is given in figure
2 for n =2, 3, 4. This figure is essentially a reproduction of figure 8 of Le Dizes (2000)
[14] except we have plotted G,, as a function of r rather than «, and our axisymmetric
vortex is different, hence the y-axis is stretched. Despite no resonant radii existing for the
viscous critical layer case, figure 2 shows that we should expect a large feedback response
on wy(r,t) for radii close to the maximum value of G,(r) for each n. We denote the
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Figure 2: Plot of G,,(r) from (3.4) for n =2, 3 and 4.
N ra Ty
2 3.705 0.0112
3 3.375 0.0132
4 3.496 0.0124

Table 1: Table of values of r at which G, (r) in figure 2 attains its maximum value,

denoted by rY,, and the corresponding value of a(ry,,).

value of r at the maximum values of G, (r) by 7Y, and table 1 gives these values and
the corresponding angular velocities for m = 2, 3 and 4.

In numerical simulations, the nonlinear limit of R,y — oo as R — oo is hard to
achieve because it requires very large Reynolds numbers or wide critical layers, and in
this paper we are not able to achieve this nonlinear limit. In fact our simulations are run
for weak strain fields (small amplitude), therefore we expect Rz to be moderately small,
hence we expect staircases to form around the viscous critical layer values of rY,, in table
1. Note that this viscous critical layer limit was the limit considered by Turner et al.
(2009) [17] and so the results presented here can be compared to their results.

In this article we consider the effect of a random strain field on the evolution of a
vortex, which generates a number of viscous critical layers in the vortex. To implement
this we use the procedure laid out by Kraichan (1970) [27] and Drummond et al. (1984)
[28] and set

Np
q(t) = ()N~ exp [ (ngt +v3)]. (3.5)

j=1
Here the coefficients (; are chosen randomly from a normal distribution with mean pu
and standard deviation ¢ and v; are randomly chosen from a uniform distribution in the
range [0,27]. The integer n in ¢(t) makes the (; value the angular velocity of the ;™
component of the strain field. The function ¢(¢) merely acts as a switch which allows the
random strain to be gradually switched on over a time 7" to aid numerical implementation,



and takes the form
Asin (”—t) for t<T

¢(t):{A . for t>T "’

where A is an amplitude parameter. The form of ¢(t) in (3.5) leads to a smooth function
comprising of Ny strain field components each rotating with angular velocity ¢;. Each
of these terms will act to flatten the azimuthally averaged vorticity profile wy(r,t) at a
radius corresponding to the angular velocity ¢;. Due to the large feedback response on
the vortex around rY,, we expect any flattening to be more pronounced in the vicinity
of this radius. We also expect the strain field to interact with the modified azimuthally
averaged profile producing a vorticity staircase similar to that observed in Turner et al.
(2009) [17]. As ¢(t) in (3.5) contains N harmonics, then we can argue that this strain
field leads to an effective Reynolds number approximately given by (3.3) with A=N ;/ ’A.

While the results presented in §4 can be compared to those in Turner et al. (2009)
[17], there are expected to be some differences for the following reasons. Firstly, the
results of Turner et al. (2009) [17] are ensemble averaged at the outset, whereas here
the strain field is explicitly applied and the results are time averaged to remove the
random strain fluctuations. Thus, as our simulations will generate finite time series, there
is expected to be some minor dependence on the time-averaging method used. Also,
the numerical scheme in Turner et al. (2009) [17] neglects higher order nonlinear terms
and the evolution of the vortex profile is based on a weakly-nonlinear diffusion equation
approach, which leads the authors to introduce a ‘smoothing parameter’ to smooth out
the nonlinear processes. Such a parameter is not required in the current work, which is
one of the strengths of the fully nonlinear simulations. The form of the numerical scheme
in Turner et al. (2009) [17] essentially means their results are valid for inviscid vortices as
t — oo with R — 0. However, such results are difficult to construct in fully nonlinear
simulations, and the added viscosity in this paper, for numerical stability, will affect the
staircase evolution. Finally, Turner et al. (2009) [17] use a delta time correlated function
q(t), which (3.5) is not, however they show that other correlated functions also exhibit
step structures, albeit with different step characteristics.

The external strain fields considered in this work are weak, i.e. the amplitude A is
not large enough to allow vortex stripping to occur [29]. In fact in the vicinity of the
vortex the flows considered here are dominated by the rotational component of the flow
which is generated by the vortex itself.

For the simulations presented in §4 we choose Ng = 1000 and 7" = 1000 in (3.5), and
in order to compare the results of the various simulations we use the same realization of
the random function ¢(¢) for all simulations, unless otherwise stated.

4 Results

In this section we present results of the nonlinear numerical simulations. The results are
time averaged in order to average out the fluctuations from the random strain field so that
they can be compared to those of Turner et al. (2009) [17]. The time averaging scheme
used is a rolling average, such that the time-averaged, azimuthally-averaged, vorticity
profile is given by

w(r t): %fgwo(rvt)dt 0<t<r
(7, %ftt_TWO(“t)dt t>7 )



M Text at K Text at H to
0 00 [5.641, 00|
0.009 4.178  [3.249,6.308]
0.014  3.249 [2.622,4.178|
0.028  1.731 [1.244,2.208]

Table 2: Values of p and the corresponding value of 7. at p for the strain fields
considered in §4. The standard deviation for each distribution is o = 0.005.

where the over bar signifies the time-averaged quantity. We choose 7 = 1000 because this
value gives clean time averaged results, without completely eliminating the fine structure
of the random forcing. Other values of 7 give similar results, but if 7 is taken too large
then the viscous spreading of the vortex will contaminate the results.

The results are presented for four different strain field parameter distributions. The
mean value of the strain field angular velocity distribution, u, along with the correspond-
ing value of re are given in table 2 for the four distributions. Each strain field has a
standard deviation of o = 0.005. The reason for choosing these p values is because for
@ =0 and p = 0.028 the mean angular velocity value of the strain field lies away from
the resonance feedback radii, while g = 0.009 and p = 0.014 force critical layers at radii
close to these resonance feedback values. We expect the results for = 0.009 and 0.014
to give larger feedback responses and hence more clearly defined vorticity staircases then
the =10 and p = 0.028 strain fields.

We first present results for the case when the azimuthal wavenumber n = 2 in §4.1
before considering the effect of higher wavenumbers in §4.2.

4.1 Strain fields with n =2

For the case n = 2, the theory in §3 shows that the largest viscous feedback between the
vortex and the strain field occurs for strains with angular velocities aey; ~ aym = 0.0112.
Therefore, we expect the strains with p = 0.009 and g = 0.014 to have the largest
feedback response, and potentially the most significant staircase structure. However, we
note that the theory in §3, and in particular the values in table 1, is only valid at early
times, because as the strain field feeds back onto the profile wy(r,t) the position, and
response amplitude, of w2 will change. The effect of this change is discussed in §5. In
this section the strain field (3.5) is considered with amplitudes A =2 x 1075, 4 x 107°
and 6 x 107% which correspond to Reg ~ 50.3, 142.3 and 261.4 respectively. Therefore,
while these values of Rz # 0, they are small enough to consider the nature of the critical
layers as viscous rather than nonlinear.

The evolution of the vorticity value at the origin @y (t) = wWo(r = 0,t) in figure 3
confirms that the largest feedback on @, (t) occurs for the strains with p = 0.009 and
i = 0.014 as predicted by the linear theory. For each forcing p value we observe an
initial region, ¢ < 2 x 10*, where the nonlinear terms of (2.5) increase in magnitude
and eventually saturate. In this region the vortex spreads more rapidly than the O(R)
spreading expected of a viscous vortex, however, beyond this time the decay rate is in
accord with the O(R) decay, as indicated by the top straight line. This rapid spreading of
the vortex is caused by the azimuthally averaged vorticity profile wy being modified in the
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Figure 3: (colour online) Plot of W, (t) = wy(0,t) for R = 10®, n = 2 with (a) A =
6x107% and (b) A =4x107%. In each panel the curves u = 0.009, 0.014, 0.0 and 0.028
are numbered 1 — 4 respectively. The top line has gradient 10~8 for comparison.

region close to rY,. . Due to the conservation of angular momentum in the system, and the

irrotational strain field not adding additional vorticity, the spreading of the vortex causes
a spin down of the vortex at the core [16]. For the case A = 4x107% in panel (b), we were
able to run the simulations longer before the time stepping error contaminated the results,
and thus these simulations are approaching the small forcing, large time simulations of
Turner et al. (2009) [17].

The azimuthally averaged vorticity profiles @wy(r,t) for each of the results in figure
3(a) are given in figure 4, with the time evolution reading down the curves from top
to bottom. These plots all show the formulation of a vorticity staircase at the edge of
the vortex. In panels (c¢) and (d) the staircases are less well defined due to the mean
angular frequency of the strain being away from the largest feedback radii and thus w2
is smaller, so the modification of @, is less. However, small steps are still visible in the
final profiles. Therefore, irrespective of the mean angular velocity value, u, each strain
field generates steps in approximately the same range of radial values. This range is
approximately r € [2.5,4] which agrees well with the results of Turner et al. (2009) [17]
where the staircases form approximately in r € [2.5,3.7].

For the results with ¢ = 0.009 and g = 0.014 the staircases are more visible and form
much faster than the other two strain fields. Also, in these cases the steps appear wider,
but this could be because in panels (c) and (d) the steps are still forming. In each panel
the steps drift slowly towards the origin over time. This drifting was also observed in
Turner et al. (2009) [17] and the reason for this drift is due to the formation of the steps
affecting the response of the vortex to the strain field. This is discussed in §5. One subtle
difference between the results presented here and those in Turner et al. (2009) [17] is seen
in figure 4(a). Here a sharp step forms during intermediate times and then disappears as
the vorticity diffuses out from the edge of the vortex. However, the vortex does not form
a sharp edge as in Turner et al. (2009) [17], but it does leave a large, well mixed, surf
zone surrounding the remaining core. This can be seen in figure 5.

An alternative way to visualize the time evolution of the vorticity profiles in figure 4 is
to consider the space-time evolution of the vorticity gradient -|0,@(r, t)| plotted in figure
5. These plots contain the same information as figure 4, but instead show a continuous
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Figure 4: Profiles of wWy(r) for the results in figure 3(a). The panels correspond to (a)
p = 0.009, (b) 0.014, (c) 0.0 and (d) 0.028. In each panel the curves are separated by
an additive constant and are given in steps of t = 2 x 10 reading down the curves.

evolution of the steps which form. These steps are indicated by the white regions, such
as those around r & 3 in panels (a) and (b), and have steep edges indicated by grey
regions. For the strain with g = 0.009 in figure 5(a) we can see step merger taking place
(see circled region), which was also observed in Turner et al. (2009) [17]. In this study
we do not observe as many step merges as in Turner et al. (2009) [17], which is likely
to be because the current simulations contain a small amount of viscosity which smooths
out and removes small steps, reducing the number which form, and hence reducing the
number of merges. What is clear from the plots in panels (a) and (b) are the surf zones
outside the edge of the vortex where the vorticity is well mixed. In panels (c¢) and (d)
the steps which form are much less pronounced, but these space-time figures clearly show
the existence of these steps, and in fact, in both these cases the main steps which form
appear to be at larger radii than in panels (a) and (b).

Using the linear theory of §3 we can predict an estimate of the initial range of radii
over which steps are observed, given the strain parameters. In Turner & Gilbert (2007)
[15] it was observed that for the strain field to flatten the basic profile at a given radius
the non-axisymmetric contribution of the vorticity field needed to be large enough to
overcome the vorticity gradient of the basic profile. In the context of the linear theory
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Figure 5: Space-time diagram of the evolution of the vorticity gradient - |0,@(r, t)| plotted
in grey scale in the (¢,7) plane for the results in figure 4. The grey scale is capped at the
level —|0,w(r,t)| = —0.035, corresponding to black; zero is white.
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Figure 6: Plot of C|wYA | from (3.4) for n = 2. The solid line represents |9,£| while
lines 1-3 denotes the results for A =6 x 107%, 4 x 107 and 2 x 107% respectively. The
value of the combination C'B was chosen to be 0.568 so that line 1 crosses the solid curve

at r =ry = 2.5, the smallest radius at which steps were seen initially in figures 4 and 5.

from §3 this means that the basic profile should flatten at radii for which

C lwha] = 10,0], (4.1)

max

for some constant C'. We observe in figures 4 and 5 that for A = 6 x 107% steps initially
form approximately for r € [2.5,4]. In figure 6 we plot C|wY2 | with the combination
CB = 0.568 (curve 1) and the solid line depicts |0,€2|. For this value of C'B the two
curves cross at r ~ 2.5 and so C|wN2 | > |9,8| for r > 2.5. We denote this crossing
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point value where C'|w}A | = 19,Q| as 7, and thus from (4.1) we only expect steps in

the A = 6 x 1076 result for » > r,. This agrees with the observation in figures 4 and
5. Note that in figures 4 and 5 we do not see steps for r = 4, but the above criteria
predicts that we should observe steps in this range. The resolution of this comes from
Turner & Gilbert (2007) [15] who showed that forcing the Gaussian vortex (2.3) with a
strain with 7. = 4 has little effect on the basic vorticity profile because the profile is
already relatively flat at this point. Hence we do not expect to see steps in the Gaussian
vortex (2.3) for r > 4, unless a significant amount of vorticity is advected from the core
over time, increasing the vorticity gradient there.

The criteria (4.1) can now be used to predict staircase positions for different param-
eters. Results 2 and 3 in figure 6 show that ry ~ 2.7 for A =4 x 1075 and r, = 3.0 for
A =2 x 1075 respectively. These predictions agree very well with the results in figures 7
and 8 for p = 0.014, strengthening the use of the prediction criteria (4.1).

Figure 7: Profiles of wy(r) with u = 0.014 for (a) A=4x107% and (b) A =2 x 1075.
In each panel the curves are separated by an additive constant and are given in steps of
t =5 x 10* reading down the curves.

* @ > (b)

t 500000

Figure 8: Space-time diagram of the evolution of the vorticity gradient - |0,w(r, t)| plotted
in grey scale in the (¢,7) plane for the results in figure 7. The grey scale is capped at the
level —|0,w(r,t)| = —0.035, corresponding to black; zero is white.

For the smaller amplitude profiles in figure 7, we see that the A =2 x 107% result in

panel (b) initially contains a lot of fine scale structure in the vorticity profile, but these
slowly merge into two clear steps at the final time value, while for A =4 x 107% in panel
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(a), the small steps soon merge into one large step centred around r & 3.25. This merging
of steps can be clearly seen in space-time plots in figure 8. Turner et al. (2009) [17] were
not able to modify the amplitude of the nonlinear effects in a succinct manner such as
reducing the forcing amplitude, but did so through varying their smoothing parameter.
Just as we have found here, they identified that a small smoothing parameter (weak
nonlinearity) produced more finer scale steps in the staircase which eventually merge over
long time scales.

0.08 N
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Figure 9: (colour online) Plot of Wy, (t) for R =107, n =2 with A =6 x 107%. In each
panel the curves g = 0.009, 0.014, 0.0 and 0.028 are numbered 1 — 4 respectively. The
top line has gradient 10~" for comparison.

Increasing the viscosity within the vortex to R = 10 has the effect of damping out
the fine scale steps which form, as well as delaying the formation of the larger steps seen
for R = 10%. It is worth noting that for R = 107 the vortex now spreads considerably
compared to the R = 10® case, see figure 9, where for all four results @, (t) clearly decays
at a rate proportional to R. We also observe from (3.4) that reducing R by a factor of 10
reduces w2 by approximately a factor of 2, so we expect the value of r, for A = 6x107°
to be similar to result 2 of figure 6, and for A = 4 x 10~ the value to be similar to result
3 of figure 6.

Figures 10 and 11 plot the evolution of the p = 0.014 result from figure 9 in panel (a)
and the corresponding result with A = 4 x 107% in panel (b). When we compare these
results to the respective R = 10® results we notice that the steps generated by the forcing
are less well defined and narrower. In fact, for the smaller amplitude case in panel (b) the
steps are hardly visible and appear to have disappeared by the final time point. However,
the space-time diagrams in figure 11 do show the existence of steps, but the light grey
regions surrounding them suggest that the steps are weak. In fact for A =4 x 107¢, no
clear steps really emerges in figure 11(b) until around ¢ = 2.5 x 10%, which is much later
than for the R = 10® result. The increased viscosity acts to smooth out the sharp edges
of the steps which eventually removes them from the periphery of the vortex altogether.
The increased viscosity also causes the vortex to spread more rapidly than for R = 108,
and as it spreads the radii at which the external strain is acting moves towards the centre
of the vortex where the vorticity gradient is larger. Hence the fixed value of A is no
longer large enough to flatten the vortex at these smaller radii and so the number of steps
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Figure 10: Profiles of wy(r) for the g = 0.014 result in figure 9. The panels correspond
to (a) A=6x107% and (b) A =4 x 107%. In each panel the curves are separated by an
additive constant and are given in steps of (a) t = 2 x 10* and (b) ¢t = 5 x 10* reading
down the curves.

e) ° (b)

t 500000

Figure 11: Space-time diagram of the evolution of the vorticity gradient -|0,&(r, t)| plotted
in grey scale in the (¢,r) plane for the results in figure 10. The grey scale is capped at
the level —|0,w(r,t)| = —0.035, corresponding to black; zero is white.

is reduced. Note however, that the initial profiles show that the values of r, for these
simulations predicted by (4.1) are in good agreement with the simulations, which can be
more clearly seen in figure 11.

The existence of the vorticity staircases in the vortex is independent of the random
realization of the strain field, but the exact position, width and position of step mergers
is affected by the realization, as seen in figure 12. Here we plot results for A = 6 x 107°
with g = 0.009, hence we compare the results in this figure with those in figure 4(a) and
figure 5(a). While the initial step formation again occurs with ry, = 2.5, the main long
lasting step which forms centres around r ~ 2.9 for the second realization, compared to
r ~ 3.1 for the first realization. However, we expect subtle variations in step position
and width because firstly, the strain field is different and secondly the feedback onto wy
is different which affects the position of the large feedback of the vortex, see §5. The
key result here is, irrespective of the form of the random forcing, the staircase still forms
initially with r4 &~ 2.5, and this staircase persists for large times.
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Figure 12: (a) Profiles of @y(r) and (b) space-time diagram of the evolution of the vorticity
gradient -|0,w(r,t)| for the second realization of the random forcing with p = 0.009 and
A =6x107% 1In (a) the curves are separated by an additive constant and are given in
steps of ¢t = 2 x 10* reading down the curves.

4.2 Strain fields with n > 3

Here we consider strain fields with n = 3 and n =4, and in this section we focus on the
mean forcing frequencies closest to the viscous resonant values in table 1, because these
will give the largest feedback in the vortex, i.e. = 0.009 and 0.014. Note that for these
larger values of n we have to use smaller amplitude values A in order to stop the forcing
from stripping off vorticity at large radii, and to make sure that the simulations remain
independent of the discretization parameters. Thus for n = 3 we use A =2 x 107¢ and
for n =4 we use A =0.25 x 1079 giving effective Reynolds numbers of R.s = 50.3 and
0.0125 respectively.

0.06|
0.05} 1
0.04]
0.03}
0.02}

0.01}

Figure 13: Plot of C|wXA | from (3.4) for n = 3 with A = 2 x 107¢ and n = 4 with

A = 0.25 x 107 represented by lines 1 and 2 respectively. The solid line represents |9,
and the value of the combination C'B = 0.568 is the same as in figure 6.
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Figure 13 plots the inequality (4.1) for both n = 3 and n = 4 and we calculate that
steps should be observed initially for r 2 ry = 2.2 for n =3 and r 2 ry = 2.6 for n = 4.
Thus for a larger value of n with fixed A, we expect to see steps closer to the core of the
vortex initially, because r, = 3 with A =2 x 107% and n =2 in §4.1.

0.08
o ~ e
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Figure 14: (colour online) Plot of Wy, (t) = wy(0,t) for R = 10® with n = 3 and 4 and
A=2x10"% and A = 0.25 x 107% respectively. The curves = 0.009, 0.014 for n = 3
are numbered 1 and 2 respectively while the curves for p = 0.009, 0.014 for n = 4 are
numbered 3 and 4 respectively. The top line has gradient 10~® for comparison.

The results for @, (t) in figure 14 show that for n = 3 the response to the strain field
is of a similar magnitude to that observed for n = 2 in figure 3. However, for n = 4 the
response is smaller, due to the fact that a smaller value of A was used to avoid vortex
stripping by the strain field. Therefore we might expect similar size steps to the n = 2
results for n = 3 and less well defined steps for n = 4.

The azimuthally averaged vorticity profiles for the results in figure 14 are given in
figure 15. The n = 3 results in panels (a) and (b) show that the steps which form are
narrower than those for n = 2, and because of this, more steps form initially. This can
more clearly be seen in the space-time plots in figures 16(a) and (b). These space-time
plots also show that more step merges happen during the vortex evolution but at the
finial time value of the simulations, there are typically only 1 or 2 larger steps. It should
also be noted that the initial profiles in figures 15(a) and (b) show that steps only form
for r 2 2.2 initially, which agrees with the prediction for ry from figure 13.

Panels (c) and (d) of figures 15 and 16 show that when n = 4 the steps which form
are narrower still. In fact these results show that for this amplitude value, no coherent
steps persist in the periphery of the vortex. The space-time plots show that steps do
form initially, but they quickly merge with other steps and are eventually destroyed by
the strain field and viscosity. Therefore, these results suggest that vorticity staircases are
only likely to be observed for strain fields with azimuthal wavenumbers n = 2 and n = 3.
Despite this, it is again clear from figure 16 that the fine scale structures which do form
for n =4 do so initially for r 2> 2.8 agreeing with the criteria (4.1).
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Figure 15: Profiles of @y(r) for the results in figure 14. The panels correspond to (a)
(u,m) = (0.009,3), (b) (0.014,3), (c) (0.009,4) and (d) (0.014,4). In each panel the
curves are separated by an additive constant and are given in steps of 2 x 10* reading
down the curves.

5 Conclusions and Discussion

This study examined the long time evolution of an axisymmetric Gaussian vortex in a
weak-random-external strain field using fully nonlinear simulations. The results of this
study show that for a multipolar strain field with azimuthal wavenumber n, a vorticity
staircase forms at the periphery of the vortex. This staircase initially consists of many
small steps which merge over time, typically into one or two larger steps. The results
presented here reinforce the results presented in Turner et al. (2009) [17], who used a
weakly-nonlinear analysis to derive a diffusion equation which was time-stepped to deter-
mine the evolution of the ensemble averaged vorticity profile, equivalent to our @y(r,t).
The results in Turner et al. (2009) [17] are essentially results for a very small amplitude
strain field in the long time limit, which are difficult to replicate in numerical simulations.
But the main drawback of their work was the need to introduce a ‘smoothing’ parameter
to ‘smooth’ over the contribution of the nonlinear terms which were neglected in the diffu-
sion equation approach. In the current paper we used simulations of the full Navier-Stokes
equations, so the nonlinear terms were able to saturate and thus a smoothing parameter
was not required. The results also showed that these steps act as barriers in the vortex,
separating regions of well diffused vorticity from the coherent core of the vortex. This was
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Figure 16: Space-time diagram of the evolution of the vorticity gradient -|0,&(r, t)| plotted
in grey scale in the (¢,r) plane for the results in figure 15. The grey scale is capped at
the level |0,@(r,t)| = 0.035, corresponding to black; zero is white.

clearly observed in the space-time diagrams where a clear, well mixed, surf zone existed
outside the vortex, in most cases separated from the core by a single vorticity step.

The results in this paper showed that while the exact position and width of the per-
sistent steps at later times depends on the strain parameters, the initial range of radii
over which steps form was well predicted by the criteria (4.1). In §4 we used the results
of our simulations to determine the value of the combination CB = 0.568. Appendix A
shows that B ~ 1.288, and hence the criteria (4.1) gives steps for radii where

0.44]wNA | > |0,9). (5.1)

max

It was found in the results in §4 that this criteria accurately predicted the initial step
region for all the simulations.

The criteria (5.1) can also be used to predict the time evolution of the staircases by
replacing €2y by the time averaged profile wy. To determine how flattening the vorticity
profile affects the viscous critical layer feedback we consider (5.1) with € replaced by

2
wWo(r;e,re) = %67«2/4 + % exp (i (2—17) - i M) , (5.2)
which is the Gaussian vortex (2.3) with a flat region of width € centred at r = r. (see
Turner et al. (2008) [30]). Figure 17(a) shows the equality (5.1) for this profile with
r. = 3.0 and € = 0.2. This figure shows that when a flat region is formed in the vortex,
the critical layer response at the edge of the steps is increased, particularly on the side
of the step closer to the origin. This increased feedback leads to further flattening of
the vortex on this side of the step which causes the step to drift towards the core of the
vortex. This explains the drifting of the steps as seen in this article, such as figure 4, and
in the work of Turner et al. (2009) [17].

The Gaussian vortex (2.3) is not always typical of vortices observed in physical sit-
uations. For example, vortices observed in two-dimensional turbulence often have sharp
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Figure 17: Plot of |0,@| (curves 1) and C|wY2 | (curves 2) for the vorticity profiles given
in (a) (5.2) with (r.,€) = (3.0,0.2) and (b) (5.3) with ¢, = 0.7 given by the solid curves.
In both panels the results use R = 108, A = 6 x 1075 and the dashed curves give the

corresponding result for the Gaussian vortex (2.3) given in figure 6.

edges due to processes such as vortex stripping [29]. We can also consider how the criteria
(5.1) depends upon these sharper edge vortices by considering the family of tanh vortices
used by Hall et al. (2003) [26] and Turner & Gilbert (2007) [15] with

11- tanh[(r? — o2)/4(1 — ;)]
47 1+tanh[o?/4(1 —0y)]

wo(r) = (5.3)
where o, € [0,1), and the vortex approaches a Rankine vortex as o, — 1. The viscous
resonant feedback response for this vortex with o, = 0.7 in figure 17(b) shows that the
region over which steps are expected to form reduces dramatically for sharp edged vortices.
This suggests that in sharper edge vortices the formation of vorticity staircases maybe
more difficult, and if they do form, the region in which they are generated will be small.

— Appendix —

A Value of constant B in (3.4)

The constant B in (3.4) is given in the appendix of Le Dizes (2000) [14] as
B = maxy, rean}|Re(ws)],

where ws(s,t) satisfies the viscous critical layer equation

0w,
952 swsz =1,
with
ng—% as s — too.
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Figure 18: Plot of @3(s). Curves 1 and 2 correspond to the real part, 3 gives the imaginary
part, and the dashed lines give the large s asymptotic behaviour.

The solution to this problem can be found in the appendix of Drazin & Reid (1981)
[31] and is

7 [2Bi(s) + Bi(s) [y Ai(€) d€ — Ai(s) [ Bi(€) d¢]

w3 = { 7.‘_6—27ri/3 [%Bi(se_%i/‘g) +Bi(s€_2“i/3) fdge*QTri/?) Ai(f) dg—Ai(se_Qﬂi/B') f(fe*%ri/i& Bi({) dﬁ] . 0’ ,

where Ai and Bi are Airy functions of the first kind. This solution is plotted in figure
18 with the corresponding large s asymptotic behaviour. It is clear that the maximum
value of the real part occurs at s = 0~ and hence

2
B = SmBi(0) ~ 1.288.
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